1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
|
//===- PPCInstructionSelector.cpp --------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the InstructionSelector class for
/// PowerPC.
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCRegisterBankInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "ppc-gisel"
using namespace llvm;
namespace {
#define GET_GLOBALISEL_PREDICATE_BITSET
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATE_BITSET
class PPCInstructionSelector : public InstructionSelector {
public:
PPCInstructionSelector(const PPCTargetMachine &TM, const PPCSubtarget &STI,
const PPCRegisterBankInfo &RBI);
bool select(MachineInstr &I) override;
static const char *getName() { return DEBUG_TYPE; }
private:
/// tblgen generated 'select' implementation that is used as the initial
/// selector for the patterns that do not require complex C++.
bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
bool selectFPToInt(MachineInstr &I, MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const;
bool selectIntToFP(MachineInstr &I, MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const;
bool selectZExt(MachineInstr &I, MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const;
std::optional<bool> selectI64ImmDirect(MachineInstr &I,
MachineBasicBlock &MBB,
MachineRegisterInfo &MRI, Register Reg,
uint64_t Imm) const;
bool selectI64Imm(MachineInstr &I, MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const;
const PPCSubtarget &STI;
const PPCInstrInfo &TII;
const PPCRegisterInfo &TRI;
const PPCRegisterBankInfo &RBI;
#define GET_GLOBALISEL_PREDICATES_DECL
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_DECL
#define GET_GLOBALISEL_TEMPORARIES_DECL
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_DECL
};
} // end anonymous namespace
#define GET_GLOBALISEL_IMPL
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_IMPL
PPCInstructionSelector::PPCInstructionSelector(const PPCTargetMachine &TM,
const PPCSubtarget &STI,
const PPCRegisterBankInfo &RBI)
: STI(STI), TII(*STI.getInstrInfo()), TRI(*STI.getRegisterInfo()), RBI(RBI),
#define GET_GLOBALISEL_PREDICATES_INIT
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_INIT
{
}
static const TargetRegisterClass *getRegClass(LLT Ty, const RegisterBank *RB) {
if (RB->getID() == PPC::GPRRegBankID) {
if (Ty.getSizeInBits() == 64)
return &PPC::G8RCRegClass;
if (Ty.getSizeInBits() <= 32)
return &PPC::GPRCRegClass;
}
if (RB->getID() == PPC::FPRRegBankID) {
if (Ty.getSizeInBits() == 32)
return &PPC::F4RCRegClass;
if (Ty.getSizeInBits() == 64)
return &PPC::F8RCRegClass;
}
if (RB->getID() == PPC::CRRegBankID) {
if (Ty.getSizeInBits() == 1)
return &PPC::CRBITRCRegClass;
if (Ty.getSizeInBits() == 4)
return &PPC::CRRCRegClass;
}
llvm_unreachable("Unknown RegBank!");
}
static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) {
Register DstReg = I.getOperand(0).getReg();
if (DstReg.isPhysical())
return true;
const RegisterBank *DstRegBank = RBI.getRegBank(DstReg, MRI, TRI);
const TargetRegisterClass *DstRC =
getRegClass(MRI.getType(DstReg), DstRegBank);
// No need to constrain SrcReg. It will get constrained when we hit another of
// its use or its defs.
// Copies do not have constraints.
if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
<< " operand\n");
return false;
}
return true;
}
static unsigned selectLoadStoreOp(unsigned GenericOpc, unsigned RegBankID,
unsigned OpSize) {
const bool IsStore = GenericOpc == TargetOpcode::G_STORE;
switch (RegBankID) {
case PPC::GPRRegBankID:
switch (OpSize) {
case 32:
return IsStore ? PPC::STW : PPC::LWZ;
case 64:
return IsStore ? PPC::STD : PPC::LD;
default:
llvm_unreachable("Unexpected size!");
}
break;
case PPC::FPRRegBankID:
switch (OpSize) {
case 32:
return IsStore ? PPC::STFS : PPC::LFS;
case 64:
return IsStore ? PPC::STFD : PPC::LFD;
default:
llvm_unreachable("Unexpected size!");
}
break;
default:
llvm_unreachable("Unexpected register bank!");
}
return GenericOpc;
}
bool PPCInstructionSelector::selectIntToFP(MachineInstr &I,
MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const {
if (!STI.hasDirectMove() || !STI.isPPC64() || !STI.hasFPCVT())
return false;
const DebugLoc &DbgLoc = I.getDebugLoc();
const Register DstReg = I.getOperand(0).getReg();
const Register SrcReg = I.getOperand(1).getReg();
Register MoveReg = MRI.createVirtualRegister(&PPC::VSFRCRegClass);
// For now, only handle the case for 64 bit integer.
BuildMI(MBB, I, DbgLoc, TII.get(PPC::MTVSRD), MoveReg).addReg(SrcReg);
bool IsSingle = MRI.getType(DstReg).getSizeInBits() == 32;
bool IsSigned = I.getOpcode() == TargetOpcode::G_SITOFP;
unsigned ConvOp = IsSingle ? (IsSigned ? PPC::XSCVSXDSP : PPC::XSCVUXDSP)
: (IsSigned ? PPC::XSCVSXDDP : PPC::XSCVUXDDP);
MachineInstr *MI =
BuildMI(MBB, I, DbgLoc, TII.get(ConvOp), DstReg).addReg(MoveReg);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
}
bool PPCInstructionSelector::selectFPToInt(MachineInstr &I,
MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const {
if (!STI.hasDirectMove() || !STI.isPPC64() || !STI.hasFPCVT())
return false;
const DebugLoc &DbgLoc = I.getDebugLoc();
const Register DstReg = I.getOperand(0).getReg();
const Register SrcReg = I.getOperand(1).getReg();
Register CopyReg = MRI.createVirtualRegister(&PPC::VSFRCRegClass);
BuildMI(MBB, I, DbgLoc, TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
Register ConvReg = MRI.createVirtualRegister(&PPC::VSFRCRegClass);
bool IsSigned = I.getOpcode() == TargetOpcode::G_FPTOSI;
// single-precision is stored as double-precision on PPC in registers, so
// always use double-precision convertions.
unsigned ConvOp = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS;
BuildMI(MBB, I, DbgLoc, TII.get(ConvOp), ConvReg).addReg(CopyReg);
MachineInstr *MI =
BuildMI(MBB, I, DbgLoc, TII.get(PPC::MFVSRD), DstReg).addReg(ConvReg);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
}
bool PPCInstructionSelector::selectZExt(MachineInstr &I, MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const {
const Register DstReg = I.getOperand(0).getReg();
const LLT DstTy = MRI.getType(DstReg);
const RegisterBank *DstRegBank = RBI.getRegBank(DstReg, MRI, TRI);
const Register SrcReg = I.getOperand(1).getReg();
assert(DstTy.getSizeInBits() == 64 && "Unexpected dest size!");
assert(MRI.getType(SrcReg).getSizeInBits() == 32 && "Unexpected src size!");
Register ImpDefReg =
MRI.createVirtualRegister(getRegClass(DstTy, DstRegBank));
BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
ImpDefReg);
Register NewDefReg =
MRI.createVirtualRegister(getRegClass(DstTy, DstRegBank));
BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::INSERT_SUBREG),
NewDefReg)
.addReg(ImpDefReg)
.addReg(SrcReg)
.addImm(PPC::sub_32);
MachineInstr *MI =
BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), DstReg)
.addReg(NewDefReg)
.addImm(0)
.addImm(32);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
}
// For any 32 < Num < 64, check if the Imm contains at least Num consecutive
// zeros and return the number of bits by the left of these consecutive zeros.
static uint32_t findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
uint32_t HiTZ = countTrailingZeros<uint32_t>(Hi_32(Imm));
uint32_t LoLZ = countLeadingZeros<uint32_t>(Lo_32(Imm));
if ((HiTZ + LoLZ) >= Num)
return (32 + HiTZ);
return 0;
}
// Direct materialization of 64-bit constants by enumerated patterns.
// Similar to PPCISelDAGToDAG::selectI64ImmDirect().
std::optional<bool> PPCInstructionSelector::selectI64ImmDirect(MachineInstr &I,
MachineBasicBlock &MBB,
MachineRegisterInfo &MRI,
Register Reg,
uint64_t Imm) const {
unsigned TZ = countTrailingZeros<uint64_t>(Imm);
unsigned LZ = countLeadingZeros<uint64_t>(Imm);
unsigned TO = countTrailingOnes<uint64_t>(Imm);
unsigned LO = countLeadingOnes<uint64_t>(Imm);
uint32_t Hi32 = Hi_32(Imm);
uint32_t Lo32 = Lo_32(Imm);
uint32_t Shift = 0;
// Following patterns use 1 instructions to materialize the Imm.
// 1-1) Patterns : {zeros}{15-bit valve}
// {ones}{15-bit valve}
if (isInt<16>(Imm))
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), Reg)
.addImm(Imm)
.constrainAllUses(TII, TRI, RBI);
// 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
// {ones}{15-bit valve}{16 zeros}
if (TZ > 15 && (LZ > 32 || LO > 32))
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LIS8), Reg)
.addImm((Imm >> 16) & 0xffff)
.constrainAllUses(TII, TRI, RBI);
// Following patterns use 2 instructions to materialize the Imm.
assert(LZ < 64 && "Unexpected leading zeros here.");
// Count of ones follwing the leading zeros.
unsigned FO = countLeadingOnes<uint64_t>(Imm << LZ);
// 2-1) Patterns : {zeros}{31-bit value}
// {ones}{31-bit value}
if (isInt<32>(Imm)) {
uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(Opcode), TmpReg)
.addImm((Imm >> 16) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(Imm & 0xffff)
.constrainAllUses(TII, TRI, RBI);
}
// 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
// {zeros}{15-bit value}{zeros}
// {zeros}{ones}{15-bit value}
// {ones}{15-bit value}{zeros}
// We can take advantage of LI's sign-extension semantics to generate leading
// ones, and then use RLDIC to mask off the ones in both sides after rotation.
if ((LZ + FO + TZ) > 48) {
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), TmpReg)
.addImm((Imm >> TZ) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDIC), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(TZ)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 2-3) Pattern : {zeros}{15-bit value}{ones}
// Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
// therefore we can take advantage of LI's sign-extension semantics, and then
// mask them off after rotation.
//
// +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+
// |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1|
// +------------------------+ +------------------------+
// 63 0 63 0
// Imm (Imm >> (48 - LZ) & 0xffff)
// +----sext-----|--16-bit--+ +clear-|-----------------+
// |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111|
// +------------------------+ +------------------------+
// 63 0 63 0
// LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ
if ((LZ + TO) > 48) {
// Since the immediates with (LZ > 32) have been handled by previous
// patterns, here we have (LZ <= 32) to make sure we will not shift right
// the Imm by a negative value.
assert(LZ <= 32 && "Unexpected shift value.");
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), TmpReg)
.addImm(Imm >> (48 - LZ) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(48 - LZ)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
// {ones}{15-bit value}{ones}
// We can take advantage of LI's sign-extension semantics to generate leading
// ones, and then use RLDICL to mask off the ones in left sides (if required)
// after rotation.
//
// +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+
// |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb|
// +------------------------+ +------------------------+
// 63 0 63 0
// Imm (Imm >> TO) & 0xffff
// +----sext-----|--16-bit--+ +LZ|---------------------+
// |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111|
// +------------------------+ +------------------------+
// 63 0 63 0
// LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ
if ((LZ + FO + TO) > 48) {
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), TmpReg)
.addImm((Imm >> TO) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(TO)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
// If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
// value, we can use LI for Lo16 without generating leading ones then add the
// Hi16(in Lo32).
if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), TmpReg)
.addImm(Lo32 & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORIS8), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(Lo32 >> 16)
.constrainAllUses(TII, TRI, RBI);
}
// 2-6) Patterns : {******}{49 zeros}{******}
// {******}{49 ones}{******}
// If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
// bits remain on both sides. Rotate right the Imm to construct an int<16>
// value, use LI for int<16> value and then use RLDICL without mask to rotate
// it back.
//
// 1) findContiguousZerosAtLeast(Imm, 49)
// +------|--zeros-|------+ +---ones--||---15 bit--+
// |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb|
// +----------------------+ +----------------------+
// 63 0 63 0
//
// 2) findContiguousZerosAtLeast(~Imm, 49)
// +------|--ones--|------+ +---ones--||---15 bit--+
// |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb|
// +----------------------+ +----------------------+
// 63 0 63 0
if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
(Shift = findContiguousZerosAtLeast(~Imm, 49))) {
uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), TmpReg)
.addImm(RotImm & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(Shift)
.addImm(0)
.constrainAllUses(TII, TRI, RBI);
}
// Following patterns use 3 instructions to materialize the Imm.
// 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
// {zeros}{31-bit value}{zeros}
// {zeros}{ones}{31-bit value}
// {ones}{31-bit value}{zeros}
// We can take advantage of LIS's sign-extension semantics to generate leading
// ones, add the remaining bits with ORI, and then use RLDIC to mask off the
// ones in both sides after rotation.
if ((LZ + FO + TZ) > 32) {
uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
Register Tmp2Reg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(Opcode), TmpReg)
.addImm(ImmHi16)
.constrainAllUses(TII, TRI, RBI))
return false;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Tmp2Reg)
.addReg(TmpReg, RegState::Kill)
.addImm((Imm >> TZ) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDIC), Reg)
.addReg(Tmp2Reg, RegState::Kill)
.addImm(TZ)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 3-2) Pattern : {zeros}{31-bit value}{ones}
// Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits
// value, therefore we can take advantage of LIS's sign-extension semantics,
// add the remaining bits with ORI, and then mask them off after rotation.
// This is similar to Pattern 2-3, please refer to the diagram there.
if ((LZ + TO) > 32) {
// Since the immediates with (LZ > 32) have been handled by previous
// patterns, here we have (LZ <= 32) to make sure we will not shift right
// the Imm by a negative value.
assert(LZ <= 32 && "Unexpected shift value.");
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
Register Tmp2Reg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LIS8), TmpReg)
.addImm((Imm >> (48 - LZ)) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Tmp2Reg)
.addReg(TmpReg, RegState::Kill)
.addImm((Imm >> (32 - LZ)) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(Tmp2Reg, RegState::Kill)
.addImm(32 - LZ)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
// {ones}{31-bit value}{ones}
// We can take advantage of LIS's sign-extension semantics to generate leading
// ones, add the remaining bits with ORI, and then use RLDICL to mask off the
// ones in left sides (if required) after rotation.
// This is similar to Pattern 2-4, please refer to the diagram there.
if ((LZ + FO + TO) > 32) {
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
Register Tmp2Reg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LIS8), TmpReg)
.addImm((Imm >> (TO + 16)) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Tmp2Reg)
.addReg(TmpReg, RegState::Kill)
.addImm((Imm >> TO) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(Tmp2Reg, RegState::Kill)
.addImm(TO)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 3-4) Patterns : High word == Low word
if (Hi32 == Lo32) {
// Handle the first 32 bits.
uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
Register Tmp2Reg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(Opcode), TmpReg)
.addImm(ImmHi16)
.constrainAllUses(TII, TRI, RBI))
return false;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Tmp2Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(Lo32 & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDIMI), Reg)
.addReg(Tmp2Reg)
.addReg(Tmp2Reg, RegState::Kill)
.addImm(32)
.addImm(0)
.constrainAllUses(TII, TRI, RBI);
}
// 3-5) Patterns : {******}{33 zeros}{******}
// {******}{33 ones}{******}
// If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
// bits remain on both sides. Rotate right the Imm to construct an int<32>
// value, use LIS + ORI for int<32> value and then use RLDICL without mask to
// rotate it back.
// This is similar to Pattern 2-6, please refer to the diagram there.
if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
(Shift = findContiguousZerosAtLeast(~Imm, 33))) {
uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
Register Tmp2Reg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(Opcode), TmpReg)
.addImm(ImmHi16)
.constrainAllUses(TII, TRI, RBI))
return false;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Tmp2Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(RotImm & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(Tmp2Reg, RegState::Kill)
.addImm(Shift)
.addImm(0)
.constrainAllUses(TII, TRI, RBI);
}
// If we end up here then no instructions were inserted.
return std::nullopt;
}
// Derived from PPCISelDAGToDAG::selectI64Imm().
// TODO: Add support for prefixed instructions.
bool PPCInstructionSelector::selectI64Imm(MachineInstr &I,
MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_CONSTANT && "Unexpected G code");
Register DstReg = I.getOperand(0).getReg();
int64_t Imm = I.getOperand(1).getCImm()->getValue().getZExtValue();
// No more than 3 instructions are used if we can select the i64 immediate
// directly.
if (std::optional<bool> Res = selectI64ImmDirect(I, MBB, MRI, DstReg, Imm)) {
I.eraseFromParent();
return *Res;
}
// Calculate the last bits as required.
uint32_t Hi16 = (Lo_32(Imm) >> 16) & 0xffff;
uint32_t Lo16 = Lo_32(Imm) & 0xffff;
Register Reg =
(Hi16 || Lo16) ? MRI.createVirtualRegister(&PPC::G8RCRegClass) : DstReg;
// Handle the upper 32 bit value.
std::optional<bool> Res =
selectI64ImmDirect(I, MBB, MRI, Reg, Imm & 0xffffffff00000000);
if (!Res || !*Res)
return false;
// Add in the last bits as required.
if (Hi16) {
Register TmpReg =
Lo16 ? MRI.createVirtualRegister(&PPC::G8RCRegClass) : DstReg;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORIS8), TmpReg)
.addReg(Reg, RegState::Kill)
.addImm(Hi16)
.constrainAllUses(TII, TRI, RBI))
return false;
Reg = TmpReg;
}
if (Lo16) {
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), DstReg)
.addReg(Reg, RegState::Kill)
.addImm(Lo16)
.constrainAllUses(TII, TRI, RBI))
return false;
}
I.eraseFromParent();
return true;
}
bool PPCInstructionSelector::select(MachineInstr &I) {
auto &MBB = *I.getParent();
auto &MF = *MBB.getParent();
auto &MRI = MF.getRegInfo();
if (!isPreISelGenericOpcode(I.getOpcode())) {
if (I.isCopy())
return selectCopy(I, TII, MRI, TRI, RBI);
return true;
}
if (selectImpl(I, *CoverageInfo))
return true;
unsigned Opcode = I.getOpcode();
switch (Opcode) {
default:
return false;
case TargetOpcode::G_LOAD:
case TargetOpcode::G_STORE: {
GLoadStore &LdSt = cast<GLoadStore>(I);
LLT PtrTy = MRI.getType(LdSt.getPointerReg());
if (PtrTy != LLT::pointer(0, 64)) {
LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
<< ", expected: " << LLT::pointer(0, 64) << '\n');
return false;
}
auto SelectLoadStoreAddressingMode = [&]() -> MachineInstr * {
const unsigned NewOpc = selectLoadStoreOp(
I.getOpcode(), RBI.getRegBank(LdSt.getReg(0), MRI, TRI)->getID(),
LdSt.getMemSizeInBits());
if (NewOpc == I.getOpcode())
return nullptr;
// For now, simply use DForm with load/store addr as base and 0 as imm.
// FIXME: optimize load/store with some specific address patterns.
I.setDesc(TII.get(NewOpc));
Register AddrReg = I.getOperand(1).getReg();
bool IsKill = I.getOperand(1).isKill();
I.getOperand(1).ChangeToImmediate(0);
I.addOperand(*I.getParent()->getParent(),
MachineOperand::CreateReg(AddrReg, /* isDef */ false,
/* isImp */ false, IsKill));
return &I;
};
MachineInstr *LoadStore = SelectLoadStoreAddressingMode();
if (!LoadStore)
return false;
return constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
}
case TargetOpcode::G_SITOFP:
case TargetOpcode::G_UITOFP:
return selectIntToFP(I, MBB, MRI);
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI:
return selectFPToInt(I, MBB, MRI);
// G_SEXT will be selected in tb-gen pattern.
case TargetOpcode::G_ZEXT:
return selectZExt(I, MBB, MRI);
case TargetOpcode::G_CONSTANT:
return selectI64Imm(I, MBB, MRI);
}
return false;
}
namespace llvm {
InstructionSelector *
createPPCInstructionSelector(const PPCTargetMachine &TM,
const PPCSubtarget &Subtarget,
const PPCRegisterBankInfo &RBI) {
return new PPCInstructionSelector(TM, Subtarget, RBI);
}
} // end namespace llvm
|