1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
//===-- LoongArchTargetMachine.cpp - Define TargetMachine for LoongArch ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements the info about LoongArch target spec.
//
//===----------------------------------------------------------------------===//
#include "LoongArchTargetMachine.h"
#include "LoongArch.h"
#include "LoongArchMachineFunctionInfo.h"
#include "MCTargetDesc/LoongArchBaseInfo.h"
#include "TargetInfo/LoongArchTargetInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/MC/TargetRegistry.h"
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "loongarch"
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeLoongArchTarget() {
// Register the target.
RegisterTargetMachine<LoongArchTargetMachine> X(getTheLoongArch32Target());
RegisterTargetMachine<LoongArchTargetMachine> Y(getTheLoongArch64Target());
auto *PR = PassRegistry::getPassRegistry();
initializeLoongArchPreRAExpandPseudoPass(*PR);
initializeLoongArchDAGToDAGISelPass(*PR);
}
static std::string computeDataLayout(const Triple &TT) {
if (TT.isArch64Bit())
return "e-m:e-p:64:64-i64:64-i128:128-n64-S128";
assert(TT.isArch32Bit() && "only LA32 and LA64 are currently supported");
return "e-m:e-p:32:32-i64:64-n32-S128";
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
std::optional<Reloc::Model> RM) {
return RM.value_or(Reloc::Static);
}
LoongArchTargetMachine::LoongArchTargetMachine(
const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
const TargetOptions &Options, std::optional<Reloc::Model> RM,
std::optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
: LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options,
getEffectiveRelocModel(TT, RM),
getEffectiveCodeModel(CM, CodeModel::Small), OL),
TLOF(std::make_unique<TargetLoweringObjectFileELF>()) {
initAsmInfo();
}
LoongArchTargetMachine::~LoongArchTargetMachine() = default;
const LoongArchSubtarget *
LoongArchTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute TuneAttr = F.getFnAttribute("tune-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU =
CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
std::string TuneCPU =
TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
std::string FS =
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
std::string Key = CPU + TuneCPU + FS;
auto &I = SubtargetMap[Key];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
auto ABIName = Options.MCOptions.getABIName();
if (const MDString *ModuleTargetABI = dyn_cast_or_null<MDString>(
F.getParent()->getModuleFlag("target-abi"))) {
auto TargetABI = LoongArchABI::getTargetABI(ABIName);
if (TargetABI != LoongArchABI::ABI_Unknown &&
ModuleTargetABI->getString() != ABIName) {
report_fatal_error("-target-abi option != target-abi module flag");
}
ABIName = ModuleTargetABI->getString();
}
I = std::make_unique<LoongArchSubtarget>(TargetTriple, CPU, TuneCPU, FS,
ABIName, *this);
}
return I.get();
}
MachineFunctionInfo *LoongArchTargetMachine::createMachineFunctionInfo(
BumpPtrAllocator &Allocator, const Function &F,
const TargetSubtargetInfo *STI) const {
return LoongArchMachineFunctionInfo::create<LoongArchMachineFunctionInfo>(
Allocator, F, STI);
}
namespace {
class LoongArchPassConfig : public TargetPassConfig {
public:
LoongArchPassConfig(LoongArchTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
LoongArchTargetMachine &getLoongArchTargetMachine() const {
return getTM<LoongArchTargetMachine>();
}
void addIRPasses() override;
bool addInstSelector() override;
void addPreEmitPass() override;
void addPreEmitPass2() override;
void addPreRegAlloc() override;
};
} // end namespace
TargetPassConfig *
LoongArchTargetMachine::createPassConfig(PassManagerBase &PM) {
return new LoongArchPassConfig(*this, PM);
}
void LoongArchPassConfig::addIRPasses() {
addPass(createAtomicExpandPass());
TargetPassConfig::addIRPasses();
}
bool LoongArchPassConfig::addInstSelector() {
addPass(createLoongArchISelDag(getLoongArchTargetMachine()));
return false;
}
void LoongArchPassConfig::addPreEmitPass() { addPass(&BranchRelaxationPassID); }
void LoongArchPassConfig::addPreEmitPass2() {
// Schedule the expansion of AtomicPseudos at the last possible moment,
// avoiding the possibility for other passes to break the requirements for
// forward progress in the LL/SC block.
addPass(createLoongArchExpandAtomicPseudoPass());
}
void LoongArchPassConfig::addPreRegAlloc() {
addPass(createLoongArchPreRAExpandPseudoPass());
}
|