1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
|
//===-- ARMMCTargetDesc.cpp - ARM Target Descriptions ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides ARM specific target descriptions.
//
//===----------------------------------------------------------------------===//
#include "ARMMCTargetDesc.h"
#include "ARMAddressingModes.h"
#include "ARMBaseInfo.h"
#include "ARMInstPrinter.h"
#include "ARMMCAsmInfo.h"
#include "TargetInfo/ARMTargetInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/DebugInfo/CodeView/CodeView.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetParser.h"
using namespace llvm;
#define GET_REGINFO_MC_DESC
#include "ARMGenRegisterInfo.inc"
static bool getMCRDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
std::string &Info) {
if (STI.getFeatureBits()[llvm::ARM::HasV7Ops] &&
(MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 15) &&
(MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) &&
// Checks for the deprecated CP15ISB encoding:
// mcr p15, #0, rX, c7, c5, #4
(MI.getOperand(3).isImm() && MI.getOperand(3).getImm() == 7)) {
if ((MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 4)) {
if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 5) {
Info = "deprecated since v7, use 'isb'";
return true;
}
// Checks for the deprecated CP15DSB encoding:
// mcr p15, #0, rX, c7, c10, #4
if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10) {
Info = "deprecated since v7, use 'dsb'";
return true;
}
}
// Checks for the deprecated CP15DMB encoding:
// mcr p15, #0, rX, c7, c10, #5
if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10 &&
(MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 5)) {
Info = "deprecated since v7, use 'dmb'";
return true;
}
}
if (STI.getFeatureBits()[llvm::ARM::HasV7Ops] &&
((MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 10) ||
(MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 11))) {
Info = "since v7, cp10 and cp11 are reserved for advanced SIMD or floating "
"point instructions";
return true;
}
return false;
}
static bool getMRCDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
std::string &Info) {
if (STI.getFeatureBits()[llvm::ARM::HasV7Ops] &&
((MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 10) ||
(MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 11))) {
Info = "since v7, cp10 and cp11 are reserved for advanced SIMD or floating "
"point instructions";
return true;
}
return false;
}
static bool getARMStoreDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
std::string &Info) {
assert(!STI.getFeatureBits()[llvm::ARM::ModeThumb] &&
"cannot predicate thumb instructions");
assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
assert(MI.getOperand(OI).isReg() && "expected register");
if (MI.getOperand(OI).getReg() == ARM::PC) {
Info = "use of PC in the list is deprecated";
return true;
}
}
return false;
}
static bool getARMLoadDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
std::string &Info) {
assert(!STI.getFeatureBits()[llvm::ARM::ModeThumb] &&
"cannot predicate thumb instructions");
assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
bool ListContainsPC = false, ListContainsLR = false;
for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
assert(MI.getOperand(OI).isReg() && "expected register");
switch (MI.getOperand(OI).getReg()) {
default:
break;
case ARM::LR:
ListContainsLR = true;
break;
case ARM::PC:
ListContainsPC = true;
break;
}
}
if (ListContainsPC && ListContainsLR) {
Info = "use of LR and PC simultaneously in the list is deprecated";
return true;
}
return false;
}
#define GET_INSTRINFO_MC_DESC
#define ENABLE_INSTR_PREDICATE_VERIFIER
#include "ARMGenInstrInfo.inc"
#define GET_SUBTARGETINFO_MC_DESC
#include "ARMGenSubtargetInfo.inc"
std::string ARM_MC::ParseARMTriple(const Triple &TT, StringRef CPU) {
std::string ARMArchFeature;
ARM::ArchKind ArchID = ARM::parseArch(TT.getArchName());
if (ArchID != ARM::ArchKind::INVALID && (CPU.empty() || CPU == "generic"))
ARMArchFeature = (ARMArchFeature + "+" + ARM::getArchName(ArchID)).str();
if (TT.isThumb()) {
if (!ARMArchFeature.empty())
ARMArchFeature += ",";
ARMArchFeature += "+thumb-mode,+v4t";
}
if (TT.isOSNaCl()) {
if (!ARMArchFeature.empty())
ARMArchFeature += ",";
ARMArchFeature += "+nacl-trap";
}
if (TT.isOSWindows()) {
if (!ARMArchFeature.empty())
ARMArchFeature += ",";
ARMArchFeature += "+noarm";
}
return ARMArchFeature;
}
bool ARM_MC::isPredicated(const MCInst &MI, const MCInstrInfo *MCII) {
const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
int PredOpIdx = Desc.findFirstPredOperandIdx();
return PredOpIdx != -1 && MI.getOperand(PredOpIdx).getImm() != ARMCC::AL;
}
bool ARM_MC::isCPSRDefined(const MCInst &MI, const MCInstrInfo *MCII) {
const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
const MCOperand &MO = MI.getOperand(I);
if (MO.isReg() && MO.getReg() == ARM::CPSR &&
Desc.operands()[I].isOptionalDef())
return true;
}
return false;
}
uint64_t ARM_MC::evaluateBranchTarget(const MCInstrDesc &InstDesc,
uint64_t Addr, int64_t Imm) {
// For ARM instructions the PC offset is 8 bytes, for Thumb instructions it
// is 4 bytes.
uint64_t Offset =
((InstDesc.TSFlags & ARMII::FormMask) == ARMII::ThumbFrm) ? 4 : 8;
// A Thumb instruction BLX(i) can be 16-bit aligned while targets Arm code
// which is 32-bit aligned. The target address for the case is calculated as
// targetAddress = Align(PC,4) + imm32;
// where
// Align(x, y) = y * (x DIV y);
if (InstDesc.getOpcode() == ARM::tBLXi)
Addr &= ~0x3;
return Addr + Imm + Offset;
}
MCSubtargetInfo *ARM_MC::createARMMCSubtargetInfo(const Triple &TT,
StringRef CPU, StringRef FS) {
std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = (Twine(ArchFS) + "," + FS).str();
else
ArchFS = std::string(FS);
}
return createARMMCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
}
static MCInstrInfo *createARMMCInstrInfo() {
MCInstrInfo *X = new MCInstrInfo();
InitARMMCInstrInfo(X);
return X;
}
void ARM_MC::initLLVMToCVRegMapping(MCRegisterInfo *MRI) {
// Mapping from CodeView to MC register id.
static const struct {
codeview::RegisterId CVReg;
MCPhysReg Reg;
} RegMap[] = {
{codeview::RegisterId::ARM_R0, ARM::R0},
{codeview::RegisterId::ARM_R1, ARM::R1},
{codeview::RegisterId::ARM_R2, ARM::R2},
{codeview::RegisterId::ARM_R3, ARM::R3},
{codeview::RegisterId::ARM_R4, ARM::R4},
{codeview::RegisterId::ARM_R5, ARM::R5},
{codeview::RegisterId::ARM_R6, ARM::R6},
{codeview::RegisterId::ARM_R7, ARM::R7},
{codeview::RegisterId::ARM_R8, ARM::R8},
{codeview::RegisterId::ARM_R9, ARM::R9},
{codeview::RegisterId::ARM_R10, ARM::R10},
{codeview::RegisterId::ARM_R11, ARM::R11},
{codeview::RegisterId::ARM_R12, ARM::R12},
{codeview::RegisterId::ARM_SP, ARM::SP},
{codeview::RegisterId::ARM_LR, ARM::LR},
{codeview::RegisterId::ARM_PC, ARM::PC},
{codeview::RegisterId::ARM_CPSR, ARM::CPSR},
{codeview::RegisterId::ARM_FPSCR, ARM::FPSCR},
{codeview::RegisterId::ARM_FPEXC, ARM::FPEXC},
{codeview::RegisterId::ARM_FS0, ARM::S0},
{codeview::RegisterId::ARM_FS1, ARM::S1},
{codeview::RegisterId::ARM_FS2, ARM::S2},
{codeview::RegisterId::ARM_FS3, ARM::S3},
{codeview::RegisterId::ARM_FS4, ARM::S4},
{codeview::RegisterId::ARM_FS5, ARM::S5},
{codeview::RegisterId::ARM_FS6, ARM::S6},
{codeview::RegisterId::ARM_FS7, ARM::S7},
{codeview::RegisterId::ARM_FS8, ARM::S8},
{codeview::RegisterId::ARM_FS9, ARM::S9},
{codeview::RegisterId::ARM_FS10, ARM::S10},
{codeview::RegisterId::ARM_FS11, ARM::S11},
{codeview::RegisterId::ARM_FS12, ARM::S12},
{codeview::RegisterId::ARM_FS13, ARM::S13},
{codeview::RegisterId::ARM_FS14, ARM::S14},
{codeview::RegisterId::ARM_FS15, ARM::S15},
{codeview::RegisterId::ARM_FS16, ARM::S16},
{codeview::RegisterId::ARM_FS17, ARM::S17},
{codeview::RegisterId::ARM_FS18, ARM::S18},
{codeview::RegisterId::ARM_FS19, ARM::S19},
{codeview::RegisterId::ARM_FS20, ARM::S20},
{codeview::RegisterId::ARM_FS21, ARM::S21},
{codeview::RegisterId::ARM_FS22, ARM::S22},
{codeview::RegisterId::ARM_FS23, ARM::S23},
{codeview::RegisterId::ARM_FS24, ARM::S24},
{codeview::RegisterId::ARM_FS25, ARM::S25},
{codeview::RegisterId::ARM_FS26, ARM::S26},
{codeview::RegisterId::ARM_FS27, ARM::S27},
{codeview::RegisterId::ARM_FS28, ARM::S28},
{codeview::RegisterId::ARM_FS29, ARM::S29},
{codeview::RegisterId::ARM_FS30, ARM::S30},
{codeview::RegisterId::ARM_FS31, ARM::S31},
{codeview::RegisterId::ARM_ND0, ARM::D0},
{codeview::RegisterId::ARM_ND1, ARM::D1},
{codeview::RegisterId::ARM_ND2, ARM::D2},
{codeview::RegisterId::ARM_ND3, ARM::D3},
{codeview::RegisterId::ARM_ND4, ARM::D4},
{codeview::RegisterId::ARM_ND5, ARM::D5},
{codeview::RegisterId::ARM_ND6, ARM::D6},
{codeview::RegisterId::ARM_ND7, ARM::D7},
{codeview::RegisterId::ARM_ND8, ARM::D8},
{codeview::RegisterId::ARM_ND9, ARM::D9},
{codeview::RegisterId::ARM_ND10, ARM::D10},
{codeview::RegisterId::ARM_ND11, ARM::D11},
{codeview::RegisterId::ARM_ND12, ARM::D12},
{codeview::RegisterId::ARM_ND13, ARM::D13},
{codeview::RegisterId::ARM_ND14, ARM::D14},
{codeview::RegisterId::ARM_ND15, ARM::D15},
{codeview::RegisterId::ARM_ND16, ARM::D16},
{codeview::RegisterId::ARM_ND17, ARM::D17},
{codeview::RegisterId::ARM_ND18, ARM::D18},
{codeview::RegisterId::ARM_ND19, ARM::D19},
{codeview::RegisterId::ARM_ND20, ARM::D20},
{codeview::RegisterId::ARM_ND21, ARM::D21},
{codeview::RegisterId::ARM_ND22, ARM::D22},
{codeview::RegisterId::ARM_ND23, ARM::D23},
{codeview::RegisterId::ARM_ND24, ARM::D24},
{codeview::RegisterId::ARM_ND25, ARM::D25},
{codeview::RegisterId::ARM_ND26, ARM::D26},
{codeview::RegisterId::ARM_ND27, ARM::D27},
{codeview::RegisterId::ARM_ND28, ARM::D28},
{codeview::RegisterId::ARM_ND29, ARM::D29},
{codeview::RegisterId::ARM_ND30, ARM::D30},
{codeview::RegisterId::ARM_ND31, ARM::D31},
{codeview::RegisterId::ARM_NQ0, ARM::Q0},
{codeview::RegisterId::ARM_NQ1, ARM::Q1},
{codeview::RegisterId::ARM_NQ2, ARM::Q2},
{codeview::RegisterId::ARM_NQ3, ARM::Q3},
{codeview::RegisterId::ARM_NQ4, ARM::Q4},
{codeview::RegisterId::ARM_NQ5, ARM::Q5},
{codeview::RegisterId::ARM_NQ6, ARM::Q6},
{codeview::RegisterId::ARM_NQ7, ARM::Q7},
{codeview::RegisterId::ARM_NQ8, ARM::Q8},
{codeview::RegisterId::ARM_NQ9, ARM::Q9},
{codeview::RegisterId::ARM_NQ10, ARM::Q10},
{codeview::RegisterId::ARM_NQ11, ARM::Q11},
{codeview::RegisterId::ARM_NQ12, ARM::Q12},
{codeview::RegisterId::ARM_NQ13, ARM::Q13},
{codeview::RegisterId::ARM_NQ14, ARM::Q14},
{codeview::RegisterId::ARM_NQ15, ARM::Q15},
};
for (const auto &I : RegMap)
MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
}
static MCRegisterInfo *createARMMCRegisterInfo(const Triple &Triple) {
MCRegisterInfo *X = new MCRegisterInfo();
InitARMMCRegisterInfo(X, ARM::LR, 0, 0, ARM::PC);
ARM_MC::initLLVMToCVRegMapping(X);
return X;
}
static MCAsmInfo *createARMMCAsmInfo(const MCRegisterInfo &MRI,
const Triple &TheTriple,
const MCTargetOptions &Options) {
MCAsmInfo *MAI;
if (TheTriple.isOSDarwin() || TheTriple.isOSBinFormatMachO())
MAI = new ARMMCAsmInfoDarwin(TheTriple);
else if (TheTriple.isWindowsMSVCEnvironment())
MAI = new ARMCOFFMCAsmInfoMicrosoft();
else if (TheTriple.isOSWindows())
MAI = new ARMCOFFMCAsmInfoGNU();
else
MAI = new ARMELFMCAsmInfo(TheTriple);
unsigned Reg = MRI.getDwarfRegNum(ARM::SP, true);
MAI->addInitialFrameState(MCCFIInstruction::cfiDefCfa(nullptr, Reg, 0));
return MAI;
}
static MCStreamer *createELFStreamer(const Triple &T, MCContext &Ctx,
std::unique_ptr<MCAsmBackend> &&MAB,
std::unique_ptr<MCObjectWriter> &&OW,
std::unique_ptr<MCCodeEmitter> &&Emitter,
bool RelaxAll) {
return createARMELFStreamer(
Ctx, std::move(MAB), std::move(OW), std::move(Emitter), false,
(T.getArch() == Triple::thumb || T.getArch() == Triple::thumbeb),
T.isAndroid());
}
static MCStreamer *
createARMMachOStreamer(MCContext &Ctx, std::unique_ptr<MCAsmBackend> &&MAB,
std::unique_ptr<MCObjectWriter> &&OW,
std::unique_ptr<MCCodeEmitter> &&Emitter, bool RelaxAll,
bool DWARFMustBeAtTheEnd) {
return createMachOStreamer(Ctx, std::move(MAB), std::move(OW),
std::move(Emitter), false, DWARFMustBeAtTheEnd);
}
static MCInstPrinter *createARMMCInstPrinter(const Triple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
const MCRegisterInfo &MRI) {
if (SyntaxVariant == 0)
return new ARMInstPrinter(MAI, MII, MRI);
return nullptr;
}
static MCRelocationInfo *createARMMCRelocationInfo(const Triple &TT,
MCContext &Ctx) {
if (TT.isOSBinFormatMachO())
return createARMMachORelocationInfo(Ctx);
// Default to the stock relocation info.
return llvm::createMCRelocationInfo(TT, Ctx);
}
namespace {
class ARMMCInstrAnalysis : public MCInstrAnalysis {
public:
ARMMCInstrAnalysis(const MCInstrInfo *Info) : MCInstrAnalysis(Info) {}
bool isUnconditionalBranch(const MCInst &Inst) const override {
// BCCs with the "always" predicate are unconditional branches.
if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
return true;
return MCInstrAnalysis::isUnconditionalBranch(Inst);
}
bool isConditionalBranch(const MCInst &Inst) const override {
// BCCs with the "always" predicate are unconditional branches.
if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
return false;
return MCInstrAnalysis::isConditionalBranch(Inst);
}
bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
uint64_t &Target) const override {
const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
// Find the PC-relative immediate operand in the instruction.
for (unsigned OpNum = 0; OpNum < Desc.getNumOperands(); ++OpNum) {
if (Inst.getOperand(OpNum).isImm() &&
Desc.operands()[OpNum].OperandType == MCOI::OPERAND_PCREL) {
int64_t Imm = Inst.getOperand(OpNum).getImm();
Target = ARM_MC::evaluateBranchTarget(Desc, Addr, Imm);
return true;
}
}
return false;
}
std::optional<uint64_t>
evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
uint64_t Addr, uint64_t Size) const override;
};
} // namespace
static std::optional<uint64_t>
// NOLINTNEXTLINE(readability-identifier-naming)
evaluateMemOpAddrForAddrMode_i12(const MCInst &Inst, const MCInstrDesc &Desc,
unsigned MemOpIndex, uint64_t Addr) {
if (MemOpIndex + 1 >= Desc.getNumOperands())
return std::nullopt;
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
return std::nullopt;
int32_t OffImm = (int32_t)MO2.getImm();
// Special value for #-0. All others are normal.
if (OffImm == INT32_MIN)
OffImm = 0;
return Addr + OffImm;
}
static std::optional<uint64_t>
evaluateMemOpAddrForAddrMode3(const MCInst &Inst, const MCInstrDesc &Desc,
unsigned MemOpIndex, uint64_t Addr) {
if (MemOpIndex + 2 >= Desc.getNumOperands())
return std::nullopt;
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
const MCOperand &MO3 = Inst.getOperand(MemOpIndex + 2);
if (!MO1.isReg() || MO1.getReg() != ARM::PC || MO2.getReg() || !MO3.isImm())
return std::nullopt;
unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm());
ARM_AM::AddrOpc Op = ARM_AM::getAM3Op(MO3.getImm());
if (Op == ARM_AM::sub)
return Addr - ImmOffs;
return Addr + ImmOffs;
}
static std::optional<uint64_t>
evaluateMemOpAddrForAddrMode5(const MCInst &Inst, const MCInstrDesc &Desc,
unsigned MemOpIndex, uint64_t Addr) {
if (MemOpIndex + 1 >= Desc.getNumOperands())
return std::nullopt;
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
return std::nullopt;
unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm());
ARM_AM::AddrOpc Op = ARM_AM::getAM5Op(MO2.getImm());
if (Op == ARM_AM::sub)
return Addr - ImmOffs * 4;
return Addr + ImmOffs * 4;
}
static std::optional<uint64_t>
evaluateMemOpAddrForAddrMode5FP16(const MCInst &Inst, const MCInstrDesc &Desc,
unsigned MemOpIndex, uint64_t Addr) {
if (MemOpIndex + 1 >= Desc.getNumOperands())
return std::nullopt;
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
return std::nullopt;
unsigned ImmOffs = ARM_AM::getAM5FP16Offset(MO2.getImm());
ARM_AM::AddrOpc Op = ARM_AM::getAM5FP16Op(MO2.getImm());
if (Op == ARM_AM::sub)
return Addr - ImmOffs * 2;
return Addr + ImmOffs * 2;
}
static std::optional<uint64_t>
// NOLINTNEXTLINE(readability-identifier-naming)
evaluateMemOpAddrForAddrModeT2_i8s4(const MCInst &Inst, const MCInstrDesc &Desc,
unsigned MemOpIndex, uint64_t Addr) {
if (MemOpIndex + 1 >= Desc.getNumOperands())
return std::nullopt;
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
return std::nullopt;
int32_t OffImm = (int32_t)MO2.getImm();
assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
// Special value for #-0. All others are normal.
if (OffImm == INT32_MIN)
OffImm = 0;
return Addr + OffImm;
}
static std::optional<uint64_t>
// NOLINTNEXTLINE(readability-identifier-naming)
evaluateMemOpAddrForAddrModeT2_pc(const MCInst &Inst, const MCInstrDesc &Desc,
unsigned MemOpIndex, uint64_t Addr) {
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
if (!MO1.isImm())
return std::nullopt;
int32_t OffImm = (int32_t)MO1.getImm();
// Special value for #-0. All others are normal.
if (OffImm == INT32_MIN)
OffImm = 0;
return Addr + OffImm;
}
static std::optional<uint64_t>
// NOLINTNEXTLINE(readability-identifier-naming)
evaluateMemOpAddrForAddrModeT1_s(const MCInst &Inst, const MCInstrDesc &Desc,
unsigned MemOpIndex, uint64_t Addr) {
return evaluateMemOpAddrForAddrModeT2_pc(Inst, Desc, MemOpIndex, Addr);
}
std::optional<uint64_t> ARMMCInstrAnalysis::evaluateMemoryOperandAddress(
const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
uint64_t Size) const {
const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
// Only load instructions can have PC-relative memory addressing.
if (!Desc.mayLoad())
return std::nullopt;
// PC-relative addressing does not update the base register.
uint64_t TSFlags = Desc.TSFlags;
unsigned IndexMode =
(TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift;
if (IndexMode != ARMII::IndexModeNone)
return std::nullopt;
// Find the memory addressing operand in the instruction.
unsigned OpIndex = Desc.NumDefs;
while (OpIndex < Desc.getNumOperands() &&
Desc.operands()[OpIndex].OperandType != MCOI::OPERAND_MEMORY)
++OpIndex;
if (OpIndex == Desc.getNumOperands())
return std::nullopt;
// Base address for PC-relative addressing is always 32-bit aligned.
Addr &= ~0x3;
// For ARM instructions the PC offset is 8 bytes, for Thumb instructions it
// is 4 bytes.
switch (Desc.TSFlags & ARMII::FormMask) {
default:
Addr += 8;
break;
case ARMII::ThumbFrm:
Addr += 4;
break;
// VLDR* instructions share the same opcode (and thus the same form) for Arm
// and Thumb. Use a bit longer route through STI in that case.
case ARMII::VFPLdStFrm:
Addr += STI->getFeatureBits()[ARM::ModeThumb] ? 4 : 8;
break;
}
// Eveluate the address depending on the addressing mode
unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
switch (AddrMode) {
default:
return std::nullopt;
case ARMII::AddrMode_i12:
return evaluateMemOpAddrForAddrMode_i12(Inst, Desc, OpIndex, Addr);
case ARMII::AddrMode3:
return evaluateMemOpAddrForAddrMode3(Inst, Desc, OpIndex, Addr);
case ARMII::AddrMode5:
return evaluateMemOpAddrForAddrMode5(Inst, Desc, OpIndex, Addr);
case ARMII::AddrMode5FP16:
return evaluateMemOpAddrForAddrMode5FP16(Inst, Desc, OpIndex, Addr);
case ARMII::AddrModeT2_i8s4:
return evaluateMemOpAddrForAddrModeT2_i8s4(Inst, Desc, OpIndex, Addr);
case ARMII::AddrModeT2_pc:
return evaluateMemOpAddrForAddrModeT2_pc(Inst, Desc, OpIndex, Addr);
case ARMII::AddrModeT1_s:
return evaluateMemOpAddrForAddrModeT1_s(Inst, Desc, OpIndex, Addr);
}
}
static MCInstrAnalysis *createARMMCInstrAnalysis(const MCInstrInfo *Info) {
return new ARMMCInstrAnalysis(Info);
}
bool ARM::isCDECoproc(size_t Coproc, const MCSubtargetInfo &STI) {
// Unfortunately we don't have ARMTargetInfo in the disassembler, so we have
// to rely on feature bits.
if (Coproc >= 8)
return false;
return STI.getFeatureBits()[ARM::FeatureCoprocCDE0 + Coproc];
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTargetMC() {
for (Target *T : {&getTheARMLETarget(), &getTheARMBETarget(),
&getTheThumbLETarget(), &getTheThumbBETarget()}) {
// Register the MC asm info.
RegisterMCAsmInfoFn X(*T, createARMMCAsmInfo);
// Register the MC instruction info.
TargetRegistry::RegisterMCInstrInfo(*T, createARMMCInstrInfo);
// Register the MC register info.
TargetRegistry::RegisterMCRegInfo(*T, createARMMCRegisterInfo);
// Register the MC subtarget info.
TargetRegistry::RegisterMCSubtargetInfo(*T,
ARM_MC::createARMMCSubtargetInfo);
TargetRegistry::RegisterELFStreamer(*T, createELFStreamer);
TargetRegistry::RegisterCOFFStreamer(*T, createARMWinCOFFStreamer);
TargetRegistry::RegisterMachOStreamer(*T, createARMMachOStreamer);
// Register the obj target streamer.
TargetRegistry::RegisterObjectTargetStreamer(*T,
createARMObjectTargetStreamer);
// Register the asm streamer.
TargetRegistry::RegisterAsmTargetStreamer(*T, createARMTargetAsmStreamer);
// Register the null TargetStreamer.
TargetRegistry::RegisterNullTargetStreamer(*T, createARMNullTargetStreamer);
// Register the MCInstPrinter.
TargetRegistry::RegisterMCInstPrinter(*T, createARMMCInstPrinter);
// Register the MC relocation info.
TargetRegistry::RegisterMCRelocationInfo(*T, createARMMCRelocationInfo);
}
// Register the MC instruction analyzer.
for (Target *T : {&getTheARMLETarget(), &getTheARMBETarget(),
&getTheThumbLETarget(), &getTheThumbBETarget()})
TargetRegistry::RegisterMCInstrAnalysis(*T, createARMMCInstrAnalysis);
for (Target *T : {&getTheARMLETarget(), &getTheThumbLETarget()}) {
TargetRegistry::RegisterMCCodeEmitter(*T, createARMLEMCCodeEmitter);
TargetRegistry::RegisterMCAsmBackend(*T, createARMLEAsmBackend);
}
for (Target *T : {&getTheARMBETarget(), &getTheThumbBETarget()}) {
TargetRegistry::RegisterMCCodeEmitter(*T, createARMBEMCCodeEmitter);
TargetRegistry::RegisterMCAsmBackend(*T, createARMBEAsmBackend);
}
}
|