1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
|
//===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Armv6 introduced instructions to perform 32-bit SIMD operations. The
/// purpose of this pass is do some IR pattern matching to create ACLE
/// DSP intrinsics, which map on these 32-bit SIMD operations.
/// This pass runs only when unaligned accesses is supported/enabled.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMSubtarget.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "arm-parallel-dsp"
STATISTIC(NumSMLAD , "Number of smlad instructions generated");
static cl::opt<bool>
DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
cl::desc("Disable the ARM Parallel DSP pass"));
static cl::opt<unsigned>
NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16),
cl::desc("Limit the number of loads analysed"));
namespace {
struct MulCandidate;
class Reduction;
using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>;
using MemInstList = SmallVectorImpl<LoadInst*>;
using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>;
// 'MulCandidate' holds the multiplication instructions that are candidates
// for parallel execution.
struct MulCandidate {
Instruction *Root;
Value* LHS;
Value* RHS;
bool Exchange = false;
bool ReadOnly = true;
bool Paired = false;
SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen.
MulCandidate(Instruction *I, Value *lhs, Value *rhs) :
Root(I), LHS(lhs), RHS(rhs) { }
bool HasTwoLoadInputs() const {
return isa<LoadInst>(LHS) && isa<LoadInst>(RHS);
}
LoadInst *getBaseLoad() const {
return VecLd.front();
}
};
/// Represent a sequence of multiply-accumulate operations with the aim to
/// perform the multiplications in parallel.
class Reduction {
Instruction *Root = nullptr;
Value *Acc = nullptr;
MulCandList Muls;
MulPairList MulPairs;
SetVector<Instruction*> Adds;
public:
Reduction() = delete;
Reduction (Instruction *Add) : Root(Add) { }
/// Record an Add instruction that is a part of the this reduction.
void InsertAdd(Instruction *I) { Adds.insert(I); }
/// Create MulCandidates, each rooted at a Mul instruction, that is a part
/// of this reduction.
void InsertMuls() {
auto GetMulOperand = [](Value *V) -> Instruction* {
if (auto *SExt = dyn_cast<SExtInst>(V)) {
if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0)))
if (I->getOpcode() == Instruction::Mul)
return I;
} else if (auto *I = dyn_cast<Instruction>(V)) {
if (I->getOpcode() == Instruction::Mul)
return I;
}
return nullptr;
};
auto InsertMul = [this](Instruction *I) {
Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0);
Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0);
Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS));
};
for (auto *Add : Adds) {
if (Add == Acc)
continue;
if (auto *Mul = GetMulOperand(Add->getOperand(0)))
InsertMul(Mul);
if (auto *Mul = GetMulOperand(Add->getOperand(1)))
InsertMul(Mul);
}
}
/// Add the incoming accumulator value, returns true if a value had not
/// already been added. Returning false signals to the user that this
/// reduction already has a value to initialise the accumulator.
bool InsertAcc(Value *V) {
if (Acc)
return false;
Acc = V;
return true;
}
/// Set two MulCandidates, rooted at muls, that can be executed as a single
/// parallel operation.
void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1,
bool Exchange = false) {
LLVM_DEBUG(dbgs() << "Pairing:\n"
<< *Mul0->Root << "\n"
<< *Mul1->Root << "\n");
Mul0->Paired = true;
Mul1->Paired = true;
if (Exchange)
Mul1->Exchange = true;
MulPairs.push_back(std::make_pair(Mul0, Mul1));
}
/// Return true if enough mul operations are found that can be executed in
/// parallel.
bool CreateParallelPairs();
/// Return the add instruction which is the root of the reduction.
Instruction *getRoot() { return Root; }
bool is64Bit() const { return Root->getType()->isIntegerTy(64); }
Type *getType() const { return Root->getType(); }
/// Return the incoming value to be accumulated. This maybe null.
Value *getAccumulator() { return Acc; }
/// Return the set of adds that comprise the reduction.
SetVector<Instruction*> &getAdds() { return Adds; }
/// Return the MulCandidate, rooted at mul instruction, that comprise the
/// the reduction.
MulCandList &getMuls() { return Muls; }
/// Return the MulCandidate, rooted at mul instructions, that have been
/// paired for parallel execution.
MulPairList &getMulPairs() { return MulPairs; }
/// To finalise, replace the uses of the root with the intrinsic call.
void UpdateRoot(Instruction *SMLAD) {
Root->replaceAllUsesWith(SMLAD);
}
void dump() {
LLVM_DEBUG(dbgs() << "Reduction:\n";
for (auto *Add : Adds)
LLVM_DEBUG(dbgs() << *Add << "\n");
for (auto &Mul : Muls)
LLVM_DEBUG(dbgs() << *Mul->Root << "\n"
<< " " << *Mul->LHS << "\n"
<< " " << *Mul->RHS << "\n");
LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n")
);
}
};
class WidenedLoad {
LoadInst *NewLd = nullptr;
SmallVector<LoadInst*, 4> Loads;
public:
WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
: NewLd(Wide) {
append_range(Loads, Lds);
}
LoadInst *getLoad() {
return NewLd;
}
};
class ARMParallelDSP : public FunctionPass {
ScalarEvolution *SE;
AliasAnalysis *AA;
TargetLibraryInfo *TLI;
DominatorTree *DT;
const DataLayout *DL;
Module *M;
std::map<LoadInst*, LoadInst*> LoadPairs;
SmallPtrSet<LoadInst*, 4> OffsetLoads;
std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
template<unsigned>
bool IsNarrowSequence(Value *V);
bool Search(Value *V, BasicBlock *BB, Reduction &R);
bool RecordMemoryOps(BasicBlock *BB);
void InsertParallelMACs(Reduction &Reduction);
bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy);
bool CreateParallelPairs(Reduction &R);
/// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
/// Dual performs two signed 16x16-bit multiplications. It adds the
/// products to a 32-bit accumulate operand. Optionally, the instruction can
/// exchange the halfwords of the second operand before performing the
/// arithmetic.
bool MatchSMLAD(Function &F);
public:
static char ID;
ARMParallelDSP() : FunctionPass(ID) { }
void getAnalysisUsage(AnalysisUsage &AU) const override {
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetPassConfig>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.setPreservesCFG();
}
bool runOnFunction(Function &F) override {
if (DisableParallelDSP)
return false;
if (skipFunction(F))
return false;
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &TPC = getAnalysis<TargetPassConfig>();
M = F.getParent();
DL = &M->getDataLayout();
auto &TM = TPC.getTM<TargetMachine>();
auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
if (!ST->allowsUnalignedMem()) {
LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
"running pass ARMParallelDSP\n");
return false;
}
if (!ST->hasDSP()) {
LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
"ARMParallelDSP\n");
return false;
}
if (!ST->isLittle()) {
LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
<< "ARMParallelDSP\n");
return false;
}
LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
bool Changes = MatchSMLAD(F);
return Changes;
}
};
}
bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
MemInstList &VecMem) {
if (!Ld0 || !Ld1)
return false;
if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
return false;
LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
dbgs() << "Ld0:"; Ld0->dump();
dbgs() << "Ld1:"; Ld1->dump();
);
VecMem.clear();
VecMem.push_back(Ld0);
VecMem.push_back(Ld1);
return true;
}
// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
// instructions, which is set to 16. So here we should collect all i8 and i16
// narrow operations.
// TODO: we currently only collect i16, and will support i8 later, so that's
// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
template<unsigned MaxBitWidth>
bool ARMParallelDSP::IsNarrowSequence(Value *V) {
if (auto *SExt = dyn_cast<SExtInst>(V)) {
if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
return false;
if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) {
// Check that this load could be paired.
return LoadPairs.count(Ld) || OffsetLoads.count(Ld);
}
}
return false;
}
/// Iterate through the block and record base, offset pairs of loads which can
/// be widened into a single load.
bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
SmallVector<LoadInst*, 8> Loads;
SmallVector<Instruction*, 8> Writes;
LoadPairs.clear();
WideLoads.clear();
// Collect loads and instruction that may write to memory. For now we only
// record loads which are simple, sign-extended and have a single user.
// TODO: Allow zero-extended loads.
for (auto &I : *BB) {
if (I.mayWriteToMemory())
Writes.push_back(&I);
auto *Ld = dyn_cast<LoadInst>(&I);
if (!Ld || !Ld->isSimple() ||
!Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
continue;
Loads.push_back(Ld);
}
if (Loads.empty() || Loads.size() > NumLoadLimit)
return false;
using InstSet = std::set<Instruction*>;
using DepMap = std::map<Instruction*, InstSet>;
DepMap RAWDeps;
// Record any writes that may alias a load.
const auto Size = LocationSize::beforeOrAfterPointer();
for (auto *Write : Writes) {
for (auto *Read : Loads) {
MemoryLocation ReadLoc =
MemoryLocation(Read->getPointerOperand(), Size);
if (!isModOrRefSet(AA->getModRefInfo(Write, ReadLoc)))
continue;
if (Write->comesBefore(Read))
RAWDeps[Read].insert(Write);
}
}
// Check whether there's not a write between the two loads which would
// prevent them from being safely merged.
auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
bool BaseFirst = Base->comesBefore(Offset);
LoadInst *Dominator = BaseFirst ? Base : Offset;
LoadInst *Dominated = BaseFirst ? Offset : Base;
if (RAWDeps.count(Dominated)) {
InstSet &WritesBefore = RAWDeps[Dominated];
for (auto *Before : WritesBefore) {
// We can't move the second load backward, past a write, to merge
// with the first load.
if (Dominator->comesBefore(Before))
return false;
}
}
return true;
};
// Record base, offset load pairs.
for (auto *Base : Loads) {
for (auto *Offset : Loads) {
if (Base == Offset || OffsetLoads.count(Offset))
continue;
if (isConsecutiveAccess(Base, Offset, *DL, *SE) &&
SafeToPair(Base, Offset)) {
LoadPairs[Base] = Offset;
OffsetLoads.insert(Offset);
break;
}
}
}
LLVM_DEBUG(if (!LoadPairs.empty()) {
dbgs() << "Consecutive load pairs:\n";
for (auto &MapIt : LoadPairs) {
LLVM_DEBUG(dbgs() << *MapIt.first << ", "
<< *MapIt.second << "\n");
}
});
return LoadPairs.size() > 1;
}
// Search recursively back through the operands to find a tree of values that
// form a multiply-accumulate chain. The search records the Add and Mul
// instructions that form the reduction and allows us to find a single value
// to be used as the initial input to the accumlator.
bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) {
// If we find a non-instruction, try to use it as the initial accumulator
// value. This may have already been found during the search in which case
// this function will return false, signaling a search fail.
auto *I = dyn_cast<Instruction>(V);
if (!I)
return R.InsertAcc(V);
if (I->getParent() != BB)
return false;
switch (I->getOpcode()) {
default:
break;
case Instruction::PHI:
// Could be the accumulator value.
return R.InsertAcc(V);
case Instruction::Add: {
// Adds should be adding together two muls, or another add and a mul to
// be within the mac chain. One of the operands may also be the
// accumulator value at which point we should stop searching.
R.InsertAdd(I);
Value *LHS = I->getOperand(0);
Value *RHS = I->getOperand(1);
bool ValidLHS = Search(LHS, BB, R);
bool ValidRHS = Search(RHS, BB, R);
if (ValidLHS && ValidRHS)
return true;
// Ensure we don't add the root as the incoming accumulator.
if (R.getRoot() == I)
return false;
return R.InsertAcc(I);
}
case Instruction::Mul: {
Value *MulOp0 = I->getOperand(0);
Value *MulOp1 = I->getOperand(1);
return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1);
}
case Instruction::SExt:
return Search(I->getOperand(0), BB, R);
}
return false;
}
// The pass needs to identify integer add/sub reductions of 16-bit vector
// multiplications.
// To use SMLAD:
// 1) we first need to find integer add then look for this pattern:
//
// acc0 = ...
// ld0 = load i16
// sext0 = sext i16 %ld0 to i32
// ld1 = load i16
// sext1 = sext i16 %ld1 to i32
// mul0 = mul %sext0, %sext1
// ld2 = load i16
// sext2 = sext i16 %ld2 to i32
// ld3 = load i16
// sext3 = sext i16 %ld3 to i32
// mul1 = mul i32 %sext2, %sext3
// add0 = add i32 %mul0, %acc0
// acc1 = add i32 %add0, %mul1
//
// Which can be selected to:
//
// ldr r0
// ldr r1
// smlad r2, r0, r1, r2
//
// If constants are used instead of loads, these will need to be hoisted
// out and into a register.
//
// If loop invariants are used instead of loads, these need to be packed
// before the loop begins.
//
bool ARMParallelDSP::MatchSMLAD(Function &F) {
bool Changed = false;
for (auto &BB : F) {
SmallPtrSet<Instruction*, 4> AllAdds;
if (!RecordMemoryOps(&BB))
continue;
for (Instruction &I : reverse(BB)) {
if (I.getOpcode() != Instruction::Add)
continue;
if (AllAdds.count(&I))
continue;
const auto *Ty = I.getType();
if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
continue;
Reduction R(&I);
if (!Search(&I, &BB, R))
continue;
R.InsertMuls();
LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump());
if (!CreateParallelPairs(R))
continue;
InsertParallelMACs(R);
Changed = true;
AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
LLVM_DEBUG(dbgs() << "BB after inserting parallel MACs:\n" << BB);
}
}
return Changed;
}
bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
// Not enough mul operations to make a pair.
if (R.getMuls().size() < 2)
return false;
// Check that the muls operate directly upon sign extended loads.
for (auto &MulCand : R.getMuls()) {
if (!MulCand->HasTwoLoadInputs())
return false;
}
auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) {
// The first elements of each vector should be loads with sexts. If we
// find that its two pairs of consecutive loads, then these can be
// transformed into two wider loads and the users can be replaced with
// DSP intrinsics.
auto Ld0 = static_cast<LoadInst*>(PMul0->LHS);
auto Ld1 = static_cast<LoadInst*>(PMul1->LHS);
auto Ld2 = static_cast<LoadInst*>(PMul0->RHS);
auto Ld3 = static_cast<LoadInst*>(PMul1->RHS);
// Check that each mul is operating on two different loads.
if (Ld0 == Ld2 || Ld1 == Ld3)
return false;
if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
R.AddMulPair(PMul0, PMul1);
return true;
} else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
R.AddMulPair(PMul0, PMul1, true);
return true;
}
} else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n");
LLVM_DEBUG(dbgs() << " and swapping muls\n");
// Only the second operand can be exchanged, so swap the muls.
R.AddMulPair(PMul1, PMul0, true);
return true;
}
return false;
};
MulCandList &Muls = R.getMuls();
const unsigned Elems = Muls.size();
for (unsigned i = 0; i < Elems; ++i) {
MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get());
if (PMul0->Paired)
continue;
for (unsigned j = 0; j < Elems; ++j) {
if (i == j)
continue;
MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get());
if (PMul1->Paired)
continue;
const Instruction *Mul0 = PMul0->Root;
const Instruction *Mul1 = PMul1->Root;
if (Mul0 == Mul1)
continue;
assert(PMul0 != PMul1 && "expected different chains");
if (CanPair(R, PMul0, PMul1))
break;
}
}
return !R.getMulPairs().empty();
}
void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1,
Value *Acc, bool Exchange,
Instruction *InsertAfter) {
// Replace the reduction chain with an intrinsic call
Value* Args[] = { WideLd0, WideLd1, Acc };
Function *SMLAD = nullptr;
if (Exchange)
SMLAD = Acc->getType()->isIntegerTy(32) ?
Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
else
SMLAD = Acc->getType()->isIntegerTy(32) ?
Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
BasicBlock::iterator(InsertAfter));
Instruction *Call = Builder.CreateCall(SMLAD, Args);
NumSMLAD++;
return Call;
};
// Return the instruction after the dominated instruction.
auto GetInsertPoint = [this](Value *A, Value *B) {
assert((isa<Instruction>(A) || isa<Instruction>(B)) &&
"expected at least one instruction");
Value *V = nullptr;
if (!isa<Instruction>(A))
V = B;
else if (!isa<Instruction>(B))
V = A;
else
V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A;
return &*++BasicBlock::iterator(cast<Instruction>(V));
};
Value *Acc = R.getAccumulator();
// For any muls that were discovered but not paired, accumulate their values
// as before.
IRBuilder<NoFolder> Builder(R.getRoot()->getParent());
MulCandList &MulCands = R.getMuls();
for (auto &MulCand : MulCands) {
if (MulCand->Paired)
continue;
Instruction *Mul = cast<Instruction>(MulCand->Root);
LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n");
if (R.getType() != Mul->getType()) {
assert(R.is64Bit() && "expected 64-bit result");
Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul));
Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType()));
}
if (!Acc) {
Acc = Mul;
continue;
}
// If Acc is the original incoming value to the reduction, it could be a
// phi. But the phi will dominate Mul, meaning that Mul will be the
// insertion point.
Builder.SetInsertPoint(GetInsertPoint(Mul, Acc));
Acc = Builder.CreateAdd(Mul, Acc);
}
if (!Acc) {
Acc = R.is64Bit() ?
ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) :
ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
} else if (Acc->getType() != R.getType()) {
Builder.SetInsertPoint(R.getRoot());
Acc = Builder.CreateSExt(Acc, R.getType());
}
// Roughly sort the mul pairs in their program order.
llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) {
const Instruction *A = PairA.first->Root;
const Instruction *B = PairB.first->Root;
return A->comesBefore(B);
});
IntegerType *Ty = IntegerType::get(M->getContext(), 32);
for (auto &Pair : R.getMulPairs()) {
MulCandidate *LHSMul = Pair.first;
MulCandidate *RHSMul = Pair.second;
LoadInst *BaseLHS = LHSMul->getBaseLoad();
LoadInst *BaseRHS = RHSMul->getBaseLoad();
LoadInst *WideLHS = WideLoads.count(BaseLHS) ?
WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty);
LoadInst *WideRHS = WideLoads.count(BaseRHS) ?
WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty);
Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS);
InsertAfter = GetInsertPoint(InsertAfter, Acc);
Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter);
}
R.UpdateRoot(cast<Instruction>(Acc));
}
LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads,
IntegerType *LoadTy) {
assert(Loads.size() == 2 && "currently only support widening two loads");
LoadInst *Base = Loads[0];
LoadInst *Offset = Loads[1];
Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
assert((BaseSExt && OffsetSExt)
&& "Loads should have a single, extending, user");
std::function<void(Value*, Value*)> MoveBefore =
[&](Value *A, Value *B) -> void {
if (!isa<Instruction>(A) || !isa<Instruction>(B))
return;
auto *Source = cast<Instruction>(A);
auto *Sink = cast<Instruction>(B);
if (DT->dominates(Source, Sink) ||
Source->getParent() != Sink->getParent() ||
isa<PHINode>(Source) || isa<PHINode>(Sink))
return;
Source->moveBefore(Sink);
for (auto &Op : Source->operands())
MoveBefore(Op, Source);
};
// Insert the load at the point of the original dominating load.
LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
IRBuilder<NoFolder> IRB(DomLoad->getParent(),
++BasicBlock::iterator(DomLoad));
// Bitcast the pointer to a wider type and create the wide load, while making
// sure to maintain the original alignment as this prevents ldrd from being
// generated when it could be illegal due to memory alignment.
const unsigned AddrSpace = DomLoad->getPointerAddressSpace();
Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(),
LoadTy->getPointerTo(AddrSpace));
LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign());
// Make sure everything is in the correct order in the basic block.
MoveBefore(Base->getPointerOperand(), VecPtr);
MoveBefore(VecPtr, WideLoad);
// From the wide load, create two values that equal the original two loads.
// Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
// TODO: Support big-endian as well.
Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType());
BaseSExt->replaceAllUsesWith(NewBaseSExt);
IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType());
OffsetSExt->replaceAllUsesWith(NewOffsetSExt);
LLVM_DEBUG(dbgs() << "From Base and Offset:\n"
<< *Base << "\n" << *Offset << "\n"
<< "Created Wide Load:\n"
<< *WideLoad << "\n"
<< *Bottom << "\n"
<< *NewBaseSExt << "\n"
<< *Top << "\n"
<< *Trunc << "\n"
<< *NewOffsetSExt << "\n");
WideLoads.emplace(std::make_pair(Base,
std::make_unique<WidenedLoad>(Loads, WideLoad)));
return WideLoad;
}
Pass *llvm::createARMParallelDSPPass() {
return new ARMParallelDSP();
}
char ARMParallelDSP::ID = 0;
INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
"Transform functions to use DSP intrinsics", false, false)
INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
"Transform functions to use DSP intrinsics", false, false)
|