1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
|
//===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/AArch64FixupKinds.h"
#include "MCTargetDesc/AArch64MCExpr.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
namespace {
class AArch64AsmBackend : public MCAsmBackend {
static const unsigned PCRelFlagVal =
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
protected:
Triple TheTriple;
public:
AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian)
: MCAsmBackend(IsLittleEndian ? support::little : support::big),
TheTriple(TT) {}
unsigned getNumFixupKinds() const override {
return AArch64::NumTargetFixupKinds;
}
std::optional<MCFixupKind> getFixupKind(StringRef Name) const override;
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
// This table *must* be in the order that the fixup_* kinds are defined
// in AArch64FixupKinds.h.
//
// Name Offset (bits) Size (bits) Flags
{"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal},
{"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal},
{"fixup_aarch64_add_imm12", 10, 12, 0},
{"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0},
{"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0},
{"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0},
{"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0},
{"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0},
{"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal},
{"fixup_aarch64_movw", 5, 16, 0},
{"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal},
{"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal},
{"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal},
{"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal}};
// Fixup kinds from .reloc directive are like R_AARCH64_NONE. They do not
// require any extra processing.
if (Kind >= FirstLiteralRelocationKind)
return MCAsmBackend::getFixupKindInfo(FK_NONE);
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
const MCValue &Target, MutableArrayRef<char> Data,
uint64_t Value, bool IsResolved,
const MCSubtargetInfo *STI) const override;
bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const override;
void relaxInstruction(MCInst &Inst,
const MCSubtargetInfo &STI) const override;
bool writeNopData(raw_ostream &OS, uint64_t Count,
const MCSubtargetInfo *STI) const override;
unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const;
bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
const MCValue &Target) override;
};
} // end anonymous namespace
/// The number of bytes the fixup may change.
static unsigned getFixupKindNumBytes(unsigned Kind) {
switch (Kind) {
default:
llvm_unreachable("Unknown fixup kind!");
case FK_Data_1:
return 1;
case FK_Data_2:
case FK_SecRel_2:
return 2;
case AArch64::fixup_aarch64_movw:
case AArch64::fixup_aarch64_pcrel_branch14:
case AArch64::fixup_aarch64_add_imm12:
case AArch64::fixup_aarch64_ldst_imm12_scale1:
case AArch64::fixup_aarch64_ldst_imm12_scale2:
case AArch64::fixup_aarch64_ldst_imm12_scale4:
case AArch64::fixup_aarch64_ldst_imm12_scale8:
case AArch64::fixup_aarch64_ldst_imm12_scale16:
case AArch64::fixup_aarch64_ldr_pcrel_imm19:
case AArch64::fixup_aarch64_pcrel_branch19:
return 3;
case AArch64::fixup_aarch64_pcrel_adr_imm21:
case AArch64::fixup_aarch64_pcrel_adrp_imm21:
case AArch64::fixup_aarch64_pcrel_branch26:
case AArch64::fixup_aarch64_pcrel_call26:
case FK_Data_4:
case FK_SecRel_4:
return 4;
case FK_Data_8:
return 8;
}
}
static unsigned AdrImmBits(unsigned Value) {
unsigned lo2 = Value & 0x3;
unsigned hi19 = (Value & 0x1ffffc) >> 2;
return (hi19 << 5) | (lo2 << 29);
}
static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target,
uint64_t Value, MCContext &Ctx,
const Triple &TheTriple, bool IsResolved) {
int64_t SignedValue = static_cast<int64_t>(Value);
switch (Fixup.getTargetKind()) {
default:
llvm_unreachable("Unknown fixup kind!");
case AArch64::fixup_aarch64_pcrel_adr_imm21:
if (SignedValue > 2097151 || SignedValue < -2097152)
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
return AdrImmBits(Value & 0x1fffffULL);
case AArch64::fixup_aarch64_pcrel_adrp_imm21:
assert(!IsResolved);
if (TheTriple.isOSBinFormatCOFF()) {
if (!isInt<21>(SignedValue))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
return AdrImmBits(Value & 0x1fffffULL);
}
return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
case AArch64::fixup_aarch64_ldr_pcrel_imm19:
case AArch64::fixup_aarch64_pcrel_branch19:
// Signed 21-bit immediate
if (SignedValue > 2097151 || SignedValue < -2097152)
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x3)
Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
// Low two bits are not encoded.
return (Value >> 2) & 0x7ffff;
case AArch64::fixup_aarch64_add_imm12:
case AArch64::fixup_aarch64_ldst_imm12_scale1:
if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
Value &= 0xfff;
// Unsigned 12-bit immediate
if (Value >= 0x1000)
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
return Value;
case AArch64::fixup_aarch64_ldst_imm12_scale2:
if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
Value &= 0xfff;
// Unsigned 12-bit immediate which gets multiplied by 2
if (Value >= 0x2000)
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned");
return Value >> 1;
case AArch64::fixup_aarch64_ldst_imm12_scale4:
if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
Value &= 0xfff;
// Unsigned 12-bit immediate which gets multiplied by 4
if (Value >= 0x4000)
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x3)
Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned");
return Value >> 2;
case AArch64::fixup_aarch64_ldst_imm12_scale8:
if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
Value &= 0xfff;
// Unsigned 12-bit immediate which gets multiplied by 8
if (Value >= 0x8000)
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x7)
Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned");
return Value >> 3;
case AArch64::fixup_aarch64_ldst_imm12_scale16:
if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
Value &= 0xfff;
// Unsigned 12-bit immediate which gets multiplied by 16
if (Value >= 0x10000)
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0xf)
Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned");
return Value >> 4;
case AArch64::fixup_aarch64_movw: {
AArch64MCExpr::VariantKind RefKind =
static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
if (AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_ABS &&
AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_SABS) {
if (!RefKind) {
// The fixup is an expression
if (SignedValue > 0xFFFF || SignedValue < -0xFFFF)
Ctx.reportError(Fixup.getLoc(),
"fixup value out of range [-0xFFFF, 0xFFFF]");
// Invert the negative immediate because it will feed into a MOVN.
if (SignedValue < 0)
SignedValue = ~SignedValue;
Value = static_cast<uint64_t>(SignedValue);
} else
// VK_GOTTPREL, VK_TPREL, VK_DTPREL are movw fixups, but they can't
// ever be resolved in the assembler.
Ctx.reportError(Fixup.getLoc(),
"relocation for a thread-local variable points to an "
"absolute symbol");
return Value;
}
if (!IsResolved) {
// FIXME: Figure out when this can actually happen, and verify our
// behavior.
Ctx.reportError(Fixup.getLoc(), "unresolved movw fixup not yet "
"implemented");
return Value;
}
if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
switch (AArch64MCExpr::getAddressFrag(RefKind)) {
case AArch64MCExpr::VK_G0:
break;
case AArch64MCExpr::VK_G1:
SignedValue = SignedValue >> 16;
break;
case AArch64MCExpr::VK_G2:
SignedValue = SignedValue >> 32;
break;
case AArch64MCExpr::VK_G3:
SignedValue = SignedValue >> 48;
break;
default:
llvm_unreachable("Variant kind doesn't correspond to fixup");
}
} else {
switch (AArch64MCExpr::getAddressFrag(RefKind)) {
case AArch64MCExpr::VK_G0:
break;
case AArch64MCExpr::VK_G1:
Value = Value >> 16;
break;
case AArch64MCExpr::VK_G2:
Value = Value >> 32;
break;
case AArch64MCExpr::VK_G3:
Value = Value >> 48;
break;
default:
llvm_unreachable("Variant kind doesn't correspond to fixup");
}
}
if (RefKind & AArch64MCExpr::VK_NC) {
Value &= 0xFFFF;
}
else if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
if (SignedValue > 0xFFFF || SignedValue < -0xFFFF)
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
// Invert the negative immediate because it will feed into a MOVN.
if (SignedValue < 0)
SignedValue = ~SignedValue;
Value = static_cast<uint64_t>(SignedValue);
}
else if (Value > 0xFFFF) {
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
}
return Value;
}
case AArch64::fixup_aarch64_pcrel_branch14:
// Signed 16-bit immediate
if (SignedValue > 32767 || SignedValue < -32768)
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
// Low two bits are not encoded (4-byte alignment assumed).
if (Value & 0x3)
Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
return (Value >> 2) & 0x3fff;
case AArch64::fixup_aarch64_pcrel_branch26:
case AArch64::fixup_aarch64_pcrel_call26:
// Signed 28-bit immediate
if (SignedValue > 134217727 || SignedValue < -134217728)
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
// Low two bits are not encoded (4-byte alignment assumed).
if (Value & 0x3)
Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
return (Value >> 2) & 0x3ffffff;
case FK_Data_1:
case FK_Data_2:
case FK_Data_4:
case FK_Data_8:
case FK_SecRel_2:
case FK_SecRel_4:
return Value;
}
}
std::optional<MCFixupKind>
AArch64AsmBackend::getFixupKind(StringRef Name) const {
if (!TheTriple.isOSBinFormatELF())
return std::nullopt;
unsigned Type = llvm::StringSwitch<unsigned>(Name)
#define ELF_RELOC(X, Y) .Case(#X, Y)
#include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
#undef ELF_RELOC
.Case("BFD_RELOC_NONE", ELF::R_AARCH64_NONE)
.Case("BFD_RELOC_16", ELF::R_AARCH64_ABS16)
.Case("BFD_RELOC_32", ELF::R_AARCH64_ABS32)
.Case("BFD_RELOC_64", ELF::R_AARCH64_ABS64)
.Default(-1u);
if (Type == -1u)
return std::nullopt;
return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
}
/// getFixupKindContainereSizeInBytes - The number of bytes of the
/// container involved in big endian or 0 if the item is little endian
unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const {
if (Endian == support::little)
return 0;
switch (Kind) {
default:
llvm_unreachable("Unknown fixup kind!");
case FK_Data_1:
return 1;
case FK_Data_2:
return 2;
case FK_Data_4:
return 4;
case FK_Data_8:
return 8;
case AArch64::fixup_aarch64_movw:
case AArch64::fixup_aarch64_pcrel_branch14:
case AArch64::fixup_aarch64_add_imm12:
case AArch64::fixup_aarch64_ldst_imm12_scale1:
case AArch64::fixup_aarch64_ldst_imm12_scale2:
case AArch64::fixup_aarch64_ldst_imm12_scale4:
case AArch64::fixup_aarch64_ldst_imm12_scale8:
case AArch64::fixup_aarch64_ldst_imm12_scale16:
case AArch64::fixup_aarch64_ldr_pcrel_imm19:
case AArch64::fixup_aarch64_pcrel_branch19:
case AArch64::fixup_aarch64_pcrel_adr_imm21:
case AArch64::fixup_aarch64_pcrel_adrp_imm21:
case AArch64::fixup_aarch64_pcrel_branch26:
case AArch64::fixup_aarch64_pcrel_call26:
// Instructions are always little endian
return 0;
}
}
void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
const MCValue &Target,
MutableArrayRef<char> Data, uint64_t Value,
bool IsResolved,
const MCSubtargetInfo *STI) const {
if (!Value)
return; // Doesn't change encoding.
unsigned Kind = Fixup.getKind();
if (Kind >= FirstLiteralRelocationKind)
return;
unsigned NumBytes = getFixupKindNumBytes(Kind);
MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
MCContext &Ctx = Asm.getContext();
int64_t SignedValue = static_cast<int64_t>(Value);
// Apply any target-specific value adjustments.
Value = adjustFixupValue(Fixup, Target, Value, Ctx, TheTriple, IsResolved);
// Shift the value into position.
Value <<= Info.TargetOffset;
unsigned Offset = Fixup.getOffset();
assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
// Used to point to big endian bytes.
unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind());
// For each byte of the fragment that the fixup touches, mask in the
// bits from the fixup value.
if (FulleSizeInBytes == 0) {
// Handle as little-endian
for (unsigned i = 0; i != NumBytes; ++i) {
Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
}
} else {
// Handle as big-endian
assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!");
assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!");
for (unsigned i = 0; i != NumBytes; ++i) {
unsigned Idx = FulleSizeInBytes - 1 - i;
Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
}
}
// FIXME: getFixupKindInfo() and getFixupKindNumBytes() could be fixed to
// handle this more cleanly. This may affect the output of -show-mc-encoding.
AArch64MCExpr::VariantKind RefKind =
static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS ||
(!RefKind && Fixup.getTargetKind() == AArch64::fixup_aarch64_movw)) {
// If the immediate is negative, generate MOVN else MOVZ.
// (Bit 30 = 0) ==> MOVN, (Bit 30 = 1) ==> MOVZ.
if (SignedValue < 0)
Data[Offset + 3] &= ~(1 << 6);
else
Data[Offset + 3] |= (1 << 6);
}
}
bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
uint64_t Value,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const {
// FIXME: This isn't correct for AArch64. Just moving the "generic" logic
// into the targets for now.
//
// Relax if the value is too big for a (signed) i8.
return int64_t(Value) != int64_t(int8_t(Value));
}
void AArch64AsmBackend::relaxInstruction(MCInst &Inst,
const MCSubtargetInfo &STI) const {
llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
}
bool AArch64AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
const MCSubtargetInfo *STI) const {
// If the count is not 4-byte aligned, we must be writing data into the text
// section (otherwise we have unaligned instructions, and thus have far
// bigger problems), so just write zeros instead.
OS.write_zeros(Count % 4);
// We are properly aligned, so write NOPs as requested.
Count /= 4;
for (uint64_t i = 0; i != Count; ++i)
OS.write("\x1f\x20\x03\xd5", 4);
return true;
}
bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm,
const MCFixup &Fixup,
const MCValue &Target) {
unsigned Kind = Fixup.getKind();
if (Kind >= FirstLiteralRelocationKind)
return true;
// The ADRP instruction adds some multiple of 0x1000 to the current PC &
// ~0xfff. This means that the required offset to reach a symbol can vary by
// up to one step depending on where the ADRP is in memory. For example:
//
// ADRP x0, there
// there:
//
// If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
// we'll need that as an offset. At any other address "there" will be in the
// same page as the ADRP and the instruction should encode 0x0. Assuming the
// section isn't 0x1000-aligned, we therefore need to delegate this decision
// to the linker -- a relocation!
if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21)
return true;
return false;
}
namespace {
namespace CU {
/// Compact unwind encoding values.
enum CompactUnwindEncodings {
/// A "frameless" leaf function, where no non-volatile registers are
/// saved. The return remains in LR throughout the function.
UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
/// No compact unwind encoding available. Instead the low 23-bits of
/// the compact unwind encoding is the offset of the DWARF FDE in the
/// __eh_frame section. This mode is never used in object files. It is only
/// generated by the linker in final linked images, which have only DWARF info
/// for a function.
UNWIND_ARM64_MODE_DWARF = 0x03000000,
/// This is a standard arm64 prologue where FP/LR are immediately
/// pushed on the stack, then SP is copied to FP. If there are any
/// non-volatile register saved, they are copied into the stack fame in pairs
/// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
/// five X pairs and four D pairs can be saved, but the memory layout must be
/// in register number order.
UNWIND_ARM64_MODE_FRAME = 0x04000000,
/// Frame register pair encodings.
UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800
};
} // end CU namespace
// FIXME: This should be in a separate file.
class DarwinAArch64AsmBackend : public AArch64AsmBackend {
const MCRegisterInfo &MRI;
/// Encode compact unwind stack adjustment for frameless functions.
/// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
/// The stack size always needs to be 16 byte aligned.
uint32_t encodeStackAdjustment(uint32_t StackSize) const {
return (StackSize / 16) << 12;
}
public:
DarwinAArch64AsmBackend(const Target &T, const Triple &TT,
const MCRegisterInfo &MRI)
: AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI) {}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
uint32_t CPUType = cantFail(MachO::getCPUType(TheTriple));
uint32_t CPUSubType = cantFail(MachO::getCPUSubType(TheTriple));
return createAArch64MachObjectWriter(CPUType, CPUSubType,
TheTriple.isArch32Bit());
}
/// Generate the compact unwind encoding from the CFI directives.
uint32_t generateCompactUnwindEncoding(
ArrayRef<MCCFIInstruction> Instrs) const override {
if (Instrs.empty())
return CU::UNWIND_ARM64_MODE_FRAMELESS;
bool HasFP = false;
unsigned StackSize = 0;
uint32_t CompactUnwindEncoding = 0;
int CurOffset = 0;
for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
const MCCFIInstruction &Inst = Instrs[i];
switch (Inst.getOperation()) {
default:
// Cannot handle this directive: bail out.
return CU::UNWIND_ARM64_MODE_DWARF;
case MCCFIInstruction::OpDefCfa: {
// Defines a frame pointer.
unsigned XReg =
getXRegFromWReg(*MRI.getLLVMRegNum(Inst.getRegister(), true));
// Other CFA registers than FP are not supported by compact unwind.
// Fallback on DWARF.
// FIXME: When opt-remarks are supported in MC, add a remark to notify
// the user.
if (XReg != AArch64::FP)
return CU::UNWIND_ARM64_MODE_DWARF;
if (i + 2 >= e)
return CU::UNWIND_ARM64_MODE_DWARF;
const MCCFIInstruction &LRPush = Instrs[++i];
if (LRPush.getOperation() != MCCFIInstruction::OpOffset)
return CU::UNWIND_ARM64_MODE_DWARF;
const MCCFIInstruction &FPPush = Instrs[++i];
if (FPPush.getOperation() != MCCFIInstruction::OpOffset)
return CU::UNWIND_ARM64_MODE_DWARF;
if (FPPush.getOffset() + 8 != LRPush.getOffset())
return CU::UNWIND_ARM64_MODE_DWARF;
CurOffset = FPPush.getOffset();
unsigned LRReg = *MRI.getLLVMRegNum(LRPush.getRegister(), true);
unsigned FPReg = *MRI.getLLVMRegNum(FPPush.getRegister(), true);
LRReg = getXRegFromWReg(LRReg);
FPReg = getXRegFromWReg(FPReg);
if (LRReg != AArch64::LR || FPReg != AArch64::FP)
return CU::UNWIND_ARM64_MODE_DWARF;
// Indicate that the function has a frame.
CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME;
HasFP = true;
break;
}
case MCCFIInstruction::OpDefCfaOffset: {
if (StackSize != 0)
return CU::UNWIND_ARM64_MODE_DWARF;
StackSize = std::abs(Inst.getOffset());
break;
}
case MCCFIInstruction::OpOffset: {
// Registers are saved in pairs. We expect there to be two consecutive
// `.cfi_offset' instructions with the appropriate registers specified.
unsigned Reg1 = *MRI.getLLVMRegNum(Inst.getRegister(), true);
if (i + 1 == e)
return CU::UNWIND_ARM64_MODE_DWARF;
if (CurOffset != 0 && Inst.getOffset() != CurOffset - 8)
return CU::UNWIND_ARM64_MODE_DWARF;
CurOffset = Inst.getOffset();
const MCCFIInstruction &Inst2 = Instrs[++i];
if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
return CU::UNWIND_ARM64_MODE_DWARF;
unsigned Reg2 = *MRI.getLLVMRegNum(Inst2.getRegister(), true);
if (Inst2.getOffset() != CurOffset - 8)
return CU::UNWIND_ARM64_MODE_DWARF;
CurOffset = Inst2.getOffset();
// N.B. The encodings must be in register number order, and the X
// registers before the D registers.
// X19/X20 pair = 0x00000001,
// X21/X22 pair = 0x00000002,
// X23/X24 pair = 0x00000004,
// X25/X26 pair = 0x00000008,
// X27/X28 pair = 0x00000010
Reg1 = getXRegFromWReg(Reg1);
Reg2 = getXRegFromWReg(Reg2);
if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
(CompactUnwindEncoding & 0xF1E) == 0)
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR;
else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
(CompactUnwindEncoding & 0xF1C) == 0)
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR;
else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
(CompactUnwindEncoding & 0xF18) == 0)
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR;
else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
(CompactUnwindEncoding & 0xF10) == 0)
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR;
else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
(CompactUnwindEncoding & 0xF00) == 0)
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR;
else {
Reg1 = getDRegFromBReg(Reg1);
Reg2 = getDRegFromBReg(Reg2);
// D8/D9 pair = 0x00000100,
// D10/D11 pair = 0x00000200,
// D12/D13 pair = 0x00000400,
// D14/D15 pair = 0x00000800
if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
(CompactUnwindEncoding & 0xE00) == 0)
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR;
else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
(CompactUnwindEncoding & 0xC00) == 0)
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR;
else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
(CompactUnwindEncoding & 0x800) == 0)
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR;
else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR;
else
// A pair was pushed which we cannot handle.
return CU::UNWIND_ARM64_MODE_DWARF;
}
break;
}
}
}
if (!HasFP) {
// With compact unwind info we can only represent stack adjustments of up
// to 65520 bytes.
if (StackSize > 65520)
return CU::UNWIND_ARM64_MODE_DWARF;
CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS;
CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
}
return CompactUnwindEncoding;
}
};
} // end anonymous namespace
namespace {
class ELFAArch64AsmBackend : public AArch64AsmBackend {
public:
uint8_t OSABI;
bool IsILP32;
ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI,
bool IsLittleEndian, bool IsILP32)
: AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI),
IsILP32(IsILP32) {}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
return createAArch64ELFObjectWriter(OSABI, IsILP32);
}
};
}
namespace {
class COFFAArch64AsmBackend : public AArch64AsmBackend {
public:
COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple)
: AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
return createAArch64WinCOFFObjectWriter(TheTriple);
}
};
}
MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI,
const MCTargetOptions &Options) {
const Triple &TheTriple = STI.getTargetTriple();
if (TheTriple.isOSBinFormatMachO()) {
return new DarwinAArch64AsmBackend(T, TheTriple, MRI);
}
if (TheTriple.isOSBinFormatCOFF())
return new COFFAArch64AsmBackend(T, TheTriple);
assert(TheTriple.isOSBinFormatELF() && "Invalid target");
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32;
return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true,
IsILP32);
}
MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI,
const MCTargetOptions &Options) {
const Triple &TheTriple = STI.getTargetTriple();
assert(TheTriple.isOSBinFormatELF() &&
"Big endian is only supported for ELF targets!");
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32;
return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false,
IsILP32);
}
|