aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Target/AArch64/GISel/AArch64PreLegalizerCombiner.cpp
blob: 542abd74ecdd321f7fb995861138f4e6fa4e9f5c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
//=== lib/CodeGen/GlobalISel/AArch64PreLegalizerCombiner.cpp --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass does combining of machine instructions at the generic MI level,
// before the legalizer.
//
//===----------------------------------------------------------------------===//

#include "AArch64GlobalISelUtils.h"
#include "AArch64TargetMachine.h"
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "aarch64-prelegalizer-combiner"

using namespace llvm;
using namespace MIPatternMatch;

/// Return true if a G_FCONSTANT instruction is known to be better-represented
/// as a G_CONSTANT.
static bool matchFConstantToConstant(MachineInstr &MI,
                                     MachineRegisterInfo &MRI) {
  assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT);
  Register DstReg = MI.getOperand(0).getReg();
  const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
  if (DstSize != 32 && DstSize != 64)
    return false;

  // When we're storing a value, it doesn't matter what register bank it's on.
  // Since not all floating point constants can be materialized using a fmov,
  // it makes more sense to just use a GPR.
  return all_of(MRI.use_nodbg_instructions(DstReg),
                [](const MachineInstr &Use) { return Use.mayStore(); });
}

/// Change a G_FCONSTANT into a G_CONSTANT.
static void applyFConstantToConstant(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT);
  MachineIRBuilder MIB(MI);
  const APFloat &ImmValAPF = MI.getOperand(1).getFPImm()->getValueAPF();
  MIB.buildConstant(MI.getOperand(0).getReg(), ImmValAPF.bitcastToAPInt());
  MI.eraseFromParent();
}

/// Try to match a G_ICMP of a G_TRUNC with zero, in which the truncated bits
/// are sign bits. In this case, we can transform the G_ICMP to directly compare
/// the wide value with a zero.
static bool matchICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI,
                                    GISelKnownBits *KB, Register &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_ICMP && KB);

  auto Pred = (CmpInst::Predicate)MI.getOperand(1).getPredicate();
  if (!ICmpInst::isEquality(Pred))
    return false;

  Register LHS = MI.getOperand(2).getReg();
  LLT LHSTy = MRI.getType(LHS);
  if (!LHSTy.isScalar())
    return false;

  Register RHS = MI.getOperand(3).getReg();
  Register WideReg;

  if (!mi_match(LHS, MRI, m_GTrunc(m_Reg(WideReg))) ||
      !mi_match(RHS, MRI, m_SpecificICst(0)))
    return false;

  LLT WideTy = MRI.getType(WideReg);
  if (KB->computeNumSignBits(WideReg) <=
      WideTy.getSizeInBits() - LHSTy.getSizeInBits())
    return false;

  MatchInfo = WideReg;
  return true;
}

static bool applyICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI,
                                    MachineIRBuilder &Builder,
                                    GISelChangeObserver &Observer,
                                    Register &WideReg) {
  assert(MI.getOpcode() == TargetOpcode::G_ICMP);

  LLT WideTy = MRI.getType(WideReg);
  // We're going to directly use the wide register as the LHS, and then use an
  // equivalent size zero for RHS.
  Builder.setInstrAndDebugLoc(MI);
  auto WideZero = Builder.buildConstant(WideTy, 0);
  Observer.changingInstr(MI);
  MI.getOperand(2).setReg(WideReg);
  MI.getOperand(3).setReg(WideZero.getReg(0));
  Observer.changedInstr(MI);
  return true;
}

/// \returns true if it is possible to fold a constant into a G_GLOBAL_VALUE.
///
/// e.g.
///
/// %g = G_GLOBAL_VALUE @x -> %g = G_GLOBAL_VALUE @x + cst
static bool matchFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI,
                                  std::pair<uint64_t, uint64_t> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
  MachineFunction &MF = *MI.getMF();
  auto &GlobalOp = MI.getOperand(1);
  auto *GV = GlobalOp.getGlobal();
  if (GV->isThreadLocal())
    return false;

  // Don't allow anything that could represent offsets etc.
  if (MF.getSubtarget<AArch64Subtarget>().ClassifyGlobalReference(
          GV, MF.getTarget()) != AArch64II::MO_NO_FLAG)
    return false;

  // Look for a G_GLOBAL_VALUE only used by G_PTR_ADDs against constants:
  //
  //  %g = G_GLOBAL_VALUE @x
  //  %ptr1 = G_PTR_ADD %g, cst1
  //  %ptr2 = G_PTR_ADD %g, cst2
  //  ...
  //  %ptrN = G_PTR_ADD %g, cstN
  //
  // Identify the *smallest* constant. We want to be able to form this:
  //
  //  %offset_g = G_GLOBAL_VALUE @x + min_cst
  //  %g = G_PTR_ADD %offset_g, -min_cst
  //  %ptr1 = G_PTR_ADD %g, cst1
  //  ...
  Register Dst = MI.getOperand(0).getReg();
  uint64_t MinOffset = -1ull;
  for (auto &UseInstr : MRI.use_nodbg_instructions(Dst)) {
    if (UseInstr.getOpcode() != TargetOpcode::G_PTR_ADD)
      return false;
    auto Cst = getIConstantVRegValWithLookThrough(
        UseInstr.getOperand(2).getReg(), MRI);
    if (!Cst)
      return false;
    MinOffset = std::min(MinOffset, Cst->Value.getZExtValue());
  }

  // Require that the new offset is larger than the existing one to avoid
  // infinite loops.
  uint64_t CurrOffset = GlobalOp.getOffset();
  uint64_t NewOffset = MinOffset + CurrOffset;
  if (NewOffset <= CurrOffset)
    return false;

  // Check whether folding this offset is legal. It must not go out of bounds of
  // the referenced object to avoid violating the code model, and must be
  // smaller than 2^20 because this is the largest offset expressible in all
  // object formats. (The IMAGE_REL_ARM64_PAGEBASE_REL21 relocation in COFF
  // stores an immediate signed 21 bit offset.)
  //
  // This check also prevents us from folding negative offsets, which will end
  // up being treated in the same way as large positive ones. They could also
  // cause code model violations, and aren't really common enough to matter.
  if (NewOffset >= (1 << 20))
    return false;

  Type *T = GV->getValueType();
  if (!T->isSized() ||
      NewOffset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
    return false;
  MatchInfo = std::make_pair(NewOffset, MinOffset);
  return true;
}

static bool applyFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI,
                                  MachineIRBuilder &B,
                                  GISelChangeObserver &Observer,
                                  std::pair<uint64_t, uint64_t> &MatchInfo) {
  // Change:
  //
  //  %g = G_GLOBAL_VALUE @x
  //  %ptr1 = G_PTR_ADD %g, cst1
  //  %ptr2 = G_PTR_ADD %g, cst2
  //  ...
  //  %ptrN = G_PTR_ADD %g, cstN
  //
  // To:
  //
  //  %offset_g = G_GLOBAL_VALUE @x + min_cst
  //  %g = G_PTR_ADD %offset_g, -min_cst
  //  %ptr1 = G_PTR_ADD %g, cst1
  //  ...
  //  %ptrN = G_PTR_ADD %g, cstN
  //
  // Then, the original G_PTR_ADDs should be folded later on so that they look
  // like this:
  //
  //  %ptrN = G_PTR_ADD %offset_g, cstN - min_cst
  uint64_t Offset, MinOffset;
  std::tie(Offset, MinOffset) = MatchInfo;
  B.setInstrAndDebugLoc(MI);
  Observer.changingInstr(MI);
  auto &GlobalOp = MI.getOperand(1);
  auto *GV = GlobalOp.getGlobal();
  GlobalOp.ChangeToGA(GV, Offset, GlobalOp.getTargetFlags());
  Register Dst = MI.getOperand(0).getReg();
  Register NewGVDst = MRI.cloneVirtualRegister(Dst);
  MI.getOperand(0).setReg(NewGVDst);
  Observer.changedInstr(MI);
  B.buildPtrAdd(
      Dst, NewGVDst,
      B.buildConstant(LLT::scalar(64), -static_cast<int64_t>(MinOffset)));
  return true;
}

static bool tryToSimplifyUADDO(MachineInstr &MI, MachineIRBuilder &B,
                               CombinerHelper &Helper,
                               GISelChangeObserver &Observer) {
  // Try simplify G_UADDO with 8 or 16 bit operands to wide G_ADD and TBNZ if
  // result is only used in the no-overflow case. It is restricted to cases
  // where we know that the high-bits of the operands are 0. If there's an
  // overflow, then the the 9th or 17th bit must be set, which can be checked
  // using TBNZ.
  //
  // Change (for UADDOs on 8 and 16 bits):
  //
  //   %z0 = G_ASSERT_ZEXT _
  //   %op0 = G_TRUNC %z0
  //   %z1 = G_ASSERT_ZEXT _
  //   %op1 = G_TRUNC %z1
  //   %val, %cond = G_UADDO %op0, %op1
  //   G_BRCOND %cond, %error.bb
  //
  // error.bb:
  //   (no successors and no uses of %val)
  //
  // To:
  //
  //   %z0 = G_ASSERT_ZEXT _
  //   %z1 = G_ASSERT_ZEXT _
  //   %add = G_ADD %z0, %z1
  //   %val = G_TRUNC %add
  //   %bit = G_AND %add, 1 << scalar-size-in-bits(%op1)
  //   %cond = G_ICMP NE, %bit, 0
  //   G_BRCOND %cond, %error.bb

  auto &MRI = *B.getMRI();

  MachineOperand *DefOp0 = MRI.getOneDef(MI.getOperand(2).getReg());
  MachineOperand *DefOp1 = MRI.getOneDef(MI.getOperand(3).getReg());
  Register Op0Wide;
  Register Op1Wide;
  if (!mi_match(DefOp0->getParent(), MRI, m_GTrunc(m_Reg(Op0Wide))) ||
      !mi_match(DefOp1->getParent(), MRI, m_GTrunc(m_Reg(Op1Wide))))
    return false;
  LLT WideTy0 = MRI.getType(Op0Wide);
  LLT WideTy1 = MRI.getType(Op1Wide);
  Register ResVal = MI.getOperand(0).getReg();
  LLT OpTy = MRI.getType(ResVal);
  MachineInstr *Op0WideDef = MRI.getVRegDef(Op0Wide);
  MachineInstr *Op1WideDef = MRI.getVRegDef(Op1Wide);

  unsigned OpTySize = OpTy.getScalarSizeInBits();
  // First check that the G_TRUNC feeding the G_UADDO are no-ops, because the
  // inputs have been zero-extended.
  if (Op0WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT ||
      Op1WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT ||
      OpTySize != Op0WideDef->getOperand(2).getImm() ||
      OpTySize != Op1WideDef->getOperand(2).getImm())
    return false;

  // Only scalar UADDO with either 8 or 16 bit operands are handled.
  if (!WideTy0.isScalar() || !WideTy1.isScalar() || WideTy0 != WideTy1 ||
      OpTySize >= WideTy0.getScalarSizeInBits() ||
      (OpTySize != 8 && OpTySize != 16))
    return false;

  // The overflow-status result must be used by a branch only.
  Register ResStatus = MI.getOperand(1).getReg();
  if (!MRI.hasOneNonDBGUse(ResStatus))
    return false;
  MachineInstr *CondUser = &*MRI.use_instr_nodbg_begin(ResStatus);
  if (CondUser->getOpcode() != TargetOpcode::G_BRCOND)
    return false;

  // Make sure the computed result is only used in the no-overflow blocks.
  MachineBasicBlock *CurrentMBB = MI.getParent();
  MachineBasicBlock *FailMBB = CondUser->getOperand(1).getMBB();
  if (!FailMBB->succ_empty() || CondUser->getParent() != CurrentMBB)
    return false;
  if (any_of(MRI.use_nodbg_instructions(ResVal),
             [&MI, FailMBB, CurrentMBB](MachineInstr &I) {
               return &MI != &I &&
                      (I.getParent() == FailMBB || I.getParent() == CurrentMBB);
             }))
    return false;

  // Remove G_ADDO.
  B.setInstrAndDebugLoc(*MI.getNextNode());
  MI.eraseFromParent();

  // Emit wide add.
  Register AddDst = MRI.cloneVirtualRegister(Op0Wide);
  B.buildInstr(TargetOpcode::G_ADD, {AddDst}, {Op0Wide, Op1Wide});

  // Emit check of the 9th or 17th bit and update users (the branch). This will
  // later be folded to TBNZ.
  Register CondBit = MRI.cloneVirtualRegister(Op0Wide);
  B.buildAnd(
      CondBit, AddDst,
      B.buildConstant(LLT::scalar(32), OpTySize == 8 ? 1 << 8 : 1 << 16));
  B.buildICmp(CmpInst::ICMP_NE, ResStatus, CondBit,
              B.buildConstant(LLT::scalar(32), 0));

  // Update ZEXts users of the result value. Because all uses are in the
  // no-overflow case, we know that the top bits are 0 and we can ignore ZExts.
  B.buildZExtOrTrunc(ResVal, AddDst);
  for (MachineOperand &U : make_early_inc_range(MRI.use_operands(ResVal))) {
    Register WideReg;
    if (mi_match(U.getParent(), MRI, m_GZExt(m_Reg(WideReg)))) {
      auto OldR = U.getParent()->getOperand(0).getReg();
      Observer.erasingInstr(*U.getParent());
      U.getParent()->eraseFromParent();
      Helper.replaceRegWith(MRI, OldR, AddDst);
    }
  }

  return true;
}

class AArch64PreLegalizerCombinerHelperState {
protected:
  CombinerHelper &Helper;

public:
  AArch64PreLegalizerCombinerHelperState(CombinerHelper &Helper)
      : Helper(Helper) {}
};

#define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS

namespace {
#define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H

class AArch64PreLegalizerCombinerInfo : public CombinerInfo {
  GISelKnownBits *KB;
  MachineDominatorTree *MDT;
  AArch64GenPreLegalizerCombinerHelperRuleConfig GeneratedRuleCfg;

public:
  AArch64PreLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize,
                                  GISelKnownBits *KB, MachineDominatorTree *MDT)
      : CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
                     /*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize),
        KB(KB), MDT(MDT) {
    if (!GeneratedRuleCfg.parseCommandLineOption())
      report_fatal_error("Invalid rule identifier");
  }

  bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
               MachineIRBuilder &B) const override;
};

bool AArch64PreLegalizerCombinerInfo::combine(GISelChangeObserver &Observer,
                                              MachineInstr &MI,
                                              MachineIRBuilder &B) const {
  const auto *LI = MI.getMF()->getSubtarget().getLegalizerInfo();
  CombinerHelper Helper(Observer, B, /* IsPreLegalize*/ true, KB, MDT, LI);
  AArch64GenPreLegalizerCombinerHelper Generated(GeneratedRuleCfg, Helper);

  if (Generated.tryCombineAll(Observer, MI, B))
    return true;

  unsigned Opc = MI.getOpcode();
  switch (Opc) {
  case TargetOpcode::G_CONCAT_VECTORS:
    return Helper.tryCombineConcatVectors(MI);
  case TargetOpcode::G_SHUFFLE_VECTOR:
    return Helper.tryCombineShuffleVector(MI);
  case TargetOpcode::G_UADDO:
    return tryToSimplifyUADDO(MI, B, Helper, Observer);
  case TargetOpcode::G_MEMCPY_INLINE:
    return Helper.tryEmitMemcpyInline(MI);
  case TargetOpcode::G_MEMCPY:
  case TargetOpcode::G_MEMMOVE:
  case TargetOpcode::G_MEMSET: {
    // If we're at -O0 set a maxlen of 32 to inline, otherwise let the other
    // heuristics decide.
    unsigned MaxLen = EnableOpt ? 0 : 32;
    // Try to inline memcpy type calls if optimizations are enabled.
    if (Helper.tryCombineMemCpyFamily(MI, MaxLen))
      return true;
    if (Opc == TargetOpcode::G_MEMSET)
      return llvm::AArch64GISelUtils::tryEmitBZero(MI, B, EnableMinSize);
    return false;
  }
  }

  return false;
}

#define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP

// Pass boilerplate
// ================

class AArch64PreLegalizerCombiner : public MachineFunctionPass {
public:
  static char ID;

  AArch64PreLegalizerCombiner();

  StringRef getPassName() const override { return "AArch64PreLegalizerCombiner"; }

  bool runOnMachineFunction(MachineFunction &MF) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;
};
} // end anonymous namespace

void AArch64PreLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<TargetPassConfig>();
  AU.setPreservesCFG();
  getSelectionDAGFallbackAnalysisUsage(AU);
  AU.addRequired<GISelKnownBitsAnalysis>();
  AU.addPreserved<GISelKnownBitsAnalysis>();
  AU.addRequired<MachineDominatorTree>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<GISelCSEAnalysisWrapperPass>();
  AU.addPreserved<GISelCSEAnalysisWrapperPass>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

AArch64PreLegalizerCombiner::AArch64PreLegalizerCombiner()
    : MachineFunctionPass(ID) {
  initializeAArch64PreLegalizerCombinerPass(*PassRegistry::getPassRegistry());
}

bool AArch64PreLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
  if (MF.getProperties().hasProperty(
          MachineFunctionProperties::Property::FailedISel))
    return false;
  auto &TPC = getAnalysis<TargetPassConfig>();

  // Enable CSE.
  GISelCSEAnalysisWrapper &Wrapper =
      getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
  auto *CSEInfo = &Wrapper.get(TPC.getCSEConfig());

  const Function &F = MF.getFunction();
  bool EnableOpt =
      MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F);
  GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
  MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
  AArch64PreLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(),
                                         F.hasMinSize(), KB, MDT);
  Combiner C(PCInfo, &TPC);
  return C.combineMachineInstrs(MF, CSEInfo);
}

char AArch64PreLegalizerCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(AArch64PreLegalizerCombiner, DEBUG_TYPE,
                      "Combine AArch64 machine instrs before legalization",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
INITIALIZE_PASS_END(AArch64PreLegalizerCombiner, DEBUG_TYPE,
                    "Combine AArch64 machine instrs before legalization", false,
                    false)


namespace llvm {
FunctionPass *createAArch64PreLegalizerCombiner() {
  return new AArch64PreLegalizerCombiner();
}
} // end namespace llvm