aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Target/AArch64/GISel/AArch64PostLegalizerLowering.cpp
blob: 7894c05218ebd952592d567aa75488ac0b8c2922 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
//=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Post-legalization lowering for instructions.
///
/// This is used to offload pattern matching from the selector.
///
/// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually
/// a G_ZIP, G_UZP, etc.
///
/// General optimization combines should be handled by either the
/// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner.
///
//===----------------------------------------------------------------------===//

#include "AArch64GlobalISelUtils.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "GISel/AArch64LegalizerInfo.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "TargetInfo/AArch64TargetInfo.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include <optional>

#define DEBUG_TYPE "aarch64-postlegalizer-lowering"

using namespace llvm;
using namespace MIPatternMatch;
using namespace AArch64GISelUtils;

/// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR.
///
/// Used for matching target-supported shuffles before codegen.
struct ShuffleVectorPseudo {
  unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1)
  Register Dst; ///< Destination register.
  SmallVector<SrcOp, 2> SrcOps; ///< Source registers.
  ShuffleVectorPseudo(unsigned Opc, Register Dst,
                      std::initializer_list<SrcOp> SrcOps)
      : Opc(Opc), Dst(Dst), SrcOps(SrcOps){};
  ShuffleVectorPseudo() = default;
};

/// Check if a vector shuffle corresponds to a REV instruction with the
/// specified blocksize.
static bool isREVMask(ArrayRef<int> M, unsigned EltSize, unsigned NumElts,
                      unsigned BlockSize) {
  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
         "Only possible block sizes for REV are: 16, 32, 64");
  assert(EltSize != 64 && "EltSize cannot be 64 for REV mask.");

  unsigned BlockElts = M[0] + 1;

  // If the first shuffle index is UNDEF, be optimistic.
  if (M[0] < 0)
    BlockElts = BlockSize / EltSize;

  if (BlockSize <= EltSize || BlockSize != BlockElts * EltSize)
    return false;

  for (unsigned i = 0; i < NumElts; ++i) {
    // Ignore undef indices.
    if (M[i] < 0)
      continue;
    if (static_cast<unsigned>(M[i]) !=
        (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
      return false;
  }

  return true;
}

/// Determines if \p M is a shuffle vector mask for a TRN of \p NumElts.
/// Whether or not G_TRN1 or G_TRN2 should be used is stored in \p WhichResult.
static bool isTRNMask(ArrayRef<int> M, unsigned NumElts,
                      unsigned &WhichResult) {
  if (NumElts % 2 != 0)
    return false;
  WhichResult = (M[0] == 0 ? 0 : 1);
  for (unsigned i = 0; i < NumElts; i += 2) {
    if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != i + WhichResult) ||
        (M[i + 1] >= 0 &&
         static_cast<unsigned>(M[i + 1]) != i + NumElts + WhichResult))
      return false;
  }
  return true;
}

/// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector
/// sources of the shuffle are different.
static std::optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M,
                                                           unsigned NumElts) {
  // Look for the first non-undef element.
  auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
  if (FirstRealElt == M.end())
    return std::nullopt;

  // Use APInt to handle overflow when calculating expected element.
  unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
  APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);

  // The following shuffle indices must be the successive elements after the
  // first real element.
  if (any_of(
          make_range(std::next(FirstRealElt), M.end()),
          [&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; }))
    return std::nullopt;

  // The index of an EXT is the first element if it is not UNDEF.
  // Watch out for the beginning UNDEFs. The EXT index should be the expected
  // value of the first element.  E.g.
  // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
  // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
  // ExpectedElt is the last mask index plus 1.
  uint64_t Imm = ExpectedElt.getZExtValue();
  bool ReverseExt = false;

  // There are two difference cases requiring to reverse input vectors.
  // For example, for vector <4 x i32> we have the following cases,
  // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
  // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
  // For both cases, we finally use mask <5, 6, 7, 0>, which requires
  // to reverse two input vectors.
  if (Imm < NumElts)
    ReverseExt = true;
  else
    Imm -= NumElts;
  return std::make_pair(ReverseExt, Imm);
}

/// Determines if \p M is a shuffle vector mask for a UZP of \p NumElts.
/// Whether or not G_UZP1 or G_UZP2 should be used is stored in \p WhichResult.
static bool isUZPMask(ArrayRef<int> M, unsigned NumElts,
                      unsigned &WhichResult) {
  WhichResult = (M[0] == 0 ? 0 : 1);
  for (unsigned i = 0; i != NumElts; ++i) {
    // Skip undef indices.
    if (M[i] < 0)
      continue;
    if (static_cast<unsigned>(M[i]) != 2 * i + WhichResult)
      return false;
  }
  return true;
}

/// \return true if \p M is a zip mask for a shuffle vector of \p NumElts.
/// Whether or not G_ZIP1 or G_ZIP2 should be used is stored in \p WhichResult.
static bool isZipMask(ArrayRef<int> M, unsigned NumElts,
                      unsigned &WhichResult) {
  if (NumElts % 2 != 0)
    return false;

  // 0 means use ZIP1, 1 means use ZIP2.
  WhichResult = (M[0] == 0 ? 0 : 1);
  unsigned Idx = WhichResult * NumElts / 2;
  for (unsigned i = 0; i != NumElts; i += 2) {
      if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != Idx) ||
          (M[i + 1] >= 0 && static_cast<unsigned>(M[i + 1]) != Idx + NumElts))
        return false;
    Idx += 1;
  }
  return true;
}

/// Helper function for matchINS.
///
/// \returns a value when \p M is an ins mask for \p NumInputElements.
///
/// First element of the returned pair is true when the produced
/// G_INSERT_VECTOR_ELT destination should be the LHS of the G_SHUFFLE_VECTOR.
///
/// Second element is the destination lane for the G_INSERT_VECTOR_ELT.
static std::optional<std::pair<bool, int>> isINSMask(ArrayRef<int> M,
                                                     int NumInputElements) {
  if (M.size() != static_cast<size_t>(NumInputElements))
    return std::nullopt;
  int NumLHSMatch = 0, NumRHSMatch = 0;
  int LastLHSMismatch = -1, LastRHSMismatch = -1;
  for (int Idx = 0; Idx < NumInputElements; ++Idx) {
    if (M[Idx] == -1) {
      ++NumLHSMatch;
      ++NumRHSMatch;
      continue;
    }
    M[Idx] == Idx ? ++NumLHSMatch : LastLHSMismatch = Idx;
    M[Idx] == Idx + NumInputElements ? ++NumRHSMatch : LastRHSMismatch = Idx;
  }
  const int NumNeededToMatch = NumInputElements - 1;
  if (NumLHSMatch == NumNeededToMatch)
    return std::make_pair(true, LastLHSMismatch);
  if (NumRHSMatch == NumNeededToMatch)
    return std::make_pair(false, LastRHSMismatch);
  return std::nullopt;
}

/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a
/// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc.
static bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI,
                     ShuffleVectorPseudo &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
  ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(Dst);
  unsigned EltSize = Ty.getScalarSizeInBits();

  // Element size for a rev cannot be 64.
  if (EltSize == 64)
    return false;

  unsigned NumElts = Ty.getNumElements();

  // Try to produce G_REV64
  if (isREVMask(ShuffleMask, EltSize, NumElts, 64)) {
    MatchInfo = ShuffleVectorPseudo(AArch64::G_REV64, Dst, {Src});
    return true;
  }

  // TODO: Produce G_REV32 and G_REV16 once we have proper legalization support.
  // This should be identical to above, but with a constant 32 and constant
  // 16.
  return false;
}

/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
/// a G_TRN1 or G_TRN2 instruction.
static bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI,
                     ShuffleVectorPseudo &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
  unsigned WhichResult;
  ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
  Register Dst = MI.getOperand(0).getReg();
  unsigned NumElts = MRI.getType(Dst).getNumElements();
  if (!isTRNMask(ShuffleMask, NumElts, WhichResult))
    return false;
  unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2;
  Register V1 = MI.getOperand(1).getReg();
  Register V2 = MI.getOperand(2).getReg();
  MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
  return true;
}

/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
/// a G_UZP1 or G_UZP2 instruction.
///
/// \param [in] MI - The shuffle vector instruction.
/// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success.
static bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI,
                     ShuffleVectorPseudo &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
  unsigned WhichResult;
  ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
  Register Dst = MI.getOperand(0).getReg();
  unsigned NumElts = MRI.getType(Dst).getNumElements();
  if (!isUZPMask(ShuffleMask, NumElts, WhichResult))
    return false;
  unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2;
  Register V1 = MI.getOperand(1).getReg();
  Register V2 = MI.getOperand(2).getReg();
  MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
  return true;
}

static bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI,
                     ShuffleVectorPseudo &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
  unsigned WhichResult;
  ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
  Register Dst = MI.getOperand(0).getReg();
  unsigned NumElts = MRI.getType(Dst).getNumElements();
  if (!isZipMask(ShuffleMask, NumElts, WhichResult))
    return false;
  unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2;
  Register V1 = MI.getOperand(1).getReg();
  Register V2 = MI.getOperand(2).getReg();
  MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
  return true;
}

/// Helper function for matchDup.
static bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI,
                                        MachineRegisterInfo &MRI,
                                        ShuffleVectorPseudo &MatchInfo) {
  if (Lane != 0)
    return false;

  // Try to match a vector splat operation into a dup instruction.
  // We're looking for this pattern:
  //
  // %scalar:gpr(s64) = COPY $x0
  // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
  // %cst0:gpr(s32) = G_CONSTANT i32 0
  // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
  // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
  // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, %zerovec(<2 x s32>)
  //
  // ...into:
  // %splat = G_DUP %scalar

  // Begin matching the insert.
  auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT,
                             MI.getOperand(1).getReg(), MRI);
  if (!InsMI)
    return false;
  // Match the undef vector operand.
  if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(),
                    MRI))
    return false;

  // Match the index constant 0.
  if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ZeroInt()))
    return false;

  MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(),
                                  {InsMI->getOperand(2).getReg()});
  return true;
}

/// Helper function for matchDup.
static bool matchDupFromBuildVector(int Lane, MachineInstr &MI,
                                    MachineRegisterInfo &MRI,
                                    ShuffleVectorPseudo &MatchInfo) {
  assert(Lane >= 0 && "Expected positive lane?");
  // Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the
  // lane's definition directly.
  auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR,
                                  MI.getOperand(1).getReg(), MRI);
  if (!BuildVecMI)
    return false;
  Register Reg = BuildVecMI->getOperand(Lane + 1).getReg();
  MatchInfo =
      ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg});
  return true;
}

static bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI,
                     ShuffleVectorPseudo &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
  auto MaybeLane = getSplatIndex(MI);
  if (!MaybeLane)
    return false;
  int Lane = *MaybeLane;
  // If this is undef splat, generate it via "just" vdup, if possible.
  if (Lane < 0)
    Lane = 0;
  if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo))
    return true;
  if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo))
    return true;
  return false;
}

// Check if an EXT instruction can handle the shuffle mask when the vector
// sources of the shuffle are the same.
static bool isSingletonExtMask(ArrayRef<int> M, LLT Ty) {
  unsigned NumElts = Ty.getNumElements();

  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
  if (M[0] < 0)
    return false;

  // If this is a VEXT shuffle, the immediate value is the index of the first
  // element.  The other shuffle indices must be the successive elements after
  // the first one.
  unsigned ExpectedElt = M[0];
  for (unsigned I = 1; I < NumElts; ++I) {
    // Increment the expected index.  If it wraps around, just follow it
    // back to index zero and keep going.
    ++ExpectedElt;
    if (ExpectedElt == NumElts)
      ExpectedElt = 0;

    if (M[I] < 0)
      continue; // Ignore UNDEF indices.
    if (ExpectedElt != static_cast<unsigned>(M[I]))
      return false;
  }

  return true;
}

static bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI,
                     ShuffleVectorPseudo &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
  Register Dst = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(Dst);
  Register V1 = MI.getOperand(1).getReg();
  Register V2 = MI.getOperand(2).getReg();
  auto Mask = MI.getOperand(3).getShuffleMask();
  uint64_t Imm;
  auto ExtInfo = getExtMask(Mask, DstTy.getNumElements());
  uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8;

  if (!ExtInfo) {
    if (!getOpcodeDef<GImplicitDef>(V2, MRI) ||
        !isSingletonExtMask(Mask, DstTy))
      return false;

    Imm = Mask[0] * ExtFactor;
    MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V1, Imm});
    return true;
  }
  bool ReverseExt;
  std::tie(ReverseExt, Imm) = *ExtInfo;
  if (ReverseExt)
    std::swap(V1, V2);
  Imm *= ExtFactor;
  MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm});
  return true;
}

/// Replace a G_SHUFFLE_VECTOR instruction with a pseudo.
/// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR.
static bool applyShuffleVectorPseudo(MachineInstr &MI,
                                     ShuffleVectorPseudo &MatchInfo) {
  MachineIRBuilder MIRBuilder(MI);
  MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps);
  MI.eraseFromParent();
  return true;
}

/// Replace a G_SHUFFLE_VECTOR instruction with G_EXT.
/// Special-cased because the constant operand must be emitted as a G_CONSTANT
/// for the imported tablegen patterns to work.
static bool applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) {
  MachineIRBuilder MIRBuilder(MI);
  // Tablegen patterns expect an i32 G_CONSTANT as the final op.
  auto Cst =
      MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm());
  MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst},
                        {MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst});
  MI.eraseFromParent();
  return true;
}

/// Match a G_SHUFFLE_VECTOR with a mask which corresponds to a
/// G_INSERT_VECTOR_ELT and G_EXTRACT_VECTOR_ELT pair.
///
/// e.g.
///   %shuf = G_SHUFFLE_VECTOR %left, %right, shufflemask(0, 0)
///
/// Can be represented as
///
///   %extract = G_EXTRACT_VECTOR_ELT %left, 0
///   %ins = G_INSERT_VECTOR_ELT %left, %extract, 1
///
static bool matchINS(MachineInstr &MI, MachineRegisterInfo &MRI,
                     std::tuple<Register, int, Register, int> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
  ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
  Register Dst = MI.getOperand(0).getReg();
  int NumElts = MRI.getType(Dst).getNumElements();
  auto DstIsLeftAndDstLane = isINSMask(ShuffleMask, NumElts);
  if (!DstIsLeftAndDstLane)
    return false;
  bool DstIsLeft;
  int DstLane;
  std::tie(DstIsLeft, DstLane) = *DstIsLeftAndDstLane;
  Register Left = MI.getOperand(1).getReg();
  Register Right = MI.getOperand(2).getReg();
  Register DstVec = DstIsLeft ? Left : Right;
  Register SrcVec = Left;

  int SrcLane = ShuffleMask[DstLane];
  if (SrcLane >= NumElts) {
    SrcVec = Right;
    SrcLane -= NumElts;
  }

  MatchInfo = std::make_tuple(DstVec, DstLane, SrcVec, SrcLane);
  return true;
}

static bool applyINS(MachineInstr &MI, MachineRegisterInfo &MRI,
                     MachineIRBuilder &Builder,
                     std::tuple<Register, int, Register, int> &MatchInfo) {
  Builder.setInstrAndDebugLoc(MI);
  Register Dst = MI.getOperand(0).getReg();
  auto ScalarTy = MRI.getType(Dst).getElementType();
  Register DstVec, SrcVec;
  int DstLane, SrcLane;
  std::tie(DstVec, DstLane, SrcVec, SrcLane) = MatchInfo;
  auto SrcCst = Builder.buildConstant(LLT::scalar(64), SrcLane);
  auto Extract = Builder.buildExtractVectorElement(ScalarTy, SrcVec, SrcCst);
  auto DstCst = Builder.buildConstant(LLT::scalar(64), DstLane);
  Builder.buildInsertVectorElement(Dst, DstVec, Extract, DstCst);
  MI.eraseFromParent();
  return true;
}

/// isVShiftRImm - Check if this is a valid vector for the immediate
/// operand of a vector shift right operation. The value must be in the range:
///   1 <= Value <= ElementBits for a right shift.
static bool isVShiftRImm(Register Reg, MachineRegisterInfo &MRI, LLT Ty,
                         int64_t &Cnt) {
  assert(Ty.isVector() && "vector shift count is not a vector type");
  MachineInstr *MI = MRI.getVRegDef(Reg);
  auto Cst = getAArch64VectorSplatScalar(*MI, MRI);
  if (!Cst)
    return false;
  Cnt = *Cst;
  int64_t ElementBits = Ty.getScalarSizeInBits();
  return Cnt >= 1 && Cnt <= ElementBits;
}

/// Match a vector G_ASHR or G_LSHR with a valid immediate shift.
static bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
                              int64_t &Imm) {
  assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
         MI.getOpcode() == TargetOpcode::G_LSHR);
  LLT Ty = MRI.getType(MI.getOperand(1).getReg());
  if (!Ty.isVector())
    return false;
  return isVShiftRImm(MI.getOperand(2).getReg(), MRI, Ty, Imm);
}

static bool applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
                              int64_t &Imm) {
  unsigned Opc = MI.getOpcode();
  assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR);
  unsigned NewOpc =
      Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR;
  MachineIRBuilder MIB(MI);
  auto ImmDef = MIB.buildConstant(LLT::scalar(32), Imm);
  MIB.buildInstr(NewOpc, {MI.getOperand(0)}, {MI.getOperand(1), ImmDef});
  MI.eraseFromParent();
  return true;
}

/// Determine if it is possible to modify the \p RHS and predicate \p P of a
/// G_ICMP instruction such that the right-hand side is an arithmetic immediate.
///
/// \returns A pair containing the updated immediate and predicate which may
/// be used to optimize the instruction.
///
/// \note This assumes that the comparison has been legalized.
std::optional<std::pair<uint64_t, CmpInst::Predicate>>
tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P,
                        const MachineRegisterInfo &MRI) {
  const auto &Ty = MRI.getType(RHS);
  if (Ty.isVector())
    return std::nullopt;
  unsigned Size = Ty.getSizeInBits();
  assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?");

  // If the RHS is not a constant, or the RHS is already a valid arithmetic
  // immediate, then there is nothing to change.
  auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS, MRI);
  if (!ValAndVReg)
    return std::nullopt;
  uint64_t C = ValAndVReg->Value.getZExtValue();
  if (isLegalArithImmed(C))
    return std::nullopt;

  // We have a non-arithmetic immediate. Check if adjusting the immediate and
  // adjusting the predicate will result in a legal arithmetic immediate.
  switch (P) {
  default:
    return std::nullopt;
  case CmpInst::ICMP_SLT:
  case CmpInst::ICMP_SGE:
    // Check for
    //
    // x slt c => x sle c - 1
    // x sge c => x sgt c - 1
    //
    // When c is not the smallest possible negative number.
    if ((Size == 64 && static_cast<int64_t>(C) == INT64_MIN) ||
        (Size == 32 && static_cast<int32_t>(C) == INT32_MIN))
      return std::nullopt;
    P = (P == CmpInst::ICMP_SLT) ? CmpInst::ICMP_SLE : CmpInst::ICMP_SGT;
    C -= 1;
    break;
  case CmpInst::ICMP_ULT:
  case CmpInst::ICMP_UGE:
    // Check for
    //
    // x ult c => x ule c - 1
    // x uge c => x ugt c - 1
    //
    // When c is not zero.
    if (C == 0)
      return std::nullopt;
    P = (P == CmpInst::ICMP_ULT) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
    C -= 1;
    break;
  case CmpInst::ICMP_SLE:
  case CmpInst::ICMP_SGT:
    // Check for
    //
    // x sle c => x slt c + 1
    // x sgt c => s sge c + 1
    //
    // When c is not the largest possible signed integer.
    if ((Size == 32 && static_cast<int32_t>(C) == INT32_MAX) ||
        (Size == 64 && static_cast<int64_t>(C) == INT64_MAX))
      return std::nullopt;
    P = (P == CmpInst::ICMP_SLE) ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGE;
    C += 1;
    break;
  case CmpInst::ICMP_ULE:
  case CmpInst::ICMP_UGT:
    // Check for
    //
    // x ule c => x ult c + 1
    // x ugt c => s uge c + 1
    //
    // When c is not the largest possible unsigned integer.
    if ((Size == 32 && static_cast<uint32_t>(C) == UINT32_MAX) ||
        (Size == 64 && C == UINT64_MAX))
      return std::nullopt;
    P = (P == CmpInst::ICMP_ULE) ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
    C += 1;
    break;
  }

  // Check if the new constant is valid, and return the updated constant and
  // predicate if it is.
  if (Size == 32)
    C = static_cast<uint32_t>(C);
  if (!isLegalArithImmed(C))
    return std::nullopt;
  return {{C, P}};
}

/// Determine whether or not it is possible to update the RHS and predicate of
/// a G_ICMP instruction such that the RHS will be selected as an arithmetic
/// immediate.
///
/// \p MI - The G_ICMP instruction
/// \p MatchInfo - The new RHS immediate and predicate on success
///
/// See tryAdjustICmpImmAndPred for valid transformations.
bool matchAdjustICmpImmAndPred(
    MachineInstr &MI, const MachineRegisterInfo &MRI,
    std::pair<uint64_t, CmpInst::Predicate> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_ICMP);
  Register RHS = MI.getOperand(3).getReg();
  auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
  if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, Pred, MRI)) {
    MatchInfo = *MaybeNewImmAndPred;
    return true;
  }
  return false;
}

bool applyAdjustICmpImmAndPred(
    MachineInstr &MI, std::pair<uint64_t, CmpInst::Predicate> &MatchInfo,
    MachineIRBuilder &MIB, GISelChangeObserver &Observer) {
  MIB.setInstrAndDebugLoc(MI);
  MachineOperand &RHS = MI.getOperand(3);
  MachineRegisterInfo &MRI = *MIB.getMRI();
  auto Cst = MIB.buildConstant(MRI.cloneVirtualRegister(RHS.getReg()),
                               MatchInfo.first);
  Observer.changingInstr(MI);
  RHS.setReg(Cst->getOperand(0).getReg());
  MI.getOperand(1).setPredicate(MatchInfo.second);
  Observer.changedInstr(MI);
  return true;
}

bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
                  std::pair<unsigned, int> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
  Register Src1Reg = MI.getOperand(1).getReg();
  const LLT SrcTy = MRI.getType(Src1Reg);
  const LLT DstTy = MRI.getType(MI.getOperand(0).getReg());

  auto LaneIdx = getSplatIndex(MI);
  if (!LaneIdx)
    return false;

  // The lane idx should be within the first source vector.
  if (*LaneIdx >= SrcTy.getNumElements())
    return false;

  if (DstTy != SrcTy)
    return false;

  LLT ScalarTy = SrcTy.getElementType();
  unsigned ScalarSize = ScalarTy.getSizeInBits();

  unsigned Opc = 0;
  switch (SrcTy.getNumElements()) {
  case 2:
    if (ScalarSize == 64)
      Opc = AArch64::G_DUPLANE64;
    else if (ScalarSize == 32)
      Opc = AArch64::G_DUPLANE32;
    break;
  case 4:
    if (ScalarSize == 32)
      Opc = AArch64::G_DUPLANE32;
    break;
  case 8:
    if (ScalarSize == 16)
      Opc = AArch64::G_DUPLANE16;
    break;
  case 16:
    if (ScalarSize == 8)
      Opc = AArch64::G_DUPLANE8;
    break;
  default:
    break;
  }
  if (!Opc)
    return false;

  MatchInfo.first = Opc;
  MatchInfo.second = *LaneIdx;
  return true;
}

bool applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
                  MachineIRBuilder &B, std::pair<unsigned, int> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
  Register Src1Reg = MI.getOperand(1).getReg();
  const LLT SrcTy = MRI.getType(Src1Reg);

  B.setInstrAndDebugLoc(MI);
  auto Lane = B.buildConstant(LLT::scalar(64), MatchInfo.second);

  Register DupSrc = MI.getOperand(1).getReg();
  // For types like <2 x s32>, we can use G_DUPLANE32, with a <4 x s32> source.
  // To do this, we can use a G_CONCAT_VECTORS to do the widening.
  if (SrcTy == LLT::fixed_vector(2, LLT::scalar(32))) {
    assert(MRI.getType(MI.getOperand(0).getReg()).getNumElements() == 2 &&
           "Unexpected dest elements");
    auto Undef = B.buildUndef(SrcTy);
    DupSrc = B.buildConcatVectors(
                  SrcTy.changeElementCount(ElementCount::getFixed(4)),
                  {Src1Reg, Undef.getReg(0)})
                 .getReg(0);
  }
  B.buildInstr(MatchInfo.first, {MI.getOperand(0).getReg()}, {DupSrc, Lane});
  MI.eraseFromParent();
  return true;
}

static bool matchBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI) {
  assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
  auto Splat = getAArch64VectorSplat(MI, MRI);
  if (!Splat)
    return false;
  if (Splat->isReg())
    return true;
  // Later, during selection, we'll try to match imported patterns using
  // immAllOnesV and immAllZerosV. These require G_BUILD_VECTOR. Don't lower
  // G_BUILD_VECTORs which could match those patterns.
  int64_t Cst = Splat->getCst();
  return (Cst != 0 && Cst != -1);
}

static bool applyBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI,
                                  MachineIRBuilder &B) {
  B.setInstrAndDebugLoc(MI);
  B.buildInstr(AArch64::G_DUP, {MI.getOperand(0).getReg()},
               {MI.getOperand(1).getReg()});
  MI.eraseFromParent();
  return true;
}

/// \returns how many instructions would be saved by folding a G_ICMP's shift
/// and/or extension operations.
static unsigned getCmpOperandFoldingProfit(Register CmpOp,
                                           const MachineRegisterInfo &MRI) {
  // No instructions to save if there's more than one use or no uses.
  if (!MRI.hasOneNonDBGUse(CmpOp))
    return 0;

  // FIXME: This is duplicated with the selector. (See: selectShiftedRegister)
  auto IsSupportedExtend = [&](const MachineInstr &MI) {
    if (MI.getOpcode() == TargetOpcode::G_SEXT_INREG)
      return true;
    if (MI.getOpcode() != TargetOpcode::G_AND)
      return false;
    auto ValAndVReg =
        getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
    if (!ValAndVReg)
      return false;
    uint64_t Mask = ValAndVReg->Value.getZExtValue();
    return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
  };

  MachineInstr *Def = getDefIgnoringCopies(CmpOp, MRI);
  if (IsSupportedExtend(*Def))
    return 1;

  unsigned Opc = Def->getOpcode();
  if (Opc != TargetOpcode::G_SHL && Opc != TargetOpcode::G_ASHR &&
      Opc != TargetOpcode::G_LSHR)
    return 0;

  auto MaybeShiftAmt =
      getIConstantVRegValWithLookThrough(Def->getOperand(2).getReg(), MRI);
  if (!MaybeShiftAmt)
    return 0;
  uint64_t ShiftAmt = MaybeShiftAmt->Value.getZExtValue();
  MachineInstr *ShiftLHS =
      getDefIgnoringCopies(Def->getOperand(1).getReg(), MRI);

  // Check if we can fold an extend and a shift.
  // FIXME: This is duplicated with the selector. (See:
  // selectArithExtendedRegister)
  if (IsSupportedExtend(*ShiftLHS))
    return (ShiftAmt <= 4) ? 2 : 1;

  LLT Ty = MRI.getType(Def->getOperand(0).getReg());
  if (Ty.isVector())
    return 0;
  unsigned ShiftSize = Ty.getSizeInBits();
  if ((ShiftSize == 32 && ShiftAmt <= 31) ||
      (ShiftSize == 64 && ShiftAmt <= 63))
    return 1;
  return 0;
}

/// \returns true if it would be profitable to swap the LHS and RHS of a G_ICMP
/// instruction \p MI.
static bool trySwapICmpOperands(MachineInstr &MI,
                                 const MachineRegisterInfo &MRI) {
  assert(MI.getOpcode() == TargetOpcode::G_ICMP);
  // Swap the operands if it would introduce a profitable folding opportunity.
  // (e.g. a shift + extend).
  //
  //  For example:
  //    lsl     w13, w11, #1
  //    cmp     w13, w12
  // can be turned into:
  //    cmp     w12, w11, lsl #1

  // Don't swap if there's a constant on the RHS, because we know we can fold
  // that.
  Register RHS = MI.getOperand(3).getReg();
  auto RHSCst = getIConstantVRegValWithLookThrough(RHS, MRI);
  if (RHSCst && isLegalArithImmed(RHSCst->Value.getSExtValue()))
    return false;

  Register LHS = MI.getOperand(2).getReg();
  auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
  auto GetRegForProfit = [&](Register Reg) {
    MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
    return isCMN(Def, Pred, MRI) ? Def->getOperand(2).getReg() : Reg;
  };

  // Don't have a constant on the RHS. If we swap the LHS and RHS of the
  // compare, would we be able to fold more instructions?
  Register TheLHS = GetRegForProfit(LHS);
  Register TheRHS = GetRegForProfit(RHS);

  // If the LHS is more likely to give us a folding opportunity, then swap the
  // LHS and RHS.
  return (getCmpOperandFoldingProfit(TheLHS, MRI) >
          getCmpOperandFoldingProfit(TheRHS, MRI));
}

static bool applySwapICmpOperands(MachineInstr &MI,
                                   GISelChangeObserver &Observer) {
  auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
  Register LHS = MI.getOperand(2).getReg();
  Register RHS = MI.getOperand(3).getReg();
  Observer.changedInstr(MI);
  MI.getOperand(1).setPredicate(CmpInst::getSwappedPredicate(Pred));
  MI.getOperand(2).setReg(RHS);
  MI.getOperand(3).setReg(LHS);
  Observer.changedInstr(MI);
  return true;
}

/// \returns a function which builds a vector floating point compare instruction
/// for a condition code \p CC.
/// \param [in] IsZero - True if the comparison is against 0.
/// \param [in] NoNans - True if the target has NoNansFPMath.
static std::function<Register(MachineIRBuilder &)>
getVectorFCMP(AArch64CC::CondCode CC, Register LHS, Register RHS, bool IsZero,
              bool NoNans, MachineRegisterInfo &MRI) {
  LLT DstTy = MRI.getType(LHS);
  assert(DstTy.isVector() && "Expected vector types only?");
  assert(DstTy == MRI.getType(RHS) && "Src and Dst types must match!");
  switch (CC) {
  default:
    llvm_unreachable("Unexpected condition code!");
  case AArch64CC::NE:
    return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
      auto FCmp = IsZero
                      ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS})
                      : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS});
      return MIB.buildNot(DstTy, FCmp).getReg(0);
    };
  case AArch64CC::EQ:
    return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
      return IsZero
                 ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS}).getReg(0)
                 : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS})
                       .getReg(0);
    };
  case AArch64CC::GE:
    return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
      return IsZero
                 ? MIB.buildInstr(AArch64::G_FCMGEZ, {DstTy}, {LHS}).getReg(0)
                 : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {LHS, RHS})
                       .getReg(0);
    };
  case AArch64CC::GT:
    return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
      return IsZero
                 ? MIB.buildInstr(AArch64::G_FCMGTZ, {DstTy}, {LHS}).getReg(0)
                 : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {LHS, RHS})
                       .getReg(0);
    };
  case AArch64CC::LS:
    return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
      return IsZero
                 ? MIB.buildInstr(AArch64::G_FCMLEZ, {DstTy}, {LHS}).getReg(0)
                 : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {RHS, LHS})
                       .getReg(0);
    };
  case AArch64CC::MI:
    return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
      return IsZero
                 ? MIB.buildInstr(AArch64::G_FCMLTZ, {DstTy}, {LHS}).getReg(0)
                 : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {RHS, LHS})
                       .getReg(0);
    };
  }
}

/// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo.
static bool lowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI,
                            MachineIRBuilder &MIB) {
  assert(MI.getOpcode() == TargetOpcode::G_FCMP);
  const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>();
  Register Dst = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(Dst);
  if (!DstTy.isVector() || !ST.hasNEON())
    return false;
  const auto Pred =
      static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
  Register LHS = MI.getOperand(2).getReg();
  // TODO: Handle v4s16 case.
  unsigned EltSize = MRI.getType(LHS).getScalarSizeInBits();
  if (EltSize != 32 && EltSize != 64)
    return false;
  Register RHS = MI.getOperand(3).getReg();
  auto Splat = getAArch64VectorSplat(*MRI.getVRegDef(RHS), MRI);

  // Compares against 0 have special target-specific pseudos.
  bool IsZero = Splat && Splat->isCst() && Splat->getCst() == 0;


  bool Invert = false;
  AArch64CC::CondCode CC, CC2 = AArch64CC::AL;
  if (Pred == CmpInst::Predicate::FCMP_ORD && IsZero) {
    // The special case "fcmp ord %a, 0" is the canonical check that LHS isn't
    // NaN, so equivalent to a == a and doesn't need the two comparisons an
    // "ord" normally would.
    RHS = LHS;
    IsZero = false;
    CC = AArch64CC::EQ;
  } else
    changeVectorFCMPPredToAArch64CC(Pred, CC, CC2, Invert);

  bool NoNans = ST.getTargetLowering()->getTargetMachine().Options.NoNaNsFPMath;

  // Instead of having an apply function, just build here to simplify things.
  MIB.setInstrAndDebugLoc(MI);
  auto Cmp = getVectorFCMP(CC, LHS, RHS, IsZero, NoNans, MRI);
  Register CmpRes;
  if (CC2 == AArch64CC::AL)
    CmpRes = Cmp(MIB);
  else {
    auto Cmp2 = getVectorFCMP(CC2, LHS, RHS, IsZero, NoNans, MRI);
    auto Cmp2Dst = Cmp2(MIB);
    auto Cmp1Dst = Cmp(MIB);
    CmpRes = MIB.buildOr(DstTy, Cmp1Dst, Cmp2Dst).getReg(0);
  }
  if (Invert)
    CmpRes = MIB.buildNot(DstTy, CmpRes).getReg(0);
  MRI.replaceRegWith(Dst, CmpRes);
  MI.eraseFromParent();
  return false;
}

static bool matchFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
                                Register &SrcReg) {
  assert(MI.getOpcode() == TargetOpcode::G_STORE);
  Register DstReg = MI.getOperand(0).getReg();
  if (MRI.getType(DstReg).isVector())
    return false;
  // Match a store of a truncate.
  if (!mi_match(DstReg, MRI, m_GTrunc(m_Reg(SrcReg))))
    return false;
  // Only form truncstores for value types of max 64b.
  return MRI.getType(SrcReg).getSizeInBits() <= 64;
}

static bool applyFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
                                MachineIRBuilder &B,
                                GISelChangeObserver &Observer,
                                Register &SrcReg) {
  assert(MI.getOpcode() == TargetOpcode::G_STORE);
  Observer.changingInstr(MI);
  MI.getOperand(0).setReg(SrcReg);
  Observer.changedInstr(MI);
  return true;
}

// Lower vector G_SEXT_INREG back to shifts for selection. We allowed them to
// form in the first place for combine opportunities, so any remaining ones
// at this stage need be lowered back.
static bool matchVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI) {
  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
  Register DstReg = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(DstReg);
  return DstTy.isVector();
}

static void applyVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI,
                                 MachineIRBuilder &B,
                                 GISelChangeObserver &Observer) {
  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
  B.setInstrAndDebugLoc(MI);
  LegalizerHelper Helper(*MI.getMF(), Observer, B);
  Helper.lower(MI, 0, /* Unused hint type */ LLT());
}

#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS
#include "AArch64GenPostLegalizeGILowering.inc"
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS

namespace {
#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H
#include "AArch64GenPostLegalizeGILowering.inc"
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H

class AArch64PostLegalizerLoweringInfo : public CombinerInfo {
public:
  AArch64GenPostLegalizerLoweringHelperRuleConfig GeneratedRuleCfg;

  AArch64PostLegalizerLoweringInfo(bool OptSize, bool MinSize)
      : CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
                     /*LegalizerInfo*/ nullptr, /*OptEnabled = */ true, OptSize,
                     MinSize) {
    if (!GeneratedRuleCfg.parseCommandLineOption())
      report_fatal_error("Invalid rule identifier");
  }

  bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
               MachineIRBuilder &B) const override;
};

bool AArch64PostLegalizerLoweringInfo::combine(GISelChangeObserver &Observer,
                                               MachineInstr &MI,
                                               MachineIRBuilder &B) const {
  CombinerHelper Helper(Observer, B, /* IsPreLegalize*/ false);
  AArch64GenPostLegalizerLoweringHelper Generated(GeneratedRuleCfg);
  return Generated.tryCombineAll(Observer, MI, B, Helper);
}

#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP
#include "AArch64GenPostLegalizeGILowering.inc"
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP

class AArch64PostLegalizerLowering : public MachineFunctionPass {
public:
  static char ID;

  AArch64PostLegalizerLowering();

  StringRef getPassName() const override {
    return "AArch64PostLegalizerLowering";
  }

  bool runOnMachineFunction(MachineFunction &MF) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;
};
} // end anonymous namespace

void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<TargetPassConfig>();
  AU.setPreservesCFG();
  getSelectionDAGFallbackAnalysisUsage(AU);
  MachineFunctionPass::getAnalysisUsage(AU);
}

AArch64PostLegalizerLowering::AArch64PostLegalizerLowering()
    : MachineFunctionPass(ID) {
  initializeAArch64PostLegalizerLoweringPass(*PassRegistry::getPassRegistry());
}

bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) {
  if (MF.getProperties().hasProperty(
          MachineFunctionProperties::Property::FailedISel))
    return false;
  assert(MF.getProperties().hasProperty(
             MachineFunctionProperties::Property::Legalized) &&
         "Expected a legalized function?");
  auto *TPC = &getAnalysis<TargetPassConfig>();
  const Function &F = MF.getFunction();
  AArch64PostLegalizerLoweringInfo PCInfo(F.hasOptSize(), F.hasMinSize());
  Combiner C(PCInfo, TPC);
  return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr);
}

char AArch64PostLegalizerLowering::ID = 0;
INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE,
                      "Lower AArch64 MachineInstrs after legalization", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE,
                    "Lower AArch64 MachineInstrs after legalization", false,
                    false)

namespace llvm {
FunctionPass *createAArch64PostLegalizerLowering() {
  return new AArch64PostLegalizerLowering();
}
} // end namespace llvm