1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
//===- AArch64GlobalISelUtils.cpp --------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file Implementations of AArch64-specific helper functions used in the
/// GlobalISel pipeline.
//===----------------------------------------------------------------------===//
#include "AArch64GlobalISelUtils.h"
#include "AArch64InstrInfo.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
std::optional<RegOrConstant>
AArch64GISelUtils::getAArch64VectorSplat(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
if (auto Splat = getVectorSplat(MI, MRI))
return Splat;
if (MI.getOpcode() != AArch64::G_DUP)
return std::nullopt;
Register Src = MI.getOperand(1).getReg();
if (auto ValAndVReg =
getAnyConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI))
return RegOrConstant(ValAndVReg->Value.getSExtValue());
return RegOrConstant(Src);
}
std::optional<int64_t>
AArch64GISelUtils::getAArch64VectorSplatScalar(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
auto Splat = getAArch64VectorSplat(MI, MRI);
if (!Splat || Splat->isReg())
return std::nullopt;
return Splat->getCst();
}
bool AArch64GISelUtils::isCMN(const MachineInstr *MaybeSub,
const CmpInst::Predicate &Pred,
const MachineRegisterInfo &MRI) {
// Match:
//
// %sub = G_SUB 0, %y
// %cmp = G_ICMP eq/ne, %sub, %z
//
// Or
//
// %sub = G_SUB 0, %y
// %cmp = G_ICMP eq/ne, %z, %sub
if (!MaybeSub || MaybeSub->getOpcode() != TargetOpcode::G_SUB ||
!CmpInst::isEquality(Pred))
return false;
auto MaybeZero =
getIConstantVRegValWithLookThrough(MaybeSub->getOperand(1).getReg(), MRI);
return MaybeZero && MaybeZero->Value.getZExtValue() == 0;
}
bool AArch64GISelUtils::tryEmitBZero(MachineInstr &MI,
MachineIRBuilder &MIRBuilder,
bool MinSize) {
assert(MI.getOpcode() == TargetOpcode::G_MEMSET);
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
if (!TLI.getLibcallName(RTLIB::BZERO))
return false;
auto Zero =
getIConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI);
if (!Zero || Zero->Value.getSExtValue() != 0)
return false;
// It's not faster to use bzero rather than memset for sizes <= 256.
// However, it *does* save us a mov from wzr, so if we're going for
// minsize, use bzero even if it's slower.
if (!MinSize) {
// If the size is known, check it. If it is not known, assume using bzero is
// better.
if (auto Size = getIConstantVRegValWithLookThrough(
MI.getOperand(2).getReg(), MRI)) {
if (Size->Value.getSExtValue() <= 256)
return false;
}
}
MIRBuilder.setInstrAndDebugLoc(MI);
MIRBuilder
.buildInstr(TargetOpcode::G_BZERO, {},
{MI.getOperand(0), MI.getOperand(2)})
.addImm(MI.getOperand(3).getImm())
.addMemOperand(*MI.memoperands_begin());
MI.eraseFromParent();
return true;
}
void AArch64GISelUtils::changeFCMPPredToAArch64CC(
const CmpInst::Predicate P, AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2) {
CondCode2 = AArch64CC::AL;
switch (P) {
default:
llvm_unreachable("Unknown FP condition!");
case CmpInst::FCMP_OEQ:
CondCode = AArch64CC::EQ;
break;
case CmpInst::FCMP_OGT:
CondCode = AArch64CC::GT;
break;
case CmpInst::FCMP_OGE:
CondCode = AArch64CC::GE;
break;
case CmpInst::FCMP_OLT:
CondCode = AArch64CC::MI;
break;
case CmpInst::FCMP_OLE:
CondCode = AArch64CC::LS;
break;
case CmpInst::FCMP_ONE:
CondCode = AArch64CC::MI;
CondCode2 = AArch64CC::GT;
break;
case CmpInst::FCMP_ORD:
CondCode = AArch64CC::VC;
break;
case CmpInst::FCMP_UNO:
CondCode = AArch64CC::VS;
break;
case CmpInst::FCMP_UEQ:
CondCode = AArch64CC::EQ;
CondCode2 = AArch64CC::VS;
break;
case CmpInst::FCMP_UGT:
CondCode = AArch64CC::HI;
break;
case CmpInst::FCMP_UGE:
CondCode = AArch64CC::PL;
break;
case CmpInst::FCMP_ULT:
CondCode = AArch64CC::LT;
break;
case CmpInst::FCMP_ULE:
CondCode = AArch64CC::LE;
break;
case CmpInst::FCMP_UNE:
CondCode = AArch64CC::NE;
break;
}
}
void AArch64GISelUtils::changeVectorFCMPPredToAArch64CC(
const CmpInst::Predicate P, AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2, bool &Invert) {
Invert = false;
switch (P) {
default:
// Mostly the scalar mappings work fine.
changeFCMPPredToAArch64CC(P, CondCode, CondCode2);
break;
case CmpInst::FCMP_UNO:
Invert = true;
[[fallthrough]];
case CmpInst::FCMP_ORD:
CondCode = AArch64CC::MI;
CondCode2 = AArch64CC::GE;
break;
case CmpInst::FCMP_UEQ:
case CmpInst::FCMP_ULT:
case CmpInst::FCMP_ULE:
case CmpInst::FCMP_UGT:
case CmpInst::FCMP_UGE:
// All of the compare-mask comparisons are ordered, but we can switch
// between the two by a double inversion. E.g. ULE == !OGT.
Invert = true;
changeFCMPPredToAArch64CC(CmpInst::getInversePredicate(P), CondCode,
CondCode2);
break;
}
}
|