1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
|
//===- AArch64MIPeepholeOpt.cpp - AArch64 MI peephole optimization pass ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs below peephole optimizations on MIR level.
//
// 1. MOVi32imm + ANDWrr ==> ANDWri + ANDWri
// MOVi64imm + ANDXrr ==> ANDXri + ANDXri
//
// 2. MOVi32imm + ADDWrr ==> ADDWRi + ADDWRi
// MOVi64imm + ADDXrr ==> ANDXri + ANDXri
//
// 3. MOVi32imm + SUBWrr ==> SUBWRi + SUBWRi
// MOVi64imm + SUBXrr ==> SUBXri + SUBXri
//
// The mov pseudo instruction could be expanded to multiple mov instructions
// later. In this case, we could try to split the constant operand of mov
// instruction into two immediates which can be directly encoded into
// *Wri/*Xri instructions. It makes two AND/ADD/SUB instructions instead of
// multiple `mov` + `and/add/sub` instructions.
//
// 4. Remove redundant ORRWrs which is generated by zero-extend.
//
// %3:gpr32 = ORRWrs $wzr, %2, 0
// %4:gpr64 = SUBREG_TO_REG 0, %3, %subreg.sub_32
//
// If AArch64's 32-bit form of instruction defines the source operand of
// ORRWrs, we can remove the ORRWrs because the upper 32 bits of the source
// operand are set to zero.
//
// 5. %reg = INSERT_SUBREG %reg(tied-def 0), %subreg, subidx
// ==> %reg:subidx = SUBREG_TO_REG 0, %subreg, subidx
//
//===----------------------------------------------------------------------===//
#include "AArch64ExpandImm.h"
#include "AArch64InstrInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-mi-peephole-opt"
namespace {
struct AArch64MIPeepholeOpt : public MachineFunctionPass {
static char ID;
AArch64MIPeepholeOpt() : MachineFunctionPass(ID) {
initializeAArch64MIPeepholeOptPass(*PassRegistry::getPassRegistry());
}
const AArch64InstrInfo *TII;
const AArch64RegisterInfo *TRI;
MachineLoopInfo *MLI;
MachineRegisterInfo *MRI;
using OpcodePair = std::pair<unsigned, unsigned>;
template <typename T>
using SplitAndOpcFunc =
std::function<std::optional<OpcodePair>(T, unsigned, T &, T &)>;
using BuildMIFunc =
std::function<void(MachineInstr &, OpcodePair, unsigned, unsigned,
Register, Register, Register)>;
/// For instructions where an immediate operand could be split into two
/// separate immediate instructions, use the splitTwoPartImm two handle the
/// optimization.
///
/// To implement, the following function types must be passed to
/// splitTwoPartImm. A SplitAndOpcFunc must be implemented that determines if
/// splitting the immediate is valid and returns the associated new opcode. A
/// BuildMIFunc must be implemented to build the two immediate instructions.
///
/// Example Pattern (where IMM would require 2+ MOV instructions):
/// %dst = <Instr>rr %src IMM [...]
/// becomes:
/// %tmp = <Instr>ri %src (encode half IMM) [...]
/// %dst = <Instr>ri %tmp (encode half IMM) [...]
template <typename T>
bool splitTwoPartImm(MachineInstr &MI,
SplitAndOpcFunc<T> SplitAndOpc, BuildMIFunc BuildInstr);
bool checkMovImmInstr(MachineInstr &MI, MachineInstr *&MovMI,
MachineInstr *&SubregToRegMI);
template <typename T>
bool visitADDSUB(unsigned PosOpc, unsigned NegOpc, MachineInstr &MI);
template <typename T>
bool visitADDSSUBS(OpcodePair PosOpcs, OpcodePair NegOpcs, MachineInstr &MI);
template <typename T>
bool visitAND(unsigned Opc, MachineInstr &MI);
bool visitORR(MachineInstr &MI);
bool visitINSERT(MachineInstr &MI);
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "AArch64 MI Peephole Optimization pass";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
char AArch64MIPeepholeOpt::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS(AArch64MIPeepholeOpt, "aarch64-mi-peephole-opt",
"AArch64 MI Peephole Optimization", false, false)
template <typename T>
static bool splitBitmaskImm(T Imm, unsigned RegSize, T &Imm1Enc, T &Imm2Enc) {
T UImm = static_cast<T>(Imm);
if (AArch64_AM::isLogicalImmediate(UImm, RegSize))
return false;
// If this immediate can be handled by one instruction, do not split it.
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
AArch64_IMM::expandMOVImm(UImm, RegSize, Insn);
if (Insn.size() == 1)
return false;
// The bitmask immediate consists of consecutive ones. Let's say there is
// constant 0b00000000001000000000010000000000 which does not consist of
// consecutive ones. We can split it in to two bitmask immediate like
// 0b00000000001111111111110000000000 and 0b11111111111000000000011111111111.
// If we do AND with these two bitmask immediate, we can see original one.
unsigned LowestBitSet = countTrailingZeros(UImm);
unsigned HighestBitSet = Log2_64(UImm);
// Create a mask which is filled with one from the position of lowest bit set
// to the position of highest bit set.
T NewImm1 = (static_cast<T>(2) << HighestBitSet) -
(static_cast<T>(1) << LowestBitSet);
// Create a mask which is filled with one outside the position of lowest bit
// set and the position of highest bit set.
T NewImm2 = UImm | ~NewImm1;
// If the split value is not valid bitmask immediate, do not split this
// constant.
if (!AArch64_AM::isLogicalImmediate(NewImm2, RegSize))
return false;
Imm1Enc = AArch64_AM::encodeLogicalImmediate(NewImm1, RegSize);
Imm2Enc = AArch64_AM::encodeLogicalImmediate(NewImm2, RegSize);
return true;
}
template <typename T>
bool AArch64MIPeepholeOpt::visitAND(
unsigned Opc, MachineInstr &MI) {
// Try below transformation.
//
// MOVi32imm + ANDWrr ==> ANDWri + ANDWri
// MOVi64imm + ANDXrr ==> ANDXri + ANDXri
//
// The mov pseudo instruction could be expanded to multiple mov instructions
// later. Let's try to split the constant operand of mov instruction into two
// bitmask immediates. It makes only two AND instructions intead of multiple
// mov + and instructions.
return splitTwoPartImm<T>(
MI,
[Opc](T Imm, unsigned RegSize, T &Imm0,
T &Imm1) -> std::optional<OpcodePair> {
if (splitBitmaskImm(Imm, RegSize, Imm0, Imm1))
return std::make_pair(Opc, Opc);
return std::nullopt;
},
[&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0,
unsigned Imm1, Register SrcReg, Register NewTmpReg,
Register NewDstReg) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
BuildMI(*MBB, MI, DL, TII->get(Opcode.first), NewTmpReg)
.addReg(SrcReg)
.addImm(Imm0);
BuildMI(*MBB, MI, DL, TII->get(Opcode.second), NewDstReg)
.addReg(NewTmpReg)
.addImm(Imm1);
});
}
bool AArch64MIPeepholeOpt::visitORR(MachineInstr &MI) {
// Check this ORR comes from below zero-extend pattern.
//
// def : Pat<(i64 (zext GPR32:$src)),
// (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
if (MI.getOperand(3).getImm() != 0)
return false;
if (MI.getOperand(1).getReg() != AArch64::WZR)
return false;
MachineInstr *SrcMI = MRI->getUniqueVRegDef(MI.getOperand(2).getReg());
if (!SrcMI)
return false;
// From https://developer.arm.com/documentation/dui0801/b/BABBGCAC
//
// When you use the 32-bit form of an instruction, the upper 32 bits of the
// source registers are ignored and the upper 32 bits of the destination
// register are set to zero.
//
// If AArch64's 32-bit form of instruction defines the source operand of
// zero-extend, we do not need the zero-extend. Let's check the MI's opcode is
// real AArch64 instruction and if it is not, do not process the opcode
// conservatively.
if (SrcMI->getOpcode() == TargetOpcode::COPY &&
SrcMI->getOperand(1).getReg().isVirtual()) {
const TargetRegisterClass *RC =
MRI->getRegClass(SrcMI->getOperand(1).getReg());
// A COPY from an FPR will become a FMOVSWr, so do so now so that we know
// that the upper bits are zero.
if (RC != &AArch64::FPR32RegClass &&
((RC != &AArch64::FPR64RegClass && RC != &AArch64::FPR128RegClass) ||
SrcMI->getOperand(1).getSubReg() != AArch64::ssub))
return false;
Register CpySrc = SrcMI->getOperand(1).getReg();
if (SrcMI->getOperand(1).getSubReg() == AArch64::ssub) {
CpySrc = MRI->createVirtualRegister(&AArch64::FPR32RegClass);
BuildMI(*SrcMI->getParent(), SrcMI, SrcMI->getDebugLoc(),
TII->get(TargetOpcode::COPY), CpySrc)
.add(SrcMI->getOperand(1));
}
BuildMI(*SrcMI->getParent(), SrcMI, SrcMI->getDebugLoc(),
TII->get(AArch64::FMOVSWr), SrcMI->getOperand(0).getReg())
.addReg(CpySrc);
SrcMI->eraseFromParent();
}
else if (SrcMI->getOpcode() <= TargetOpcode::GENERIC_OP_END)
return false;
Register DefReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(2).getReg();
MRI->replaceRegWith(DefReg, SrcReg);
MRI->clearKillFlags(SrcReg);
LLVM_DEBUG(dbgs() << "Removed: " << MI << "\n");
MI.eraseFromParent();
return true;
}
bool AArch64MIPeepholeOpt::visitINSERT(MachineInstr &MI) {
// Check this INSERT_SUBREG comes from below zero-extend pattern.
//
// From %reg = INSERT_SUBREG %reg(tied-def 0), %subreg, subidx
// To %reg:subidx = SUBREG_TO_REG 0, %subreg, subidx
//
// We're assuming the first operand to INSERT_SUBREG is irrelevant because a
// COPY would destroy the upper part of the register anyway
if (!MI.isRegTiedToDefOperand(1))
return false;
Register DstReg = MI.getOperand(0).getReg();
const TargetRegisterClass *RC = MRI->getRegClass(DstReg);
MachineInstr *SrcMI = MRI->getUniqueVRegDef(MI.getOperand(2).getReg());
if (!SrcMI)
return false;
// From https://developer.arm.com/documentation/dui0801/b/BABBGCAC
//
// When you use the 32-bit form of an instruction, the upper 32 bits of the
// source registers are ignored and the upper 32 bits of the destination
// register are set to zero.
//
// If AArch64's 32-bit form of instruction defines the source operand of
// zero-extend, we do not need the zero-extend. Let's check the MI's opcode is
// real AArch64 instruction and if it is not, do not process the opcode
// conservatively.
if ((SrcMI->getOpcode() <= TargetOpcode::GENERIC_OP_END) ||
!AArch64::GPR64allRegClass.hasSubClassEq(RC))
return false;
// Build a SUBREG_TO_REG instruction
MachineInstr *SubregMI =
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
TII->get(TargetOpcode::SUBREG_TO_REG), DstReg)
.addImm(0)
.add(MI.getOperand(2))
.add(MI.getOperand(3));
LLVM_DEBUG(dbgs() << MI << " replace by:\n: " << *SubregMI << "\n");
(void)SubregMI;
MI.eraseFromParent();
return true;
}
template <typename T>
static bool splitAddSubImm(T Imm, unsigned RegSize, T &Imm0, T &Imm1) {
// The immediate must be in the form of ((imm0 << 12) + imm1), in which both
// imm0 and imm1 are non-zero 12-bit unsigned int.
if ((Imm & 0xfff000) == 0 || (Imm & 0xfff) == 0 ||
(Imm & ~static_cast<T>(0xffffff)) != 0)
return false;
// The immediate can not be composed via a single instruction.
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
AArch64_IMM::expandMOVImm(Imm, RegSize, Insn);
if (Insn.size() == 1)
return false;
// Split Imm into (Imm0 << 12) + Imm1;
Imm0 = (Imm >> 12) & 0xfff;
Imm1 = Imm & 0xfff;
return true;
}
template <typename T>
bool AArch64MIPeepholeOpt::visitADDSUB(
unsigned PosOpc, unsigned NegOpc, MachineInstr &MI) {
// Try below transformation.
//
// MOVi32imm + ADDWrr ==> ADDWri + ADDWri
// MOVi64imm + ADDXrr ==> ADDXri + ADDXri
//
// MOVi32imm + SUBWrr ==> SUBWri + SUBWri
// MOVi64imm + SUBXrr ==> SUBXri + SUBXri
//
// The mov pseudo instruction could be expanded to multiple mov instructions
// later. Let's try to split the constant operand of mov instruction into two
// legal add/sub immediates. It makes only two ADD/SUB instructions intead of
// multiple `mov` + `and/sub` instructions.
return splitTwoPartImm<T>(
MI,
[PosOpc, NegOpc](T Imm, unsigned RegSize, T &Imm0,
T &Imm1) -> std::optional<OpcodePair> {
if (splitAddSubImm(Imm, RegSize, Imm0, Imm1))
return std::make_pair(PosOpc, PosOpc);
if (splitAddSubImm(-Imm, RegSize, Imm0, Imm1))
return std::make_pair(NegOpc, NegOpc);
return std::nullopt;
},
[&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0,
unsigned Imm1, Register SrcReg, Register NewTmpReg,
Register NewDstReg) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
BuildMI(*MBB, MI, DL, TII->get(Opcode.first), NewTmpReg)
.addReg(SrcReg)
.addImm(Imm0)
.addImm(12);
BuildMI(*MBB, MI, DL, TII->get(Opcode.second), NewDstReg)
.addReg(NewTmpReg)
.addImm(Imm1)
.addImm(0);
});
}
template <typename T>
bool AArch64MIPeepholeOpt::visitADDSSUBS(
OpcodePair PosOpcs, OpcodePair NegOpcs, MachineInstr &MI) {
// Try the same transformation as ADDSUB but with additional requirement
// that the condition code usages are only for Equal and Not Equal
return splitTwoPartImm<T>(
MI,
[PosOpcs, NegOpcs, &MI, &TRI = TRI,
&MRI = MRI](T Imm, unsigned RegSize, T &Imm0,
T &Imm1) -> std::optional<OpcodePair> {
OpcodePair OP;
if (splitAddSubImm(Imm, RegSize, Imm0, Imm1))
OP = PosOpcs;
else if (splitAddSubImm(-Imm, RegSize, Imm0, Imm1))
OP = NegOpcs;
else
return std::nullopt;
// Check conditional uses last since it is expensive for scanning
// proceeding instructions
MachineInstr &SrcMI = *MRI->getUniqueVRegDef(MI.getOperand(1).getReg());
std::optional<UsedNZCV> NZCVUsed = examineCFlagsUse(SrcMI, MI, *TRI);
if (!NZCVUsed || NZCVUsed->C || NZCVUsed->V)
return std::nullopt;
return OP;
},
[&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0,
unsigned Imm1, Register SrcReg, Register NewTmpReg,
Register NewDstReg) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
BuildMI(*MBB, MI, DL, TII->get(Opcode.first), NewTmpReg)
.addReg(SrcReg)
.addImm(Imm0)
.addImm(12);
BuildMI(*MBB, MI, DL, TII->get(Opcode.second), NewDstReg)
.addReg(NewTmpReg)
.addImm(Imm1)
.addImm(0);
});
}
// Checks if the corresponding MOV immediate instruction is applicable for
// this peephole optimization.
bool AArch64MIPeepholeOpt::checkMovImmInstr(MachineInstr &MI,
MachineInstr *&MovMI,
MachineInstr *&SubregToRegMI) {
// Check whether current MBB is in loop and the AND is loop invariant.
MachineBasicBlock *MBB = MI.getParent();
MachineLoop *L = MLI->getLoopFor(MBB);
if (L && !L->isLoopInvariant(MI))
return false;
// Check whether current MI's operand is MOV with immediate.
MovMI = MRI->getUniqueVRegDef(MI.getOperand(2).getReg());
if (!MovMI)
return false;
// If it is SUBREG_TO_REG, check its operand.
SubregToRegMI = nullptr;
if (MovMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) {
SubregToRegMI = MovMI;
MovMI = MRI->getUniqueVRegDef(MovMI->getOperand(2).getReg());
if (!MovMI)
return false;
}
if (MovMI->getOpcode() != AArch64::MOVi32imm &&
MovMI->getOpcode() != AArch64::MOVi64imm)
return false;
// If the MOV has multiple uses, do not split the immediate because it causes
// more instructions.
if (!MRI->hasOneUse(MovMI->getOperand(0).getReg()))
return false;
if (SubregToRegMI && !MRI->hasOneUse(SubregToRegMI->getOperand(0).getReg()))
return false;
// It is OK to perform this peephole optimization.
return true;
}
template <typename T>
bool AArch64MIPeepholeOpt::splitTwoPartImm(
MachineInstr &MI,
SplitAndOpcFunc<T> SplitAndOpc, BuildMIFunc BuildInstr) {
unsigned RegSize = sizeof(T) * 8;
assert((RegSize == 32 || RegSize == 64) &&
"Invalid RegSize for legal immediate peephole optimization");
// Perform several essential checks against current MI.
MachineInstr *MovMI, *SubregToRegMI;
if (!checkMovImmInstr(MI, MovMI, SubregToRegMI))
return false;
// Split the immediate to Imm0 and Imm1, and calculate the Opcode.
T Imm = static_cast<T>(MovMI->getOperand(1).getImm()), Imm0, Imm1;
// For the 32 bit form of instruction, the upper 32 bits of the destination
// register are set to zero. If there is SUBREG_TO_REG, set the upper 32 bits
// of Imm to zero. This is essential if the Immediate value was a negative
// number since it was sign extended when we assign to the 64-bit Imm.
if (SubregToRegMI)
Imm &= 0xFFFFFFFF;
OpcodePair Opcode;
if (auto R = SplitAndOpc(Imm, RegSize, Imm0, Imm1))
Opcode = *R;
else
return false;
// Create new MIs using the first and second opcodes. Opcodes might differ for
// flag setting operations that should only set flags on second instruction.
// NewTmpReg = Opcode.first SrcReg Imm0
// NewDstReg = Opcode.second NewTmpReg Imm1
// Determine register classes for destinations and register operands
MachineFunction *MF = MI.getMF();
const TargetRegisterClass *FirstInstrDstRC =
TII->getRegClass(TII->get(Opcode.first), 0, TRI, *MF);
const TargetRegisterClass *FirstInstrOperandRC =
TII->getRegClass(TII->get(Opcode.first), 1, TRI, *MF);
const TargetRegisterClass *SecondInstrDstRC =
(Opcode.first == Opcode.second)
? FirstInstrDstRC
: TII->getRegClass(TII->get(Opcode.second), 0, TRI, *MF);
const TargetRegisterClass *SecondInstrOperandRC =
(Opcode.first == Opcode.second)
? FirstInstrOperandRC
: TII->getRegClass(TII->get(Opcode.second), 1, TRI, *MF);
// Get old registers destinations and new register destinations
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
Register NewTmpReg = MRI->createVirtualRegister(FirstInstrDstRC);
// In the situation that DstReg is not Virtual (likely WZR or XZR), we want to
// reuse that same destination register.
Register NewDstReg = DstReg.isVirtual()
? MRI->createVirtualRegister(SecondInstrDstRC)
: DstReg;
// Constrain registers based on their new uses
MRI->constrainRegClass(SrcReg, FirstInstrOperandRC);
MRI->constrainRegClass(NewTmpReg, SecondInstrOperandRC);
if (DstReg != NewDstReg)
MRI->constrainRegClass(NewDstReg, MRI->getRegClass(DstReg));
// Call the delegating operation to build the instruction
BuildInstr(MI, Opcode, Imm0, Imm1, SrcReg, NewTmpReg, NewDstReg);
// replaceRegWith changes MI's definition register. Keep it for SSA form until
// deleting MI. Only if we made a new destination register.
if (DstReg != NewDstReg) {
MRI->replaceRegWith(DstReg, NewDstReg);
MI.getOperand(0).setReg(DstReg);
}
// Record the MIs need to be removed.
MI.eraseFromParent();
if (SubregToRegMI)
SubregToRegMI->eraseFromParent();
MovMI->eraseFromParent();
return true;
}
bool AArch64MIPeepholeOpt::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
TRI = static_cast<const AArch64RegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
MLI = &getAnalysis<MachineLoopInfo>();
MRI = &MF.getRegInfo();
assert(MRI->isSSA() && "Expected to be run on SSA form!");
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : make_early_inc_range(MBB)) {
switch (MI.getOpcode()) {
default:
break;
case AArch64::INSERT_SUBREG:
Changed = visitINSERT(MI);
break;
case AArch64::ANDWrr:
Changed = visitAND<uint32_t>(AArch64::ANDWri, MI);
break;
case AArch64::ANDXrr:
Changed = visitAND<uint64_t>(AArch64::ANDXri, MI);
break;
case AArch64::ORRWrs:
Changed = visitORR(MI);
break;
case AArch64::ADDWrr:
Changed = visitADDSUB<uint32_t>(AArch64::ADDWri, AArch64::SUBWri, MI);
break;
case AArch64::SUBWrr:
Changed = visitADDSUB<uint32_t>(AArch64::SUBWri, AArch64::ADDWri, MI);
break;
case AArch64::ADDXrr:
Changed = visitADDSUB<uint64_t>(AArch64::ADDXri, AArch64::SUBXri, MI);
break;
case AArch64::SUBXrr:
Changed = visitADDSUB<uint64_t>(AArch64::SUBXri, AArch64::ADDXri, MI);
break;
case AArch64::ADDSWrr:
Changed = visitADDSSUBS<uint32_t>({AArch64::ADDWri, AArch64::ADDSWri},
{AArch64::SUBWri, AArch64::SUBSWri},
MI);
break;
case AArch64::SUBSWrr:
Changed = visitADDSSUBS<uint32_t>({AArch64::SUBWri, AArch64::SUBSWri},
{AArch64::ADDWri, AArch64::ADDSWri},
MI);
break;
case AArch64::ADDSXrr:
Changed = visitADDSSUBS<uint64_t>({AArch64::ADDXri, AArch64::ADDSXri},
{AArch64::SUBXri, AArch64::SUBSXri},
MI);
break;
case AArch64::SUBSXrr:
Changed = visitADDSSUBS<uint64_t>({AArch64::SUBXri, AArch64::SUBSXri},
{AArch64::ADDXri, AArch64::ADDSXri},
MI);
break;
}
}
}
return Changed;
}
FunctionPass *llvm::createAArch64MIPeepholeOptPass() {
return new AArch64MIPeepholeOpt();
}
|