aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/ProfileData/ProfileSummaryBuilder.cpp
blob: 8e07478fb083b7ab2037352f2a2cc5c21b17c8e2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//=-- ProfilesummaryBuilder.cpp - Profile summary computation ---------------=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for computing profile summary data.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/CommandLine.h"

using namespace llvm;

namespace llvm {
cl::opt<bool> UseContextLessSummary(
    "profile-summary-contextless", cl::Hidden,
    cl::desc("Merge context profiles before calculating thresholds."));

// The following two parameters determine the threshold for a count to be
// considered hot/cold. These two parameters are percentile values (multiplied
// by 10000). If the counts are sorted in descending order, the minimum count to
// reach ProfileSummaryCutoffHot gives the threshold to determine a hot count.
// Similarly, the minimum count to reach ProfileSummaryCutoffCold gives the
// threshold for determining cold count (everything <= this threshold is
// considered cold).
cl::opt<int> ProfileSummaryCutoffHot(
    "profile-summary-cutoff-hot", cl::Hidden, cl::init(990000),
    cl::desc("A count is hot if it exceeds the minimum count to"
             " reach this percentile of total counts."));

cl::opt<int> ProfileSummaryCutoffCold(
    "profile-summary-cutoff-cold", cl::Hidden, cl::init(999999),
    cl::desc("A count is cold if it is below the minimum count"
             " to reach this percentile of total counts."));

cl::opt<unsigned> ProfileSummaryHugeWorkingSetSizeThreshold(
    "profile-summary-huge-working-set-size-threshold", cl::Hidden,
    cl::init(15000),
    cl::desc("The code working set size is considered huge if the number of"
             " blocks required to reach the -profile-summary-cutoff-hot"
             " percentile exceeds this count."));

cl::opt<unsigned> ProfileSummaryLargeWorkingSetSizeThreshold(
    "profile-summary-large-working-set-size-threshold", cl::Hidden,
    cl::init(12500),
    cl::desc("The code working set size is considered large if the number of"
             " blocks required to reach the -profile-summary-cutoff-hot"
             " percentile exceeds this count."));

// The next two options override the counts derived from summary computation and
// are useful for debugging purposes.
cl::opt<uint64_t> ProfileSummaryHotCount(
    "profile-summary-hot-count", cl::ReallyHidden,
    cl::desc("A fixed hot count that overrides the count derived from"
             " profile-summary-cutoff-hot"));

cl::opt<uint64_t> ProfileSummaryColdCount(
    "profile-summary-cold-count", cl::ReallyHidden,
    cl::desc("A fixed cold count that overrides the count derived from"
             " profile-summary-cutoff-cold"));
} // namespace llvm

// A set of cutoff values. Each value, when divided by ProfileSummary::Scale
// (which is 1000000) is a desired percentile of total counts.
static const uint32_t DefaultCutoffsData[] = {
    10000,  /*  1% */
    100000, /* 10% */
    200000, 300000, 400000, 500000, 600000, 700000, 800000,
    900000, 950000, 990000, 999000, 999900, 999990, 999999};
const ArrayRef<uint32_t> ProfileSummaryBuilder::DefaultCutoffs =
    DefaultCutoffsData;

const ProfileSummaryEntry &
ProfileSummaryBuilder::getEntryForPercentile(const SummaryEntryVector &DS,
                                             uint64_t Percentile) {
  auto It = partition_point(DS, [=](const ProfileSummaryEntry &Entry) {
    return Entry.Cutoff < Percentile;
  });
  // The required percentile has to be <= one of the percentiles in the
  // detailed summary.
  if (It == DS.end())
    report_fatal_error("Desired percentile exceeds the maximum cutoff");
  return *It;
}

void InstrProfSummaryBuilder::addRecord(const InstrProfRecord &R) {
  // The first counter is not necessarily an entry count for IR
  // instrumentation profiles.
  // Eventually MaxFunctionCount will become obsolete and this can be
  // removed.

  if (R.getCountPseudoKind() != InstrProfRecord::NotPseudo)
    return;

  addEntryCount(R.Counts[0]);
  for (size_t I = 1, E = R.Counts.size(); I < E; ++I)
    addInternalCount(R.Counts[I]);
}

// To compute the detailed summary, we consider each line containing samples as
// equivalent to a block with a count in the instrumented profile.
void SampleProfileSummaryBuilder::addRecord(
    const sampleprof::FunctionSamples &FS, bool isCallsiteSample) {
  if (!isCallsiteSample) {
    NumFunctions++;
    if (FS.getHeadSamples() > MaxFunctionCount)
      MaxFunctionCount = FS.getHeadSamples();
  } else if (FS.getContext().hasAttribute(
                 sampleprof::ContextDuplicatedIntoBase)) {
    // Do not recount callee samples if they are already merged into their base
    // profiles. This can happen to CS nested profile.
    return;
  }

  for (const auto &I : FS.getBodySamples()) {
    uint64_t Count = I.second.getSamples();
      addCount(Count);
  }
  for (const auto &I : FS.getCallsiteSamples())
    for (const auto &CS : I.second)
      addRecord(CS.second, true);
}

// The argument to this method is a vector of cutoff percentages and the return
// value is a vector of (Cutoff, MinCount, NumCounts) triplets.
void ProfileSummaryBuilder::computeDetailedSummary() {
  if (DetailedSummaryCutoffs.empty())
    return;
  llvm::sort(DetailedSummaryCutoffs);
  auto Iter = CountFrequencies.begin();
  const auto End = CountFrequencies.end();

  uint32_t CountsSeen = 0;
  uint64_t CurrSum = 0, Count = 0;

  for (const uint32_t Cutoff : DetailedSummaryCutoffs) {
    assert(Cutoff <= 999999);
    APInt Temp(128, TotalCount);
    APInt N(128, Cutoff);
    APInt D(128, ProfileSummary::Scale);
    Temp *= N;
    Temp = Temp.sdiv(D);
    uint64_t DesiredCount = Temp.getZExtValue();
    assert(DesiredCount <= TotalCount);
    while (CurrSum < DesiredCount && Iter != End) {
      Count = Iter->first;
      uint32_t Freq = Iter->second;
      CurrSum += (Count * Freq);
      CountsSeen += Freq;
      Iter++;
    }
    assert(CurrSum >= DesiredCount);
    ProfileSummaryEntry PSE = {Cutoff, Count, CountsSeen};
    DetailedSummary.push_back(PSE);
  }
}

uint64_t
ProfileSummaryBuilder::getHotCountThreshold(const SummaryEntryVector &DS) {
  auto &HotEntry =
      ProfileSummaryBuilder::getEntryForPercentile(DS, ProfileSummaryCutoffHot);
  uint64_t HotCountThreshold = HotEntry.MinCount;
  if (ProfileSummaryHotCount.getNumOccurrences() > 0)
    HotCountThreshold = ProfileSummaryHotCount;
  return HotCountThreshold;
}

uint64_t
ProfileSummaryBuilder::getColdCountThreshold(const SummaryEntryVector &DS) {
  auto &ColdEntry = ProfileSummaryBuilder::getEntryForPercentile(
      DS, ProfileSummaryCutoffCold);
  uint64_t ColdCountThreshold = ColdEntry.MinCount;
  if (ProfileSummaryColdCount.getNumOccurrences() > 0)
    ColdCountThreshold = ProfileSummaryColdCount;
  return ColdCountThreshold;
}

std::unique_ptr<ProfileSummary> SampleProfileSummaryBuilder::getSummary() {
  computeDetailedSummary();
  return std::make_unique<ProfileSummary>(
      ProfileSummary::PSK_Sample, DetailedSummary, TotalCount, MaxCount, 0,
      MaxFunctionCount, NumCounts, NumFunctions);
}

std::unique_ptr<ProfileSummary>
SampleProfileSummaryBuilder::computeSummaryForProfiles(
    const SampleProfileMap &Profiles) {
  assert(NumFunctions == 0 &&
         "This can only be called on an empty summary builder");
  sampleprof::SampleProfileMap ContextLessProfiles;
  const sampleprof::SampleProfileMap *ProfilesToUse = &Profiles;
  // For CSSPGO, context-sensitive profile effectively split a function profile
  // into many copies each representing the CFG profile of a particular calling
  // context. That makes the count distribution looks more flat as we now have
  // more function profiles each with lower counts, which in turn leads to lower
  // hot thresholds. To compensate for that, by default we merge context
  // profiles before computing profile summary.
  if (UseContextLessSummary || (sampleprof::FunctionSamples::ProfileIsCS &&
                                !UseContextLessSummary.getNumOccurrences())) {
    for (const auto &I : Profiles) {
      ContextLessProfiles[I.second.getName()].merge(I.second);
    }
    ProfilesToUse = &ContextLessProfiles;
  }

  for (const auto &I : *ProfilesToUse) {
    const sampleprof::FunctionSamples &Profile = I.second;
    addRecord(Profile);
  }

  return getSummary();
}

std::unique_ptr<ProfileSummary> InstrProfSummaryBuilder::getSummary() {
  computeDetailedSummary();
  return std::make_unique<ProfileSummary>(
      ProfileSummary::PSK_Instr, DetailedSummary, TotalCount, MaxCount,
      MaxInternalBlockCount, MaxFunctionCount, NumCounts, NumFunctions);
}

void InstrProfSummaryBuilder::addEntryCount(uint64_t Count) {
  assert(Count <= getInstrMaxCountValue() &&
         "Count value should be less than the max count value.");
  NumFunctions++;
  addCount(Count);
  if (Count > MaxFunctionCount)
    MaxFunctionCount = Count;
}

void InstrProfSummaryBuilder::addInternalCount(uint64_t Count) {
  assert(Count <= getInstrMaxCountValue() &&
         "Count value should be less than the max count value.");
  addCount(Count);
  if (Count > MaxInternalBlockCount)
    MaxInternalBlockCount = Count;
}