1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
|
//===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/IRSymtab.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/VCSRevision.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
using namespace irsymtab;
cl::opt<bool> DisableBitcodeVersionUpgrade(
"disable-bitcode-version-upgrade", cl::init(false), cl::Hidden,
cl::desc("Disable automatic bitcode upgrade for version mismatch"));
static const char *PreservedSymbols[] = {
#define HANDLE_LIBCALL(code, name) name,
#include "llvm/IR/RuntimeLibcalls.def"
#undef HANDLE_LIBCALL
// There are global variables, so put it here instead of in
// RuntimeLibcalls.def.
// TODO: Are there similar such variables?
"__ssp_canary_word",
"__stack_chk_guard",
};
namespace {
const char *getExpectedProducerName() {
static char DefaultName[] = LLVM_VERSION_STRING
#ifdef LLVM_REVISION
" " LLVM_REVISION
#endif
;
// Allows for testing of the irsymtab writer and upgrade mechanism. This
// environment variable should not be set by users.
if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
return OverrideName;
return DefaultName;
}
const char *kExpectedProducerName = getExpectedProducerName();
/// Stores the temporary state that is required to build an IR symbol table.
struct Builder {
SmallVector<char, 0> &Symtab;
StringTableBuilder &StrtabBuilder;
StringSaver Saver;
// This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
// The StringTableBuilder does not create a copy of any strings added to it,
// so this provides somewhere to store any strings that we create.
Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
BumpPtrAllocator &Alloc)
: Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
DenseMap<const Comdat *, int> ComdatMap;
Mangler Mang;
Triple TT;
std::vector<storage::Comdat> Comdats;
std::vector<storage::Module> Mods;
std::vector<storage::Symbol> Syms;
std::vector<storage::Uncommon> Uncommons;
std::string COFFLinkerOpts;
raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
std::vector<storage::Str> DependentLibraries;
void setStr(storage::Str &S, StringRef Value) {
S.Offset = StrtabBuilder.add(Value);
S.Size = Value.size();
}
template <typename T>
void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
R.Offset = Symtab.size();
R.Size = Objs.size();
Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
reinterpret_cast<const char *>(Objs.data() + Objs.size()));
}
Expected<int> getComdatIndex(const Comdat *C, const Module *M);
Error addModule(Module *M);
Error addSymbol(const ModuleSymbolTable &Msymtab,
const SmallPtrSet<GlobalValue *, 4> &Used,
ModuleSymbolTable::Symbol Sym);
Error build(ArrayRef<Module *> Mods);
};
Error Builder::addModule(Module *M) {
if (M->getDataLayoutStr().empty())
return make_error<StringError>("input module has no datalayout",
inconvertibleErrorCode());
// Symbols in the llvm.used list will get the FB_Used bit and will not be
// internalized. We do this for llvm.compiler.used as well:
//
// IR symbol table tracks module-level asm symbol references but not inline
// asm. A symbol only referenced by inline asm is not in the IR symbol table,
// so we may not know that the definition (in another translation unit) is
// referenced. That definition may have __attribute__((used)) (which lowers to
// llvm.compiler.used on ELF targets) to communicate to the compiler that it
// may be used by inline asm. The usage is perfectly fine, so we treat
// llvm.compiler.used conservatively as llvm.used to work around our own
// limitation.
SmallVector<GlobalValue *, 4> UsedV;
collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/false);
collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/true);
SmallPtrSet<GlobalValue *, 4> Used(UsedV.begin(), UsedV.end());
ModuleSymbolTable Msymtab;
Msymtab.addModule(M);
storage::Module Mod;
Mod.Begin = Syms.size();
Mod.End = Syms.size() + Msymtab.symbols().size();
Mod.UncBegin = Uncommons.size();
Mods.push_back(Mod);
if (TT.isOSBinFormatCOFF()) {
if (auto E = M->materializeMetadata())
return E;
if (NamedMDNode *LinkerOptions =
M->getNamedMetadata("llvm.linker.options")) {
for (MDNode *MDOptions : LinkerOptions->operands())
for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
}
}
if (TT.isOSBinFormatELF()) {
if (auto E = M->materializeMetadata())
return E;
if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) {
for (MDNode *MDOptions : N->operands()) {
const auto OperandStr =
cast<MDString>(cast<MDNode>(MDOptions)->getOperand(0))->getString();
storage::Str Specifier;
setStr(Specifier, OperandStr);
DependentLibraries.emplace_back(Specifier);
}
}
}
for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
if (Error Err = addSymbol(Msymtab, Used, Msym))
return Err;
return Error::success();
}
Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
if (P.second) {
std::string Name;
if (TT.isOSBinFormatCOFF()) {
const GlobalValue *GV = M->getNamedValue(C->getName());
if (!GV)
return make_error<StringError>("Could not find leader",
inconvertibleErrorCode());
// Internal leaders do not affect symbol resolution, therefore they do not
// appear in the symbol table.
if (GV->hasLocalLinkage()) {
P.first->second = -1;
return -1;
}
llvm::raw_string_ostream OS(Name);
Mang.getNameWithPrefix(OS, GV, false);
} else {
Name = std::string(C->getName());
}
storage::Comdat Comdat;
setStr(Comdat.Name, Saver.save(Name));
Comdat.SelectionKind = C->getSelectionKind();
Comdats.push_back(Comdat);
}
return P.first->second;
}
Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
const SmallPtrSet<GlobalValue *, 4> &Used,
ModuleSymbolTable::Symbol Msym) {
Syms.emplace_back();
storage::Symbol &Sym = Syms.back();
Sym = {};
storage::Uncommon *Unc = nullptr;
auto Uncommon = [&]() -> storage::Uncommon & {
if (Unc)
return *Unc;
Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
Uncommons.emplace_back();
Unc = &Uncommons.back();
*Unc = {};
setStr(Unc->COFFWeakExternFallbackName, "");
setStr(Unc->SectionName, "");
return *Unc;
};
SmallString<64> Name;
{
raw_svector_ostream OS(Name);
Msymtab.printSymbolName(OS, Msym);
}
setStr(Sym.Name, Saver.save(Name.str()));
auto Flags = Msymtab.getSymbolFlags(Msym);
if (Flags & object::BasicSymbolRef::SF_Undefined)
Sym.Flags |= 1 << storage::Symbol::FB_undefined;
if (Flags & object::BasicSymbolRef::SF_Weak)
Sym.Flags |= 1 << storage::Symbol::FB_weak;
if (Flags & object::BasicSymbolRef::SF_Common)
Sym.Flags |= 1 << storage::Symbol::FB_common;
if (Flags & object::BasicSymbolRef::SF_Indirect)
Sym.Flags |= 1 << storage::Symbol::FB_indirect;
if (Flags & object::BasicSymbolRef::SF_Global)
Sym.Flags |= 1 << storage::Symbol::FB_global;
if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
if (Flags & object::BasicSymbolRef::SF_Executable)
Sym.Flags |= 1 << storage::Symbol::FB_executable;
Sym.ComdatIndex = -1;
auto *GV = Msym.dyn_cast<GlobalValue *>();
if (!GV) {
// Undefined module asm symbols act as GC roots and are implicitly used.
if (Flags & object::BasicSymbolRef::SF_Undefined)
Sym.Flags |= 1 << storage::Symbol::FB_used;
setStr(Sym.IRName, "");
return Error::success();
}
setStr(Sym.IRName, GV->getName());
bool IsPreservedSymbol = llvm::is_contained(PreservedSymbols, GV->getName());
if (Used.count(GV) || IsPreservedSymbol)
Sym.Flags |= 1 << storage::Symbol::FB_used;
if (GV->isThreadLocal())
Sym.Flags |= 1 << storage::Symbol::FB_tls;
if (GV->hasGlobalUnnamedAddr())
Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
if (GV->canBeOmittedFromSymbolTable())
Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
if (Flags & object::BasicSymbolRef::SF_Common) {
auto *GVar = dyn_cast<GlobalVariable>(GV);
if (!GVar)
return make_error<StringError>("Only variables can have common linkage!",
inconvertibleErrorCode());
Uncommon().CommonSize =
GV->getParent()->getDataLayout().getTypeAllocSize(GV->getValueType());
Uncommon().CommonAlign = GVar->getAlign() ? GVar->getAlign()->value() : 0;
}
const GlobalObject *GO = GV->getAliaseeObject();
if (!GO) {
if (isa<GlobalIFunc>(GV))
GO = cast<GlobalIFunc>(GV)->getResolverFunction();
if (!GO)
return make_error<StringError>("Unable to determine comdat of alias!",
inconvertibleErrorCode());
}
if (const Comdat *C = GO->getComdat()) {
Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
if (!ComdatIndexOrErr)
return ComdatIndexOrErr.takeError();
Sym.ComdatIndex = *ComdatIndexOrErr;
}
if (TT.isOSBinFormatCOFF()) {
emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
if ((Flags & object::BasicSymbolRef::SF_Weak) &&
(Flags & object::BasicSymbolRef::SF_Indirect)) {
auto *Fallback = dyn_cast<GlobalValue>(
cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
if (!Fallback)
return make_error<StringError>("Invalid weak external",
inconvertibleErrorCode());
std::string FallbackName;
raw_string_ostream OS(FallbackName);
Msymtab.printSymbolName(OS, Fallback);
OS.flush();
setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
}
}
if (!GO->getSection().empty())
setStr(Uncommon().SectionName, Saver.save(GO->getSection()));
return Error::success();
}
Error Builder::build(ArrayRef<Module *> IRMods) {
storage::Header Hdr;
assert(!IRMods.empty());
Hdr.Version = storage::Header::kCurrentVersion;
setStr(Hdr.Producer, kExpectedProducerName);
setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
TT = Triple(IRMods[0]->getTargetTriple());
for (auto *M : IRMods)
if (Error Err = addModule(M))
return Err;
COFFLinkerOptsOS.flush();
setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
// We are about to fill in the header's range fields, so reserve space for it
// and copy it in afterwards.
Symtab.resize(sizeof(storage::Header));
writeRange(Hdr.Modules, Mods);
writeRange(Hdr.Comdats, Comdats);
writeRange(Hdr.Symbols, Syms);
writeRange(Hdr.Uncommons, Uncommons);
writeRange(Hdr.DependentLibraries, DependentLibraries);
*reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
return Error::success();
}
} // end anonymous namespace
Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
StringTableBuilder &StrtabBuilder,
BumpPtrAllocator &Alloc) {
return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
}
// Upgrade a vector of bitcode modules created by an old version of LLVM by
// creating an irsymtab for them in the current format.
static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
FileContents FC;
LLVMContext Ctx;
std::vector<Module *> Mods;
std::vector<std::unique_ptr<Module>> OwnedMods;
for (auto BM : BMs) {
Expected<std::unique_ptr<Module>> MOrErr =
BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
/*IsImporting*/ false);
if (!MOrErr)
return MOrErr.takeError();
Mods.push_back(MOrErr->get());
OwnedMods.push_back(std::move(*MOrErr));
}
StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
BumpPtrAllocator Alloc;
if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
return std::move(E);
StrtabBuilder.finalizeInOrder();
FC.Strtab.resize(StrtabBuilder.getSize());
StrtabBuilder.write((uint8_t *)FC.Strtab.data());
FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
{FC.Strtab.data(), FC.Strtab.size()}};
return std::move(FC);
}
Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
if (BFC.Mods.empty())
return make_error<StringError>("Bitcode file does not contain any modules",
inconvertibleErrorCode());
if (!DisableBitcodeVersionUpgrade) {
if (BFC.StrtabForSymtab.empty() ||
BFC.Symtab.size() < sizeof(storage::Header))
return upgrade(BFC.Mods);
// We cannot use the regular reader to read the version and producer,
// because it will expect the header to be in the current format. The only
// thing we can rely on is that the version and producer will be present as
// the first struct elements.
auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
unsigned Version = Hdr->Version;
StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
if (Version != storage::Header::kCurrentVersion ||
Producer != kExpectedProducerName)
return upgrade(BFC.Mods);
}
FileContents FC;
FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
{BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
// Finally, make sure that the number of modules in the symbol table matches
// the number of modules in the bitcode file. If they differ, it may mean that
// the bitcode file was created by binary concatenation, so we need to create
// a new symbol table from scratch.
if (FC.TheReader.getNumModules() != BFC.Mods.size())
return upgrade(std::move(BFC.Mods));
return std::move(FC);
}
|