aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/MCA/HardwareUnits/LSUnit.cpp
blob: bdc8b3d0e390e2167b97d6624bf08f89194e7828 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
//===----------------------- LSUnit.cpp --------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// A Load-Store Unit for the llvm-mca tool.
///
//===----------------------------------------------------------------------===//

#include "llvm/MCA/HardwareUnits/LSUnit.h"
#include "llvm/MCA/Instruction.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "llvm-mca"

namespace llvm {
namespace mca {

LSUnitBase::LSUnitBase(const MCSchedModel &SM, unsigned LQ, unsigned SQ,
                       bool AssumeNoAlias)
    : LQSize(LQ), SQSize(SQ), UsedLQEntries(0), UsedSQEntries(0),
      NoAlias(AssumeNoAlias), NextGroupID(1) {
  if (SM.hasExtraProcessorInfo()) {
    const MCExtraProcessorInfo &EPI = SM.getExtraProcessorInfo();
    if (!LQSize && EPI.LoadQueueID) {
      const MCProcResourceDesc &LdQDesc = *SM.getProcResource(EPI.LoadQueueID);
      LQSize = std::max(0, LdQDesc.BufferSize);
    }

    if (!SQSize && EPI.StoreQueueID) {
      const MCProcResourceDesc &StQDesc = *SM.getProcResource(EPI.StoreQueueID);
      SQSize = std::max(0, StQDesc.BufferSize);
    }
  }
}

LSUnitBase::~LSUnitBase() = default;

void LSUnitBase::cycleEvent() {
  for (const std::pair<unsigned, std::unique_ptr<MemoryGroup>> &G : Groups)
    G.second->cycleEvent();
}

#ifndef NDEBUG
void LSUnitBase::dump() const {
  dbgs() << "[LSUnit] LQ_Size = " << getLoadQueueSize() << '\n';
  dbgs() << "[LSUnit] SQ_Size = " << getStoreQueueSize() << '\n';
  dbgs() << "[LSUnit] NextLQSlotIdx = " << getUsedLQEntries() << '\n';
  dbgs() << "[LSUnit] NextSQSlotIdx = " << getUsedSQEntries() << '\n';
  dbgs() << "\n";
  for (const auto &GroupIt : Groups) {
    const MemoryGroup &Group = *GroupIt.second;
    dbgs() << "[LSUnit] Group (" << GroupIt.first << "): "
           << "[ #Preds = " << Group.getNumPredecessors()
           << ", #GIssued = " << Group.getNumExecutingPredecessors()
           << ", #GExecuted = " << Group.getNumExecutedPredecessors()
           << ", #Inst = " << Group.getNumInstructions()
           << ", #IIssued = " << Group.getNumExecuting()
           << ", #IExecuted = " << Group.getNumExecuted() << '\n';
  }
}
#endif

unsigned LSUnit::dispatch(const InstRef &IR) {
  const Instruction &IS = *IR.getInstruction();
  bool IsStoreBarrier = IS.isAStoreBarrier();
  bool IsLoadBarrier = IS.isALoadBarrier();
  assert((IS.getMayLoad() || IS.getMayStore()) && "Not a memory operation!");

  if (IS.getMayLoad())
    acquireLQSlot();
  if (IS.getMayStore())
    acquireSQSlot();

  if (IS.getMayStore()) {
    unsigned NewGID = createMemoryGroup();
    MemoryGroup &NewGroup = getGroup(NewGID);
    NewGroup.addInstruction();

    // A store may not pass a previous load or load barrier.
    unsigned ImmediateLoadDominator =
        std::max(CurrentLoadGroupID, CurrentLoadBarrierGroupID);
    if (ImmediateLoadDominator) {
      MemoryGroup &IDom = getGroup(ImmediateLoadDominator);
      LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << ImmediateLoadDominator
                        << ") --> (" << NewGID << ")\n");
      IDom.addSuccessor(&NewGroup, !assumeNoAlias());
    }

    // A store may not pass a previous store barrier.
    if (CurrentStoreBarrierGroupID) {
      MemoryGroup &StoreGroup = getGroup(CurrentStoreBarrierGroupID);
      LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: ("
                        << CurrentStoreBarrierGroupID
                        << ") --> (" << NewGID << ")\n");
      StoreGroup.addSuccessor(&NewGroup, true);
    }

    // A store may not pass a previous store.
    if (CurrentStoreGroupID &&
        (CurrentStoreGroupID != CurrentStoreBarrierGroupID)) {
      MemoryGroup &StoreGroup = getGroup(CurrentStoreGroupID);
      LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << CurrentStoreGroupID
                        << ") --> (" << NewGID << ")\n");
      StoreGroup.addSuccessor(&NewGroup, !assumeNoAlias());
    }


    CurrentStoreGroupID = NewGID;
    if (IsStoreBarrier)
      CurrentStoreBarrierGroupID = NewGID;

    if (IS.getMayLoad()) {
      CurrentLoadGroupID = NewGID;
      if (IsLoadBarrier)
        CurrentLoadBarrierGroupID = NewGID;
    }

    return NewGID;
  }

  assert(IS.getMayLoad() && "Expected a load!");

  unsigned ImmediateLoadDominator =
      std::max(CurrentLoadGroupID, CurrentLoadBarrierGroupID);

  // A new load group is created if we are in one of the following situations:
  // 1) This is a load barrier (by construction, a load barrier is always
  //    assigned to a different memory group).
  // 2) There is no load in flight (by construction we always keep loads and
  //    stores into separate memory groups).
  // 3) There is a load barrier in flight. This load depends on it.
  // 4) There is an intervening store between the last load dispatched to the
  //    LSU and this load. We always create a new group even if this load
  //    does not alias the last dispatched store.
  // 5) There is no intervening store and there is an active load group.
  //    However that group has already started execution, so we cannot add
  //    this load to it.
  bool ShouldCreateANewGroup =
      IsLoadBarrier || !ImmediateLoadDominator ||
      CurrentLoadBarrierGroupID == ImmediateLoadDominator ||
      ImmediateLoadDominator <= CurrentStoreGroupID ||
      getGroup(ImmediateLoadDominator).isExecuting();

  if (ShouldCreateANewGroup) {
    unsigned NewGID = createMemoryGroup();
    MemoryGroup &NewGroup = getGroup(NewGID);
    NewGroup.addInstruction();

    // A load may not pass a previous store or store barrier
    // unless flag 'NoAlias' is set.
    if (!assumeNoAlias() && CurrentStoreGroupID) {
      MemoryGroup &StoreGroup = getGroup(CurrentStoreGroupID);
      LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: (" << CurrentStoreGroupID
                        << ") --> (" << NewGID << ")\n");
      StoreGroup.addSuccessor(&NewGroup, true);
    }

    // A load barrier may not pass a previous load or load barrier.
    if (IsLoadBarrier) {
      if (ImmediateLoadDominator) {
        MemoryGroup &LoadGroup = getGroup(ImmediateLoadDominator);
        LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: ("
                          << ImmediateLoadDominator
                          << ") --> (" << NewGID << ")\n");
        LoadGroup.addSuccessor(&NewGroup, true);
      }
    } else {
      // A younger load cannot pass a older load barrier.
      if (CurrentLoadBarrierGroupID) {
        MemoryGroup &LoadGroup = getGroup(CurrentLoadBarrierGroupID);
        LLVM_DEBUG(dbgs() << "[LSUnit]: GROUP DEP: ("
                          << CurrentLoadBarrierGroupID
                          << ") --> (" << NewGID << ")\n");
        LoadGroup.addSuccessor(&NewGroup, true);
      }
    }

    CurrentLoadGroupID = NewGID;
    if (IsLoadBarrier)
      CurrentLoadBarrierGroupID = NewGID;
    return NewGID;
  }

  // A load may pass a previous load.
  MemoryGroup &Group = getGroup(CurrentLoadGroupID);
  Group.addInstruction();
  return CurrentLoadGroupID;
}

LSUnit::Status LSUnit::isAvailable(const InstRef &IR) const {
  const Instruction &IS = *IR.getInstruction();
  if (IS.getMayLoad() && isLQFull())
    return LSUnit::LSU_LQUEUE_FULL;
  if (IS.getMayStore() && isSQFull())
    return LSUnit::LSU_SQUEUE_FULL;
  return LSUnit::LSU_AVAILABLE;
}

void LSUnitBase::onInstructionExecuted(const InstRef &IR) {
  unsigned GroupID = IR.getInstruction()->getLSUTokenID();
  auto It = Groups.find(GroupID);
  assert(It != Groups.end() && "Instruction not dispatched to the LS unit");
  It->second->onInstructionExecuted(IR);
  if (It->second->isExecuted())
    Groups.erase(It);
}

void LSUnitBase::onInstructionRetired(const InstRef &IR) {
  const Instruction &IS = *IR.getInstruction();
  bool IsALoad = IS.getMayLoad();
  bool IsAStore = IS.getMayStore();
  assert((IsALoad || IsAStore) && "Expected a memory operation!");

  if (IsALoad) {
    releaseLQSlot();
    LLVM_DEBUG(dbgs() << "[LSUnit]: Instruction idx=" << IR.getSourceIndex()
                      << " has been removed from the load queue.\n");
  }

  if (IsAStore) {
    releaseSQSlot();
    LLVM_DEBUG(dbgs() << "[LSUnit]: Instruction idx=" << IR.getSourceIndex()
                      << " has been removed from the store queue.\n");
  }
}

void LSUnit::onInstructionExecuted(const InstRef &IR) {
  const Instruction &IS = *IR.getInstruction();
  if (!IS.isMemOp())
    return;

  LSUnitBase::onInstructionExecuted(IR);
  unsigned GroupID = IS.getLSUTokenID();
  if (!isValidGroupID(GroupID)) {
    if (GroupID == CurrentLoadGroupID)
      CurrentLoadGroupID = 0;
    if (GroupID == CurrentStoreGroupID)
      CurrentStoreGroupID = 0;
    if (GroupID == CurrentLoadBarrierGroupID)
      CurrentLoadBarrierGroupID = 0;
    if (GroupID == CurrentStoreBarrierGroupID)
      CurrentStoreBarrierGroupID = 0;
  }
}

} // namespace mca
} // namespace llvm