aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/MC/XCOFFObjectWriter.cpp
blob: ab6acf085e7bcdeadb7303f4a6d7f3eaa037eaf2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
//===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements XCOFF object file writer information.
//
//===----------------------------------------------------------------------===//

#include "llvm/BinaryFormat/XCOFF.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionXCOFF.h"
#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/MCXCOFFObjectWriter.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"

#include <deque>
#include <map>

using namespace llvm;

// An XCOFF object file has a limited set of predefined sections. The most
// important ones for us (right now) are:
// .text --> contains program code and read-only data.
// .data --> contains initialized data, function descriptors, and the TOC.
// .bss  --> contains uninitialized data.
// Each of these sections is composed of 'Control Sections'. A Control Section
// is more commonly referred to as a csect. A csect is an indivisible unit of
// code or data, and acts as a container for symbols. A csect is mapped
// into a section based on its storage-mapping class, with the exception of
// XMC_RW which gets mapped to either .data or .bss based on whether it's
// explicitly initialized or not.
//
// We don't represent the sections in the MC layer as there is nothing
// interesting about them at at that level: they carry information that is
// only relevant to the ObjectWriter, so we materialize them in this class.
namespace {

constexpr unsigned DefaultSectionAlign = 4;
constexpr int16_t MaxSectionIndex = INT16_MAX;

// Packs the csect's alignment and type into a byte.
uint8_t getEncodedType(const MCSectionXCOFF *);

struct XCOFFRelocation {
  uint32_t SymbolTableIndex;
  uint32_t FixupOffsetInCsect;
  uint8_t SignAndSize;
  uint8_t Type;
};

// Wrapper around an MCSymbolXCOFF.
struct Symbol {
  const MCSymbolXCOFF *const MCSym;
  uint32_t SymbolTableIndex;

  XCOFF::VisibilityType getVisibilityType() const {
    return MCSym->getVisibilityType();
  }

  XCOFF::StorageClass getStorageClass() const {
    return MCSym->getStorageClass();
  }
  StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); }
  Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
};

// Wrapper for an MCSectionXCOFF.
// It can be a Csect or debug section or DWARF section and so on.
struct XCOFFSection {
  const MCSectionXCOFF *const MCSec;
  uint32_t SymbolTableIndex;
  uint64_t Address;
  uint64_t Size;

  SmallVector<Symbol, 1> Syms;
  SmallVector<XCOFFRelocation, 1> Relocations;
  StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); }
  XCOFF::VisibilityType getVisibilityType() const {
    return MCSec->getVisibilityType();
  }
  XCOFFSection(const MCSectionXCOFF *MCSec)
      : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
};

// Type to be used for a container representing a set of csects with
// (approximately) the same storage mapping class. For example all the csects
// with a storage mapping class of `xmc_pr` will get placed into the same
// container.
using CsectGroup = std::deque<XCOFFSection>;
using CsectGroups = std::deque<CsectGroup *>;

// The basic section entry defination. This Section represents a section entry
// in XCOFF section header table.
struct SectionEntry {
  char Name[XCOFF::NameSize];
  // The physical/virtual address of the section. For an object file these
  // values are equivalent, except for in the overflow section header, where
  // the physical address specifies the number of relocation entries and the
  // virtual address specifies the number of line number entries.
  // TODO: Divide Address into PhysicalAddress and VirtualAddress when line
  // number entries are supported.
  uint64_t Address;
  uint64_t Size;
  uint64_t FileOffsetToData;
  uint64_t FileOffsetToRelocations;
  uint32_t RelocationCount;
  int32_t Flags;

  int16_t Index;

  // XCOFF has special section numbers for symbols:
  // -2 Specifies N_DEBUG, a special symbolic debugging symbol.
  // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
  // relocatable.
  //  0 Specifies N_UNDEF, an undefined external symbol.
  // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
  // hasn't been initialized.
  static constexpr int16_t UninitializedIndex =
      XCOFF::ReservedSectionNum::N_DEBUG - 1;

  SectionEntry(StringRef N, int32_t Flags)
      : Name(), Address(0), Size(0), FileOffsetToData(0),
        FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags),
        Index(UninitializedIndex) {
    assert(N.size() <= XCOFF::NameSize && "section name too long");
    memcpy(Name, N.data(), N.size());
  }

  virtual void reset() {
    Address = 0;
    Size = 0;
    FileOffsetToData = 0;
    FileOffsetToRelocations = 0;
    RelocationCount = 0;
    Index = UninitializedIndex;
  }

  virtual ~SectionEntry() = default;
};

// Represents the data related to a section excluding the csects that make up
// the raw data of the section. The csects are stored separately as not all
// sections contain csects, and some sections contain csects which are better
// stored separately, e.g. the .data section containing read-write, descriptor,
// TOCBase and TOC-entry csects.
struct CsectSectionEntry : public SectionEntry {
  // Virtual sections do not need storage allocated in the object file.
  const bool IsVirtual;

  // This is a section containing csect groups.
  CsectGroups Groups;

  CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
                    CsectGroups Groups)
      : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) {
    assert(N.size() <= XCOFF::NameSize && "section name too long");
    memcpy(Name, N.data(), N.size());
  }

  void reset() override {
    SectionEntry::reset();
    // Clear any csects we have stored.
    for (auto *Group : Groups)
      Group->clear();
  }

  virtual ~CsectSectionEntry() = default;
};

struct DwarfSectionEntry : public SectionEntry {
  // For DWARF section entry.
  std::unique_ptr<XCOFFSection> DwarfSect;

  // For DWARF section, we must use real size in the section header. MemorySize
  // is for the size the DWARF section occupies including paddings.
  uint32_t MemorySize;

  DwarfSectionEntry(StringRef N, int32_t Flags,
                    std::unique_ptr<XCOFFSection> Sect)
      : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)),
        MemorySize(0) {
    assert(DwarfSect->MCSec->isDwarfSect() &&
           "This should be a DWARF section!");
    assert(N.size() <= XCOFF::NameSize && "section name too long");
    memcpy(Name, N.data(), N.size());
  }

  DwarfSectionEntry(DwarfSectionEntry &&s) = default;

  virtual ~DwarfSectionEntry() = default;
};

struct ExceptionTableEntry {
  const MCSymbol *Trap;
  uint64_t TrapAddress;
  unsigned Lang;
  unsigned Reason;

  ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason)
      : Trap(Trap), Lang(Lang), Reason(Reason) {}
};

struct ExceptionInfo {
  const MCSymbol *FunctionSymbol;
  unsigned FunctionSize;
  std::vector<ExceptionTableEntry> Entries;
};

struct ExceptionSectionEntry : public SectionEntry {
  std::map<const StringRef, ExceptionInfo> ExceptionTable;
  bool isDebugEnabled = false;

  ExceptionSectionEntry(StringRef N, int32_t Flags)
      : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) {
    assert(N.size() <= XCOFF::NameSize && "Section too long.");
    memcpy(Name, N.data(), N.size());
  }

  virtual ~ExceptionSectionEntry() = default;
};

class XCOFFObjectWriter : public MCObjectWriter {

  uint32_t SymbolTableEntryCount = 0;
  uint64_t SymbolTableOffset = 0;
  uint16_t SectionCount = 0;
  uint32_t PaddingsBeforeDwarf = 0;
  std::vector<std::pair<std::string, size_t>> FileNames;
  bool HasVisibility = false;

  support::endian::Writer W;
  std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
  StringTableBuilder Strings;

  const uint64_t MaxRawDataSize =
      TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX;

  // Maps the MCSection representation to its corresponding XCOFFSection
  // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into
  // from its containing MCSectionXCOFF.
  DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap;

  // Maps the MCSymbol representation to its corrresponding symbol table index.
  // Needed for relocation.
  DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap;

  // CsectGroups. These store the csects which make up different parts of
  // the sections. Should have one for each set of csects that get mapped into
  // the same section and get handled in a 'similar' way.
  CsectGroup UndefinedCsects;
  CsectGroup ProgramCodeCsects;
  CsectGroup ReadOnlyCsects;
  CsectGroup DataCsects;
  CsectGroup FuncDSCsects;
  CsectGroup TOCCsects;
  CsectGroup BSSCsects;
  CsectGroup TDataCsects;
  CsectGroup TBSSCsects;

  // The Predefined sections.
  CsectSectionEntry Text;
  CsectSectionEntry Data;
  CsectSectionEntry BSS;
  CsectSectionEntry TData;
  CsectSectionEntry TBSS;

  // All the XCOFF sections, in the order they will appear in the section header
  // table.
  std::array<CsectSectionEntry *const, 5> Sections{
      {&Text, &Data, &BSS, &TData, &TBSS}};

  std::vector<DwarfSectionEntry> DwarfSections;
  std::vector<SectionEntry> OverflowSections;

  ExceptionSectionEntry ExceptionSection;

  CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);

  void reset() override;

  void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;

  void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *,
                        const MCFixup &, MCValue, uint64_t &) override;

  uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;

  bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
  bool nameShouldBeInStringTable(const StringRef &);
  void writeSymbolName(const StringRef &);

  void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef,
                                           const XCOFFSection &CSectionRef,
                                           int16_t SectionIndex,
                                           uint64_t SymbolOffset);
  void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef,
                                         int16_t SectionIndex,
                                         XCOFF::StorageClass StorageClass);
  void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef,
                                       int16_t SectionIndex);
  void writeFileHeader();
  void writeAuxFileHeader();
  void writeSectionHeader(const SectionEntry *Sec);
  void writeSectionHeaderTable();
  void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout);
  void writeSectionForControlSectionEntry(const MCAssembler &Asm,
                                          const MCAsmLayout &Layout,
                                          const CsectSectionEntry &CsectEntry,
                                          uint64_t &CurrentAddressLocation);
  void writeSectionForDwarfSectionEntry(const MCAssembler &Asm,
                                        const MCAsmLayout &Layout,
                                        const DwarfSectionEntry &DwarfEntry,
                                        uint64_t &CurrentAddressLocation);
  void writeSectionForExceptionSectionEntry(
      const MCAssembler &Asm, const MCAsmLayout &Layout,
      ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation);
  void writeSymbolTable(const MCAsmLayout &Layout);
  void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,
                                uint64_t NumberOfRelocEnt = 0);
  void writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
                                uint8_t SymbolAlignmentAndType,
                                uint8_t StorageMappingClass);
  void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize,
                                   uint64_t LineNumberPointer,
                                   uint32_t EndIndex);
  void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize,
                                    uint32_t EndIndex);
  void writeSymbolEntry(StringRef SymbolName, uint64_t Value,
                        int16_t SectionNumber, uint16_t SymbolType,
                        uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1);
  void writeRelocations();
  void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section);

  // Called after all the csects and symbols have been processed by
  // `executePostLayoutBinding`, this function handles building up the majority
  // of the structures in the object file representation. Namely:
  // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
  //    sizes.
  // *) Assigns symbol table indices.
  // *) Builds up the section header table by adding any non-empty sections to
  //    `Sections`.
  void assignAddressesAndIndices(const MCAsmLayout &);
  // Called after relocations are recorded.
  void finalizeSectionInfo();
  void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount);
  void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer);

  void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap,
                         unsigned LanguageCode, unsigned ReasonCode,
                         unsigned FunctionSize, bool hasDebug) override;
  bool hasExceptionSection() {
    return !ExceptionSection.ExceptionTable.empty();
  }
  unsigned getExceptionSectionSize();
  unsigned getExceptionOffset(const MCSymbol *Symbol);

  size_t auxiliaryHeaderSize() const {
    // 64-bit object files have no auxiliary header.
    return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0;
  }

public:
  XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
                    raw_pwrite_stream &OS);

  void writeWord(uint64_t Word) {
    is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word);
  }
};

XCOFFObjectWriter::XCOFFObjectWriter(
    std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
    : W(OS, support::big), TargetObjectWriter(std::move(MOTW)),
      Strings(StringTableBuilder::XCOFF),
      Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
           CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}),
      Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false,
           CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}),
      BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
          CsectGroups{&BSSCsects}),
      TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false,
            CsectGroups{&TDataCsects}),
      TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true,
           CsectGroups{&TBSSCsects}),
      ExceptionSection(".except", XCOFF::STYP_EXCEPT) {}

void XCOFFObjectWriter::reset() {
  // Clear the mappings we created.
  SymbolIndexMap.clear();
  SectionMap.clear();

  UndefinedCsects.clear();
  // Reset any sections we have written to, and empty the section header table.
  for (auto *Sec : Sections)
    Sec->reset();
  for (auto &DwarfSec : DwarfSections)
    DwarfSec.reset();
  for (auto &OverflowSec : OverflowSections)
    OverflowSec.reset();
  ExceptionSection.reset();

  // Reset states in XCOFFObjectWriter.
  SymbolTableEntryCount = 0;
  SymbolTableOffset = 0;
  SectionCount = 0;
  PaddingsBeforeDwarf = 0;
  Strings.clear();

  MCObjectWriter::reset();
}

CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
  switch (MCSec->getMappingClass()) {
  case XCOFF::XMC_PR:
    assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
           "Only an initialized csect can contain program code.");
    return ProgramCodeCsects;
  case XCOFF::XMC_RO:
    assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
           "Only an initialized csect can contain read only data.");
    return ReadOnlyCsects;
  case XCOFF::XMC_RW:
    if (XCOFF::XTY_CM == MCSec->getCSectType())
      return BSSCsects;

    if (XCOFF::XTY_SD == MCSec->getCSectType())
      return DataCsects;

    report_fatal_error("Unhandled mapping of read-write csect to section.");
  case XCOFF::XMC_DS:
    return FuncDSCsects;
  case XCOFF::XMC_BS:
    assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
           "Mapping invalid csect. CSECT with bss storage class must be "
           "common type.");
    return BSSCsects;
  case XCOFF::XMC_TL:
    assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
           "Mapping invalid csect. CSECT with tdata storage class must be "
           "an initialized csect.");
    return TDataCsects;
  case XCOFF::XMC_UL:
    assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
           "Mapping invalid csect. CSECT with tbss storage class must be "
           "an uninitialized csect.");
    return TBSSCsects;
  case XCOFF::XMC_TC0:
    assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
           "Only an initialized csect can contain TOC-base.");
    assert(TOCCsects.empty() &&
           "We should have only one TOC-base, and it should be the first csect "
           "in this CsectGroup.");
    return TOCCsects;
  case XCOFF::XMC_TC:
  case XCOFF::XMC_TE:
  case XCOFF::XMC_TD:
    assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
           "Only an initialized csect can contain TC entry.");
    assert(!TOCCsects.empty() &&
           "We should at least have a TOC-base in this CsectGroup.");
    return TOCCsects;
  default:
    report_fatal_error("Unhandled mapping of csect to section.");
  }
}

static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) {
  if (XSym->isDefined())
    return cast<MCSectionXCOFF>(XSym->getFragment()->getParent());
  return XSym->getRepresentedCsect();
}

void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
                                                 const MCAsmLayout &Layout) {
  for (const auto &S : Asm) {
    const auto *MCSec = cast<const MCSectionXCOFF>(&S);
    assert(SectionMap.find(MCSec) == SectionMap.end() &&
           "Cannot add a section twice.");

    // If the name does not fit in the storage provided in the symbol table
    // entry, add it to the string table.
    if (nameShouldBeInStringTable(MCSec->getSymbolTableName()))
      Strings.add(MCSec->getSymbolTableName());
    if (MCSec->isCsect()) {
      // A new control section. Its CsectSectionEntry should already be staticly
      // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of
      // the CsectSectionEntry.
      assert(XCOFF::XTY_ER != MCSec->getCSectType() &&
             "An undefined csect should not get registered.");
      CsectGroup &Group = getCsectGroup(MCSec);
      Group.emplace_back(MCSec);
      SectionMap[MCSec] = &Group.back();
    } else if (MCSec->isDwarfSect()) {
      // A new DwarfSectionEntry.
      std::unique_ptr<XCOFFSection> DwarfSec =
          std::make_unique<XCOFFSection>(MCSec);
      SectionMap[MCSec] = DwarfSec.get();

      DwarfSectionEntry SecEntry(MCSec->getName(),
                                 *MCSec->getDwarfSubtypeFlags(),
                                 std::move(DwarfSec));
      DwarfSections.push_back(std::move(SecEntry));
    } else
      llvm_unreachable("unsupport section type!");
  }

  for (const MCSymbol &S : Asm.symbols()) {
    // Nothing to do for temporary symbols.
    if (S.isTemporary())
      continue;

    const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
    const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym);

    if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED)
      HasVisibility = true;

    if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) {
      // Handle undefined symbol.
      UndefinedCsects.emplace_back(ContainingCsect);
      SectionMap[ContainingCsect] = &UndefinedCsects.back();
      if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName()))
        Strings.add(ContainingCsect->getSymbolTableName());
      continue;
    }

    // If the symbol is the csect itself, we don't need to put the symbol
    // into csect's Syms.
    if (XSym == ContainingCsect->getQualNameSymbol())
      continue;

    // Only put a label into the symbol table when it is an external label.
    if (!XSym->isExternal())
      continue;

    assert(SectionMap.find(ContainingCsect) != SectionMap.end() &&
           "Expected containing csect to exist in map");
    XCOFFSection *Csect = SectionMap[ContainingCsect];
    // Lookup the containing csect and add the symbol to it.
    assert(Csect->MCSec->isCsect() && "only csect is supported now!");
    Csect->Syms.emplace_back(XSym);

    // If the name does not fit in the storage provided in the symbol table
    // entry, add it to the string table.
    if (nameShouldBeInStringTable(XSym->getSymbolTableName()))
      Strings.add(XSym->getSymbolTableName());
  }

  FileNames = Asm.getFileNames();
  // Emit ".file" as the source file name when there is no file name.
  if (FileNames.empty())
    FileNames.emplace_back(".file", 0);
  for (const std::pair<std::string, size_t> &F : FileNames) {
    if (nameShouldBeInStringTable(F.first))
      Strings.add(F.first);
  }

  Strings.finalize();
  assignAddressesAndIndices(Layout);
}

void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm,
                                         const MCAsmLayout &Layout,
                                         const MCFragment *Fragment,
                                         const MCFixup &Fixup, MCValue Target,
                                         uint64_t &FixedValue) {
  auto getIndex = [this](const MCSymbol *Sym,
                         const MCSectionXCOFF *ContainingCsect) {
    // If we could not find the symbol directly in SymbolIndexMap, this symbol
    // could either be a temporary symbol or an undefined symbol. In this case,
    // we would need to have the relocation reference its csect instead.
    return SymbolIndexMap.find(Sym) != SymbolIndexMap.end()
               ? SymbolIndexMap[Sym]
               : SymbolIndexMap[ContainingCsect->getQualNameSymbol()];
  };

  auto getVirtualAddress =
      [this, &Layout](const MCSymbol *Sym,
                      const MCSectionXCOFF *ContainingSect) -> uint64_t {
    // A DWARF section.
    if (ContainingSect->isDwarfSect())
      return Layout.getSymbolOffset(*Sym);

    // A csect.
    if (!Sym->isDefined())
      return SectionMap[ContainingSect]->Address;

    // A label.
    assert(Sym->isDefined() && "not a valid object that has address!");
    return SectionMap[ContainingSect]->Address + Layout.getSymbolOffset(*Sym);
  };

  const MCSymbol *const SymA = &Target.getSymA()->getSymbol();

  MCAsmBackend &Backend = Asm.getBackend();
  bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
                 MCFixupKindInfo::FKF_IsPCRel;

  uint8_t Type;
  uint8_t SignAndSize;
  std::tie(Type, SignAndSize) =
      TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel);

  const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA));
  assert(SectionMap.find(SymASec) != SectionMap.end() &&
         "Expected containing csect to exist in map.");

  const uint32_t Index = getIndex(SymA, SymASec);
  if (Type == XCOFF::RelocationType::R_POS ||
      Type == XCOFF::RelocationType::R_TLS)
    // The FixedValue should be symbol's virtual address in this object file
    // plus any constant value that we might get.
    FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant();
  else if (Type == XCOFF::RelocationType::R_TLSM)
    // The FixedValue should always be zero since the region handle is only
    // known at load time.
    FixedValue = 0;
  else if (Type == XCOFF::RelocationType::R_TOC ||
           Type == XCOFF::RelocationType::R_TOCL) {
    // For non toc-data external symbols, R_TOC type relocation will relocate to
    // data symbols that have XCOFF::XTY_SD type csect. For toc-data external
    // symbols, R_TOC type relocation will relocate to data symbols that have
    // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC
    // entry for them, so the FixedValue should always be 0.
    if (SymASec->getCSectType() == XCOFF::XTY_ER) {
      FixedValue = 0;
    } else {
      // The FixedValue should be the TOC entry offset from the TOC-base plus
      // any constant offset value.
      const int64_t TOCEntryOffset = SectionMap[SymASec]->Address -
                                     TOCCsects.front().Address +
                                     Target.getConstant();
      if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset))
        report_fatal_error("TOCEntryOffset overflows in small code model mode");

      FixedValue = TOCEntryOffset;
    }
  } else if (Type == XCOFF::RelocationType::R_RBR) {
    MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent());
    assert((SymASec->getMappingClass() == XCOFF::XMC_PR &&
            ParentSec->getMappingClass() == XCOFF::XMC_PR) &&
           "Only XMC_PR csect may have the R_RBR relocation.");

    // The address of the branch instruction should be the sum of section
    // address, fragment offset and Fixup offset.
    uint64_t BRInstrAddress = SectionMap[ParentSec]->Address +
                              Layout.getFragmentOffset(Fragment) +
                              Fixup.getOffset();
    // The FixedValue should be the difference between SymA csect address and BR
    // instr address plus any constant value.
    FixedValue =
        SectionMap[SymASec]->Address - BRInstrAddress + Target.getConstant();
  }

  assert((Fixup.getOffset() <=
          MaxRawDataSize - Layout.getFragmentOffset(Fragment)) &&
         "Fragment offset + fixup offset is overflowed.");
  uint32_t FixupOffsetInCsect =
      Layout.getFragmentOffset(Fragment) + Fixup.getOffset();

  XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type};
  MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent());
  assert(SectionMap.find(RelocationSec) != SectionMap.end() &&
         "Expected containing csect to exist in map.");
  SectionMap[RelocationSec]->Relocations.push_back(Reloc);

  if (!Target.getSymB())
    return;

  const MCSymbol *const SymB = &Target.getSymB()->getSymbol();
  if (SymA == SymB)
    report_fatal_error("relocation for opposite term is not yet supported");

  const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB));
  assert(SectionMap.find(SymBSec) != SectionMap.end() &&
         "Expected containing csect to exist in map.");
  if (SymASec == SymBSec)
    report_fatal_error(
        "relocation for paired relocatable term is not yet supported");

  assert(Type == XCOFF::RelocationType::R_POS &&
         "SymA must be R_POS here if it's not opposite term or paired "
         "relocatable term.");
  const uint32_t IndexB = getIndex(SymB, SymBSec);
  // SymB must be R_NEG here, given the general form of Target(MCValue) is
  // "SymbolA - SymbolB + imm64".
  const uint8_t TypeB = XCOFF::RelocationType::R_NEG;
  XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB};
  SectionMap[RelocationSec]->Relocations.push_back(RelocB);
  // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA,
  // now we just need to fold "- SymbolB" here.
  FixedValue -= getVirtualAddress(SymB, SymBSec);
}

void XCOFFObjectWriter::writeSections(const MCAssembler &Asm,
                                      const MCAsmLayout &Layout) {
  uint64_t CurrentAddressLocation = 0;
  for (const auto *Section : Sections)
    writeSectionForControlSectionEntry(Asm, Layout, *Section,
                                       CurrentAddressLocation);
  for (const auto &DwarfSection : DwarfSections)
    writeSectionForDwarfSectionEntry(Asm, Layout, DwarfSection,
                                     CurrentAddressLocation);
  writeSectionForExceptionSectionEntry(Asm, Layout, ExceptionSection,
                                       CurrentAddressLocation);
}

uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm,
                                        const MCAsmLayout &Layout) {
  // We always emit a timestamp of 0 for reproducibility, so ensure incremental
  // linking is not enabled, in case, like with Windows COFF, such a timestamp
  // is incompatible with incremental linking of XCOFF.
  if (Asm.isIncrementalLinkerCompatible())
    report_fatal_error("Incremental linking not supported for XCOFF.");

  finalizeSectionInfo();
  uint64_t StartOffset = W.OS.tell();

  writeFileHeader();
  writeAuxFileHeader();
  writeSectionHeaderTable();
  writeSections(Asm, Layout);
  writeRelocations();
  writeSymbolTable(Layout);
  // Write the string table.
  Strings.write(W.OS);

  return W.OS.tell() - StartOffset;
}

bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
  return SymbolName.size() > XCOFF::NameSize || is64Bit();
}

void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
  // Magic, Offset or SymbolName.
  if (nameShouldBeInStringTable(SymbolName)) {
    W.write<int32_t>(0);
    W.write<uint32_t>(Strings.getOffset(SymbolName));
  } else {
    char Name[XCOFF::NameSize + 1];
    std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
    ArrayRef<char> NameRef(Name, XCOFF::NameSize);
    W.write(NameRef);
  }
}

void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value,
                                         int16_t SectionNumber,
                                         uint16_t SymbolType,
                                         uint8_t StorageClass,
                                         uint8_t NumberOfAuxEntries) {
  if (is64Bit()) {
    W.write<uint64_t>(Value);
    W.write<uint32_t>(Strings.getOffset(SymbolName));
  } else {
    writeSymbolName(SymbolName);
    W.write<uint32_t>(Value);
  }
  W.write<int16_t>(SectionNumber);
  W.write<uint16_t>(SymbolType);
  W.write<uint8_t>(StorageClass);
  W.write<uint8_t>(NumberOfAuxEntries);
}

void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
                                                 uint8_t SymbolAlignmentAndType,
                                                 uint8_t StorageMappingClass) {
  W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength);
  W.write<uint32_t>(0); // ParameterHashIndex
  W.write<uint16_t>(0); // TypeChkSectNum
  W.write<uint8_t>(SymbolAlignmentAndType);
  W.write<uint8_t>(StorageMappingClass);
  if (is64Bit()) {
    W.write<uint32_t>(Hi_32(SectionOrLength));
    W.OS.write_zeros(1); // Reserved
    W.write<uint8_t>(XCOFF::AUX_CSECT);
  } else {
    W.write<uint32_t>(0); // StabInfoIndex
    W.write<uint16_t>(0); // StabSectNum
  }
}

void XCOFFObjectWriter::writeSymbolAuxDwarfEntry(
    uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) {
  writeWord(LengthOfSectionPortion);
  if (!is64Bit())
    W.OS.write_zeros(4); // Reserved
  writeWord(NumberOfRelocEnt);
  if (is64Bit()) {
    W.OS.write_zeros(1); // Reserved
    W.write<uint8_t>(XCOFF::AUX_SECT);
  } else {
    W.OS.write_zeros(6); // Reserved
  }
}

void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel(
    const Symbol &SymbolRef, const XCOFFSection &CSectionRef,
    int16_t SectionIndex, uint64_t SymbolOffset) {
  assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address &&
         "Symbol address overflowed.");

  auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName());
  if (Entry != ExceptionSection.ExceptionTable.end()) {
    writeSymbolEntry(SymbolRef.getSymbolTableName(),
                     CSectionRef.Address + SymbolOffset, SectionIndex,
                     // In the old version of the 32-bit XCOFF interpretation,
                     // symbols may require bit 10 (0x0020) to be set if the
                     // symbol is a function, otherwise the bit should be 0.
                     is64Bit() ? SymbolRef.getVisibilityType()
                               : SymbolRef.getVisibilityType() | 0x0020,
                     SymbolRef.getStorageClass(),
                     (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2);
    if (is64Bit() && ExceptionSection.isDebugEnabled) {
      // On 64 bit with debugging enabled, we have a csect, exception, and
      // function auxilliary entries, so we must increment symbol index by 4.
      writeSymbolAuxExceptionEntry(
          ExceptionSection.FileOffsetToData +
              getExceptionOffset(Entry->second.FunctionSymbol),
          Entry->second.FunctionSize,
          SymbolIndexMap[Entry->second.FunctionSymbol] + 4);
    }
    // For exception section entries, csect and function auxilliary entries
    // must exist. On 64-bit there is also an exception auxilliary entry.
    writeSymbolAuxFunctionEntry(
        ExceptionSection.FileOffsetToData +
            getExceptionOffset(Entry->second.FunctionSymbol),
        Entry->second.FunctionSize, 0,
        (is64Bit() && ExceptionSection.isDebugEnabled)
            ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4
            : SymbolIndexMap[Entry->second.FunctionSymbol] + 3);
  } else {
    writeSymbolEntry(SymbolRef.getSymbolTableName(),
                     CSectionRef.Address + SymbolOffset, SectionIndex,
                     SymbolRef.getVisibilityType(),
                     SymbolRef.getStorageClass());
  }
  writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD,
                           CSectionRef.MCSec->getMappingClass());
}

void XCOFFObjectWriter::writeSymbolEntryForDwarfSection(
    const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) {
  assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!");

  writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0,
                   SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF);

  writeSymbolAuxDwarfEntry(DwarfSectionRef.Size);
}

void XCOFFObjectWriter::writeSymbolEntryForControlSection(
    const XCOFFSection &CSectionRef, int16_t SectionIndex,
    XCOFF::StorageClass StorageClass) {
  writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address,
                   SectionIndex, CSectionRef.getVisibilityType(), StorageClass);

  writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec),
                           CSectionRef.MCSec->getMappingClass());
}

void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset,
                                                    uint32_t FunctionSize,
                                                    uint64_t LineNumberPointer,
                                                    uint32_t EndIndex) {
  if (is64Bit())
    writeWord(LineNumberPointer);
  else
    W.write<uint32_t>(EntryOffset);
  W.write<uint32_t>(FunctionSize);
  if (!is64Bit())
    writeWord(LineNumberPointer);
  W.write<uint32_t>(EndIndex);
  if (is64Bit()) {
    W.OS.write_zeros(1);
    W.write<uint8_t>(XCOFF::AUX_FCN);
  } else {
    W.OS.write_zeros(2);
  }
}

void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset,
                                                     uint32_t FunctionSize,
                                                     uint32_t EndIndex) {
  assert(is64Bit() && "Exception auxilliary entries are 64-bit only.");
  W.write<uint64_t>(EntryOffset);
  W.write<uint32_t>(FunctionSize);
  W.write<uint32_t>(EndIndex);
  W.OS.write_zeros(1); // Pad (unused)
  W.write<uint8_t>(XCOFF::AUX_EXCEPT);
}

void XCOFFObjectWriter::writeFileHeader() {
  W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32);
  W.write<uint16_t>(SectionCount);
  W.write<int32_t>(0); // TimeStamp
  writeWord(SymbolTableOffset);
  if (is64Bit()) {
    W.write<uint16_t>(auxiliaryHeaderSize());
    W.write<uint16_t>(0); // Flags
    W.write<int32_t>(SymbolTableEntryCount);
  } else {
    W.write<int32_t>(SymbolTableEntryCount);
    W.write<uint16_t>(auxiliaryHeaderSize());
    W.write<uint16_t>(0); // Flags
  }
}

void XCOFFObjectWriter::writeAuxFileHeader() {
  if (!auxiliaryHeaderSize())
    return;
  W.write<uint16_t>(0); // Magic
  W.write<uint16_t>(
      XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the
                                   // n_type field in the symbol table entry is
                                   // used in XCOFF32.
  W.write<uint32_t>(Sections[0]->Size);    // TextSize
  W.write<uint32_t>(Sections[1]->Size);    // InitDataSize
  W.write<uint32_t>(Sections[2]->Size);    // BssDataSize
  W.write<uint32_t>(0);                    // EntryPointAddr
  W.write<uint32_t>(Sections[0]->Address); // TextStartAddr
  W.write<uint32_t>(Sections[1]->Address); // DataStartAddr
}

void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) {
  bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0;
  bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0;
  // Nothing to write for this Section.
  if (Sec->Index == SectionEntry::UninitializedIndex)
    return;

  // Write Name.
  ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
  W.write(NameRef);

  // Write the Physical Address and Virtual Address.
  // We use 0 for DWARF sections' Physical and Virtual Addresses.
  writeWord(IsDwarf ? 0 : Sec->Address);
  // Since line number is not supported, we set it to 0 for overflow sections.
  writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address);

  writeWord(Sec->Size);
  writeWord(Sec->FileOffsetToData);
  writeWord(Sec->FileOffsetToRelocations);
  writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet.

  if (is64Bit()) {
    W.write<uint32_t>(Sec->RelocationCount);
    W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet.
    W.write<int32_t>(Sec->Flags);
    W.OS.write_zeros(4);
  } else {
    // For the overflow section header, s_nreloc provides a reference to the
    // primary section header and s_nlnno must have the same value.
    // For common section headers, if either of s_nreloc or s_nlnno are set to
    // 65535, the other one must also be set to 65535.
    W.write<uint16_t>(Sec->RelocationCount);
    W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow)
                          ? Sec->RelocationCount
                          : 0); // NumberOfLineNumbers. Not supported yet.
    W.write<int32_t>(Sec->Flags);
  }
}

void XCOFFObjectWriter::writeSectionHeaderTable() {
  for (const auto *CsectSec : Sections)
    writeSectionHeader(CsectSec);
  for (const auto &DwarfSec : DwarfSections)
    writeSectionHeader(&DwarfSec);
  for (const auto &OverflowSec : OverflowSections)
    writeSectionHeader(&OverflowSec);
  if (hasExceptionSection())
    writeSectionHeader(&ExceptionSection);
}

void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc,
                                        const XCOFFSection &Section) {
  if (Section.MCSec->isCsect())
    writeWord(Section.Address + Reloc.FixupOffsetInCsect);
  else {
    // DWARF sections' address is set to 0.
    assert(Section.MCSec->isDwarfSect() && "unsupport section type!");
    writeWord(Reloc.FixupOffsetInCsect);
  }
  W.write<uint32_t>(Reloc.SymbolTableIndex);
  W.write<uint8_t>(Reloc.SignAndSize);
  W.write<uint8_t>(Reloc.Type);
}

void XCOFFObjectWriter::writeRelocations() {
  for (const auto *Section : Sections) {
    if (Section->Index == SectionEntry::UninitializedIndex)
      // Nothing to write for this Section.
      continue;

    for (const auto *Group : Section->Groups) {
      if (Group->empty())
        continue;

      for (const auto &Csect : *Group) {
        for (const auto Reloc : Csect.Relocations)
          writeRelocation(Reloc, Csect);
      }
    }
  }

  for (const auto &DwarfSection : DwarfSections)
    for (const auto &Reloc : DwarfSection.DwarfSect->Relocations)
      writeRelocation(Reloc, *DwarfSection.DwarfSect);
}

void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) {
  // Write C_FILE symbols.
  // The n_name of a C_FILE symbol is the source file's name when no auxiliary
  // entries are present.
  for (const std::pair<std::string, size_t> &F : FileNames) {
    writeSymbolEntry(F.first, /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG,
                     /*SymbolType=*/0, XCOFF::C_FILE,
                     /*NumberOfAuxEntries=*/0);
  }

  for (const auto &Csect : UndefinedCsects) {
    writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF,
                                      Csect.MCSec->getStorageClass());
  }

  for (const auto *Section : Sections) {
    if (Section->Index == SectionEntry::UninitializedIndex)
      // Nothing to write for this Section.
      continue;

    for (const auto *Group : Section->Groups) {
      if (Group->empty())
        continue;

      const int16_t SectionIndex = Section->Index;
      for (const auto &Csect : *Group) {
        // Write out the control section first and then each symbol in it.
        writeSymbolEntryForControlSection(Csect, SectionIndex,
                                          Csect.MCSec->getStorageClass());

        for (const auto &Sym : Csect.Syms)
          writeSymbolEntryForCsectMemberLabel(
              Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym)));
      }
    }
  }

  for (const auto &DwarfSection : DwarfSections)
    writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect,
                                    DwarfSection.Index);
}

void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec,
                                               uint64_t RelCount) {
  // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file
  // may not contain an overflow section header.
  if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) {
    // Generate an overflow section header.
    SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO);

    // This field specifies the file section number of the section header that
    // overflowed.
    SecEntry.RelocationCount = Sec->Index;

    // This field specifies the number of relocation entries actually
    // required.
    SecEntry.Address = RelCount;
    SecEntry.Index = ++SectionCount;
    OverflowSections.push_back(std::move(SecEntry));

    // The field in the primary section header is always 65535
    // (XCOFF::RelocOverflow).
    Sec->RelocationCount = XCOFF::RelocOverflow;
  } else {
    Sec->RelocationCount = RelCount;
  }
}

void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec,
                                                uint64_t &RawPointer) {
  if (!Sec->RelocationCount)
    return;

  Sec->FileOffsetToRelocations = RawPointer;
  uint64_t RelocationSizeInSec = 0;
  if (!is64Bit() &&
      Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) {
    // Find its corresponding overflow section.
    for (auto &OverflowSec : OverflowSections) {
      if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) {
        RelocationSizeInSec =
            OverflowSec.Address * XCOFF::RelocationSerializationSize32;

        // This field must have the same values as in the corresponding
        // primary section header.
        OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations;
      }
    }
    assert(RelocationSizeInSec && "Overflow section header doesn't exist.");
  } else {
    RelocationSizeInSec = Sec->RelocationCount *
                          (is64Bit() ? XCOFF::RelocationSerializationSize64
                                     : XCOFF::RelocationSerializationSize32);
  }

  RawPointer += RelocationSizeInSec;
  if (RawPointer > MaxRawDataSize)
    report_fatal_error("Relocation data overflowed this object file.");
}

void XCOFFObjectWriter::finalizeSectionInfo() {
  for (auto *Section : Sections) {
    if (Section->Index == SectionEntry::UninitializedIndex)
      // Nothing to record for this Section.
      continue;

    uint64_t RelCount = 0;
    for (const auto *Group : Section->Groups) {
      if (Group->empty())
        continue;

      for (auto &Csect : *Group)
        RelCount += Csect.Relocations.size();
    }
    finalizeRelocationInfo(Section, RelCount);
  }

  for (auto &DwarfSection : DwarfSections)
    finalizeRelocationInfo(&DwarfSection,
                           DwarfSection.DwarfSect->Relocations.size());

  // Calculate the RawPointer value for all headers.
  uint64_t RawPointer =
      (is64Bit() ? (XCOFF::FileHeaderSize64 +
                    SectionCount * XCOFF::SectionHeaderSize64)
                 : (XCOFF::FileHeaderSize32 +
                    SectionCount * XCOFF::SectionHeaderSize32)) +
      auxiliaryHeaderSize();

  // Calculate the file offset to the section data.
  for (auto *Sec : Sections) {
    if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual)
      continue;

    Sec->FileOffsetToData = RawPointer;
    RawPointer += Sec->Size;
    if (RawPointer > MaxRawDataSize)
      report_fatal_error("Section raw data overflowed this object file.");
  }

  if (!DwarfSections.empty()) {
    RawPointer += PaddingsBeforeDwarf;
    for (auto &DwarfSection : DwarfSections) {
      DwarfSection.FileOffsetToData = RawPointer;
      RawPointer += DwarfSection.MemorySize;
      if (RawPointer > MaxRawDataSize)
        report_fatal_error("Section raw data overflowed this object file.");
    }
  }

  if (hasExceptionSection()) {
    ExceptionSection.FileOffsetToData = RawPointer;
    RawPointer += ExceptionSection.Size;

    assert(RawPointer <= MaxRawDataSize &&
           "Section raw data overflowed this object file.");
  }

  for (auto *Sec : Sections) {
    if (Sec->Index != SectionEntry::UninitializedIndex)
      calcOffsetToRelocations(Sec, RawPointer);
  }

  for (auto &DwarfSec : DwarfSections)
    calcOffsetToRelocations(&DwarfSec, RawPointer);

  // TODO Error check that the number of symbol table entries fits in 32-bits
  // signed ...
  if (SymbolTableEntryCount)
    SymbolTableOffset = RawPointer;
}

void XCOFFObjectWriter::addExceptionEntry(
    const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode,
    unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) {
  // If a module had debug info, debugging is enabled and XCOFF emits the
  // exception auxilliary entry.
  if (hasDebug)
    ExceptionSection.isDebugEnabled = true;
  auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName());
  if (Entry != ExceptionSection.ExceptionTable.end()) {
    Entry->second.Entries.push_back(
        ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
    return;
  }
  ExceptionInfo NewEntry;
  NewEntry.FunctionSymbol = Symbol;
  NewEntry.FunctionSize = FunctionSize;
  NewEntry.Entries.push_back(
      ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
  ExceptionSection.ExceptionTable.insert(
      std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry));
}

unsigned XCOFFObjectWriter::getExceptionSectionSize() {
  unsigned EntryNum = 0;

  for (auto it = ExceptionSection.ExceptionTable.begin();
       it != ExceptionSection.ExceptionTable.end(); ++it)
    // The size() gets +1 to account for the initial entry containing the
    // symbol table index.
    EntryNum += it->second.Entries.size() + 1;

  return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
                               : XCOFF::ExceptionSectionEntrySize32);
}

unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) {
  unsigned EntryNum = 0;
  for (auto it = ExceptionSection.ExceptionTable.begin();
       it != ExceptionSection.ExceptionTable.end(); ++it) {
    if (Symbol == it->second.FunctionSymbol)
      break;
    EntryNum += it->second.Entries.size() + 1;
  }
  return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
                               : XCOFF::ExceptionSectionEntrySize32);
}

void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) {
  // The symbol table starts with all the C_FILE symbols.
  uint32_t SymbolTableIndex = FileNames.size();

  // Calculate indices for undefined symbols.
  for (auto &Csect : UndefinedCsects) {
    Csect.Size = 0;
    Csect.Address = 0;
    Csect.SymbolTableIndex = SymbolTableIndex;
    SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
    // 1 main and 1 auxiliary symbol table entry for each contained symbol.
    SymbolTableIndex += 2;
  }

  // The address corrresponds to the address of sections and symbols in the
  // object file. We place the shared address 0 immediately after the
  // section header table.
  uint64_t Address = 0;
  // Section indices are 1-based in XCOFF.
  int32_t SectionIndex = 1;
  bool HasTDataSection = false;

  for (auto *Section : Sections) {
    const bool IsEmpty =
        llvm::all_of(Section->Groups,
                     [](const CsectGroup *Group) { return Group->empty(); });
    if (IsEmpty)
      continue;

    if (SectionIndex > MaxSectionIndex)
      report_fatal_error("Section index overflow!");
    Section->Index = SectionIndex++;
    SectionCount++;

    bool SectionAddressSet = false;
    // Reset the starting address to 0 for TData section.
    if (Section->Flags == XCOFF::STYP_TDATA) {
      Address = 0;
      HasTDataSection = true;
    }
    // Reset the starting address to 0 for TBSS section if the object file does
    // not contain TData Section.
    if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection)
      Address = 0;

    for (auto *Group : Section->Groups) {
      if (Group->empty())
        continue;

      for (auto &Csect : *Group) {
        const MCSectionXCOFF *MCSec = Csect.MCSec;
        Csect.Address = alignTo(Address, MCSec->getAlign());
        Csect.Size = Layout.getSectionAddressSize(MCSec);
        Address = Csect.Address + Csect.Size;
        Csect.SymbolTableIndex = SymbolTableIndex;
        SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
        // 1 main and 1 auxiliary symbol table entry for the csect.
        SymbolTableIndex += 2;

        for (auto &Sym : Csect.Syms) {
          bool hasExceptEntry = false;
          auto Entry =
              ExceptionSection.ExceptionTable.find(Sym.MCSym->getName());
          if (Entry != ExceptionSection.ExceptionTable.end()) {
            hasExceptEntry = true;
            for (auto &TrapEntry : Entry->second.Entries) {
              TrapEntry.TrapAddress = Layout.getSymbolOffset(*(Sym.MCSym)) +
                                      TrapEntry.Trap->getOffset();
            }
          }
          Sym.SymbolTableIndex = SymbolTableIndex;
          SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex;
          // 1 main and 1 auxiliary symbol table entry for each contained
          // symbol. For symbols with exception section entries, a function
          // auxilliary entry is needed, and on 64-bit XCOFF with debugging
          // enabled, an additional exception auxilliary entry is needed.
          SymbolTableIndex += 2;
          if (hasExceptionSection() && hasExceptEntry) {
            if (is64Bit() && ExceptionSection.isDebugEnabled)
              SymbolTableIndex += 2;
            else
              SymbolTableIndex += 1;
          }
        }
      }

      if (!SectionAddressSet) {
        Section->Address = Group->front().Address;
        SectionAddressSet = true;
      }
    }

    // Make sure the address of the next section aligned to
    // DefaultSectionAlign.
    Address = alignTo(Address, DefaultSectionAlign);
    Section->Size = Address - Section->Address;
  }

  // Start to generate DWARF sections. Sections other than DWARF section use
  // DefaultSectionAlign as the default alignment, while DWARF sections have
  // their own alignments. If these two alignments are not the same, we need
  // some paddings here and record the paddings bytes for FileOffsetToData
  // calculation.
  if (!DwarfSections.empty())
    PaddingsBeforeDwarf =
        alignTo(Address,
                (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) -
        Address;

  DwarfSectionEntry *LastDwarfSection = nullptr;
  for (auto &DwarfSection : DwarfSections) {
    assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!");

    XCOFFSection &DwarfSect = *DwarfSection.DwarfSect;
    const MCSectionXCOFF *MCSec = DwarfSect.MCSec;

    // Section index.
    DwarfSection.Index = SectionIndex++;
    SectionCount++;

    // Symbol index.
    DwarfSect.SymbolTableIndex = SymbolTableIndex;
    SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex;
    // 1 main and 1 auxiliary symbol table entry for the csect.
    SymbolTableIndex += 2;

    // Section address. Make it align to section alignment.
    // We use address 0 for DWARF sections' Physical and Virtual Addresses.
    // This address is used to tell where is the section in the final object.
    // See writeSectionForDwarfSectionEntry().
    DwarfSection.Address = DwarfSect.Address =
        alignTo(Address, MCSec->getAlign());

    // Section size.
    // For DWARF section, we must use the real size which may be not aligned.
    DwarfSection.Size = DwarfSect.Size = Layout.getSectionAddressSize(MCSec);

    Address = DwarfSection.Address + DwarfSection.Size;

    if (LastDwarfSection)
      LastDwarfSection->MemorySize =
          DwarfSection.Address - LastDwarfSection->Address;
    LastDwarfSection = &DwarfSection;
  }
  if (LastDwarfSection) {
    // Make the final DWARF section address align to the default section
    // alignment for follow contents.
    Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size,
                      DefaultSectionAlign);
    LastDwarfSection->MemorySize = Address - LastDwarfSection->Address;
  }
  if (hasExceptionSection()) {
    ExceptionSection.Index = SectionIndex++;
    SectionCount++;
    ExceptionSection.Address = 0;
    ExceptionSection.Size = getExceptionSectionSize();
    Address += ExceptionSection.Size;
    Address = alignTo(Address, DefaultSectionAlign);
  }

  SymbolTableEntryCount = SymbolTableIndex;
}

void XCOFFObjectWriter::writeSectionForControlSectionEntry(
    const MCAssembler &Asm, const MCAsmLayout &Layout,
    const CsectSectionEntry &CsectEntry, uint64_t &CurrentAddressLocation) {
  // Nothing to write for this Section.
  if (CsectEntry.Index == SectionEntry::UninitializedIndex)
    return;

  // There could be a gap (without corresponding zero padding) between
  // sections.
  // There could be a gap (without corresponding zero padding) between
  // sections.
  assert(((CurrentAddressLocation <= CsectEntry.Address) ||
          (CsectEntry.Flags == XCOFF::STYP_TDATA) ||
          (CsectEntry.Flags == XCOFF::STYP_TBSS)) &&
         "CurrentAddressLocation should be less than or equal to section "
         "address if the section is not TData or TBSS.");

  CurrentAddressLocation = CsectEntry.Address;

  // For virtual sections, nothing to write. But need to increase
  // CurrentAddressLocation for later sections like DWARF section has a correct
  // writing location.
  if (CsectEntry.IsVirtual) {
    CurrentAddressLocation += CsectEntry.Size;
    return;
  }

  for (const auto &Group : CsectEntry.Groups) {
    for (const auto &Csect : *Group) {
      if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
        W.OS.write_zeros(PaddingSize);
      if (Csect.Size)
        Asm.writeSectionData(W.OS, Csect.MCSec, Layout);
      CurrentAddressLocation = Csect.Address + Csect.Size;
    }
  }

  // The size of the tail padding in a section is the end virtual address of
  // the current section minus the the end virtual address of the last csect
  // in that section.
  if (uint64_t PaddingSize =
          CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) {
    W.OS.write_zeros(PaddingSize);
    CurrentAddressLocation += PaddingSize;
  }
}

void XCOFFObjectWriter::writeSectionForDwarfSectionEntry(
    const MCAssembler &Asm, const MCAsmLayout &Layout,
    const DwarfSectionEntry &DwarfEntry, uint64_t &CurrentAddressLocation) {
  // There could be a gap (without corresponding zero padding) between
  // sections. For example DWARF section alignment is bigger than
  // DefaultSectionAlign.
  assert(CurrentAddressLocation <= DwarfEntry.Address &&
         "CurrentAddressLocation should be less than or equal to section "
         "address.");

  if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation)
    W.OS.write_zeros(PaddingSize);

  if (DwarfEntry.Size)
    Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec, Layout);

  CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size;

  // DWARF section size is not aligned to DefaultSectionAlign.
  // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign.
  uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign;
  uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0;
  if (TailPaddingSize)
    W.OS.write_zeros(TailPaddingSize);

  CurrentAddressLocation += TailPaddingSize;
}

void XCOFFObjectWriter::writeSectionForExceptionSectionEntry(
    const MCAssembler &Asm, const MCAsmLayout &Layout,
    ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation) {
  for (auto it = ExceptionEntry.ExceptionTable.begin();
       it != ExceptionEntry.ExceptionTable.end(); it++) {
    // For every symbol that has exception entries, you must start the entries
    // with an initial symbol table index entry
    W.write<uint32_t>(SymbolIndexMap[it->second.FunctionSymbol]);
    if (is64Bit()) {
      // 4-byte padding on 64-bit.
      W.OS.write_zeros(4);
    }
    W.OS.write_zeros(2);
    for (auto &TrapEntry : it->second.Entries) {
      writeWord(TrapEntry.TrapAddress);
      W.write<uint8_t>(TrapEntry.Lang);
      W.write<uint8_t>(TrapEntry.Reason);
    }
  }

  CurrentAddressLocation += getExceptionSectionSize();
}

// Takes the log base 2 of the alignment and shifts the result into the 5 most
// significant bits of a byte, then or's in the csect type into the least
// significant 3 bits.
uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
  unsigned Log2Align = Log2(Sec->getAlign());
  // Result is a number in the range [0, 31] which fits in the 5 least
  // significant bits. Shift this value into the 5 most significant bits, and
  // bitwise-or in the csect type.
  uint8_t EncodedAlign = Log2Align << 3;
  return EncodedAlign | Sec->getCSectType();
}

} // end anonymous namespace

std::unique_ptr<MCObjectWriter>
llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
                              raw_pwrite_stream &OS) {
  return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);
}