aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Linker/IRMover.cpp
blob: 517e2dc8ebe030014057cb02130e3335bfc9e59f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Linker/IRMover.h"
#include "LinkDiagnosticInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PseudoProbe.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Path.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <optional>
#include <utility>
using namespace llvm;

//===----------------------------------------------------------------------===//
// TypeMap implementation.
//===----------------------------------------------------------------------===//

namespace {
class TypeMapTy : public ValueMapTypeRemapper {
  /// This is a mapping from a source type to a destination type to use.
  DenseMap<Type *, Type *> MappedTypes;

  /// When checking to see if two subgraphs are isomorphic, we speculatively
  /// add types to MappedTypes, but keep track of them here in case we need to
  /// roll back.
  SmallVector<Type *, 16> SpeculativeTypes;

  SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;

  /// This is a list of non-opaque structs in the source module that are mapped
  /// to an opaque struct in the destination module.
  SmallVector<StructType *, 16> SrcDefinitionsToResolve;

  /// This is the set of opaque types in the destination modules who are
  /// getting a body from the source module.
  SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;

public:
  TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
      : DstStructTypesSet(DstStructTypesSet) {}

  IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
  /// Indicate that the specified type in the destination module is conceptually
  /// equivalent to the specified type in the source module.
  void addTypeMapping(Type *DstTy, Type *SrcTy);

  /// Produce a body for an opaque type in the dest module from a type
  /// definition in the source module.
  void linkDefinedTypeBodies();

  /// Return the mapped type to use for the specified input type from the
  /// source module.
  Type *get(Type *SrcTy);
  Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);

  void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);

  FunctionType *get(FunctionType *T) {
    return cast<FunctionType>(get((Type *)T));
  }

private:
  Type *remapType(Type *SrcTy) override { return get(SrcTy); }

  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
};
}

void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
  assert(SpeculativeTypes.empty());
  assert(SpeculativeDstOpaqueTypes.empty());

  // Check to see if these types are recursively isomorphic and establish a
  // mapping between them if so.
  if (!areTypesIsomorphic(DstTy, SrcTy)) {
    // Oops, they aren't isomorphic.  Just discard this request by rolling out
    // any speculative mappings we've established.
    for (Type *Ty : SpeculativeTypes)
      MappedTypes.erase(Ty);

    SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
                                   SpeculativeDstOpaqueTypes.size());
    for (StructType *Ty : SpeculativeDstOpaqueTypes)
      DstResolvedOpaqueTypes.erase(Ty);
  } else {
    // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
    // and all its descendants to lower amount of renaming in LLVM context
    // Renaming occurs because we load all source modules to the same context
    // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
    // As a result we may get several different types in the destination
    // module, which are in fact the same.
    for (Type *Ty : SpeculativeTypes)
      if (auto *STy = dyn_cast<StructType>(Ty))
        if (STy->hasName())
          STy->setName("");
  }
  SpeculativeTypes.clear();
  SpeculativeDstOpaqueTypes.clear();
}

/// Recursively walk this pair of types, returning true if they are isomorphic,
/// false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
  // Two types with differing kinds are clearly not isomorphic.
  if (DstTy->getTypeID() != SrcTy->getTypeID())
    return false;

  // If we have an entry in the MappedTypes table, then we have our answer.
  Type *&Entry = MappedTypes[SrcTy];
  if (Entry)
    return Entry == DstTy;

  // Two identical types are clearly isomorphic.  Remember this
  // non-speculatively.
  if (DstTy == SrcTy) {
    Entry = DstTy;
    return true;
  }

  // Okay, we have two types with identical kinds that we haven't seen before.

  // If this is an opaque struct type, special case it.
  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    // Mapping an opaque type to any struct, just keep the dest struct.
    if (SSTy->isOpaque()) {
      Entry = DstTy;
      SpeculativeTypes.push_back(SrcTy);
      return true;
    }

    // Mapping a non-opaque source type to an opaque dest.  If this is the first
    // type that we're mapping onto this destination type then we succeed.  Keep
    // the dest, but fill it in later. If this is the second (different) type
    // that we're trying to map onto the same opaque type then we fail.
    if (cast<StructType>(DstTy)->isOpaque()) {
      // We can only map one source type onto the opaque destination type.
      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
        return false;
      SrcDefinitionsToResolve.push_back(SSTy);
      SpeculativeTypes.push_back(SrcTy);
      SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
      Entry = DstTy;
      return true;
    }
  }

  // If the number of subtypes disagree between the two types, then we fail.
  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    return false;

  // Fail if any of the extra properties (e.g. array size) of the type disagree.
  if (isa<IntegerType>(DstTy))
    return false; // bitwidth disagrees.
  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
      return false;
  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
      return false;
  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    StructType *SSTy = cast<StructType>(SrcTy);
    if (DSTy->isLiteral() != SSTy->isLiteral() ||
        DSTy->isPacked() != SSTy->isPacked())
      return false;
  } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
    if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
      return false;
  } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
    if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
      return false;
  }

  // Otherwise, we speculate that these two types will line up and recursively
  // check the subelements.
  Entry = DstTy;
  SpeculativeTypes.push_back(SrcTy);

  for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
    if (!areTypesIsomorphic(DstTy->getContainedType(I),
                            SrcTy->getContainedType(I)))
      return false;

  // If everything seems to have lined up, then everything is great.
  return true;
}

void TypeMapTy::linkDefinedTypeBodies() {
  SmallVector<Type *, 16> Elements;
  for (StructType *SrcSTy : SrcDefinitionsToResolve) {
    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    assert(DstSTy->isOpaque());

    // Map the body of the source type over to a new body for the dest type.
    Elements.resize(SrcSTy->getNumElements());
    for (unsigned I = 0, E = Elements.size(); I != E; ++I)
      Elements[I] = get(SrcSTy->getElementType(I));

    DstSTy->setBody(Elements, SrcSTy->isPacked());
    DstStructTypesSet.switchToNonOpaque(DstSTy);
  }
  SrcDefinitionsToResolve.clear();
  DstResolvedOpaqueTypes.clear();
}

void TypeMapTy::finishType(StructType *DTy, StructType *STy,
                           ArrayRef<Type *> ETypes) {
  DTy->setBody(ETypes, STy->isPacked());

  // Steal STy's name.
  if (STy->hasName()) {
    SmallString<16> TmpName = STy->getName();
    STy->setName("");
    DTy->setName(TmpName);
  }

  DstStructTypesSet.addNonOpaque(DTy);
}

Type *TypeMapTy::get(Type *Ty) {
  SmallPtrSet<StructType *, 8> Visited;
  return get(Ty, Visited);
}

Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
  // If we already have an entry for this type, return it.
  Type **Entry = &MappedTypes[Ty];
  if (*Entry)
    return *Entry;

  // These are types that LLVM itself will unique.
  bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();

  if (!IsUniqued) {
#ifndef NDEBUG
    for (auto &Pair : MappedTypes) {
      assert(!(Pair.first != Ty && Pair.second == Ty) &&
             "mapping to a source type");
    }
#endif

    if (!Visited.insert(cast<StructType>(Ty)).second) {
      StructType *DTy = StructType::create(Ty->getContext());
      return *Entry = DTy;
    }
  }

  // If this is not a recursive type, then just map all of the elements and
  // then rebuild the type from inside out.
  SmallVector<Type *, 4> ElementTypes;

  // If there are no element types to map, then the type is itself.  This is
  // true for the anonymous {} struct, things like 'float', integers, etc.
  if (Ty->getNumContainedTypes() == 0 && IsUniqued)
    return *Entry = Ty;

  // Remap all of the elements, keeping track of whether any of them change.
  bool AnyChange = false;
  ElementTypes.resize(Ty->getNumContainedTypes());
  for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
    ElementTypes[I] = get(Ty->getContainedType(I), Visited);
    AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
  }

  // If we found our type while recursively processing stuff, just use it.
  Entry = &MappedTypes[Ty];
  if (*Entry) {
    if (auto *DTy = dyn_cast<StructType>(*Entry)) {
      if (DTy->isOpaque()) {
        auto *STy = cast<StructType>(Ty);
        finishType(DTy, STy, ElementTypes);
      }
    }
    return *Entry;
  }

  // If all of the element types mapped directly over and the type is not
  // a named struct, then the type is usable as-is.
  if (!AnyChange && IsUniqued)
    return *Entry = Ty;

  // Otherwise, rebuild a modified type.
  switch (Ty->getTypeID()) {
  default:
    llvm_unreachable("unknown derived type to remap");
  case Type::ArrayTyID:
    return *Entry = ArrayType::get(ElementTypes[0],
                                   cast<ArrayType>(Ty)->getNumElements());
  case Type::ScalableVectorTyID:
  case Type::FixedVectorTyID:
    return *Entry = VectorType::get(ElementTypes[0],
                                    cast<VectorType>(Ty)->getElementCount());
  case Type::PointerTyID:
    return *Entry = PointerType::get(ElementTypes[0],
                                     cast<PointerType>(Ty)->getAddressSpace());
  case Type::FunctionTyID:
    return *Entry = FunctionType::get(ElementTypes[0],
                                      ArrayRef(ElementTypes).slice(1),
                                      cast<FunctionType>(Ty)->isVarArg());
  case Type::StructTyID: {
    auto *STy = cast<StructType>(Ty);
    bool IsPacked = STy->isPacked();
    if (IsUniqued)
      return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);

    // If the type is opaque, we can just use it directly.
    if (STy->isOpaque()) {
      DstStructTypesSet.addOpaque(STy);
      return *Entry = Ty;
    }

    if (StructType *OldT =
            DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
      STy->setName("");
      return *Entry = OldT;
    }

    if (!AnyChange) {
      DstStructTypesSet.addNonOpaque(STy);
      return *Entry = Ty;
    }

    StructType *DTy = StructType::create(Ty->getContext());
    finishType(DTy, STy, ElementTypes);
    return *Entry = DTy;
  }
  }
}

LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
                                       const Twine &Msg)
    : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }

//===----------------------------------------------------------------------===//
// IRLinker implementation.
//===----------------------------------------------------------------------===//

namespace {
class IRLinker;

/// Creates prototypes for functions that are lazily linked on the fly. This
/// speeds up linking for modules with many/ lazily linked functions of which
/// few get used.
class GlobalValueMaterializer final : public ValueMaterializer {
  IRLinker &TheIRLinker;

public:
  GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
  Value *materialize(Value *V) override;
};

class LocalValueMaterializer final : public ValueMaterializer {
  IRLinker &TheIRLinker;

public:
  LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
  Value *materialize(Value *V) override;
};

/// Type of the Metadata map in \a ValueToValueMapTy.
typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;

/// This is responsible for keeping track of the state used for moving data
/// from SrcM to DstM.
class IRLinker {
  Module &DstM;
  std::unique_ptr<Module> SrcM;

  /// See IRMover::move().
  IRMover::LazyCallback AddLazyFor;

  TypeMapTy TypeMap;
  GlobalValueMaterializer GValMaterializer;
  LocalValueMaterializer LValMaterializer;

  /// A metadata map that's shared between IRLinker instances.
  MDMapT &SharedMDs;

  /// Mapping of values from what they used to be in Src, to what they are now
  /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
  /// due to the use of Value handles which the Linker doesn't actually need,
  /// but this allows us to reuse the ValueMapper code.
  ValueToValueMapTy ValueMap;
  ValueToValueMapTy IndirectSymbolValueMap;

  DenseSet<GlobalValue *> ValuesToLink;
  std::vector<GlobalValue *> Worklist;
  std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;

  void maybeAdd(GlobalValue *GV) {
    if (ValuesToLink.insert(GV).second)
      Worklist.push_back(GV);
  }

  /// Whether we are importing globals for ThinLTO, as opposed to linking the
  /// source module. If this flag is set, it means that we can rely on some
  /// other object file to define any non-GlobalValue entities defined by the
  /// source module. This currently causes us to not link retained types in
  /// debug info metadata and module inline asm.
  bool IsPerformingImport;

  /// Set to true when all global value body linking is complete (including
  /// lazy linking). Used to prevent metadata linking from creating new
  /// references.
  bool DoneLinkingBodies = false;

  /// The Error encountered during materialization. We use an Optional here to
  /// avoid needing to manage an unconsumed success value.
  std::optional<Error> FoundError;
  void setError(Error E) {
    if (E)
      FoundError = std::move(E);
  }

  /// Most of the errors produced by this module are inconvertible StringErrors.
  /// This convenience function lets us return one of those more easily.
  Error stringErr(const Twine &T) {
    return make_error<StringError>(T, inconvertibleErrorCode());
  }

  /// Entry point for mapping values and alternate context for mapping aliases.
  ValueMapper Mapper;
  unsigned IndirectSymbolMCID;

  /// Handles cloning of a global values from the source module into
  /// the destination module, including setting the attributes and visibility.
  GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);

  void emitWarning(const Twine &Message) {
    SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
  }

  /// Given a global in the source module, return the global in the
  /// destination module that is being linked to, if any.
  GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
    // If the source has no name it can't link.  If it has local linkage,
    // there is no name match-up going on.
    if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
      return nullptr;

    // Otherwise see if we have a match in the destination module's symtab.
    GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
    if (!DGV)
      return nullptr;

    // If we found a global with the same name in the dest module, but it has
    // internal linkage, we are really not doing any linkage here.
    if (DGV->hasLocalLinkage())
      return nullptr;

    // If we found an intrinsic declaration with mismatching prototypes, we
    // probably had a nameclash. Don't use that version.
    if (auto *FDGV = dyn_cast<Function>(DGV))
      if (FDGV->isIntrinsic())
        if (const auto *FSrcGV = dyn_cast<Function>(SrcGV))
          if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType()))
            return nullptr;

    // Otherwise, we do in fact link to the destination global.
    return DGV;
  }

  void computeTypeMapping();

  Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
                                             const GlobalVariable *SrcGV);

  /// Given the GlobaValue \p SGV in the source module, and the matching
  /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
  /// into the destination module.
  ///
  /// Note this code may call the client-provided \p AddLazyFor.
  bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
  Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
                                            bool ForIndirectSymbol);

  Error linkModuleFlagsMetadata();

  void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
  Error linkFunctionBody(Function &Dst, Function &Src);
  void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src);
  void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src);
  Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);

  /// Replace all types in the source AttributeList with the
  /// corresponding destination type.
  AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);

  /// Functions that take care of cloning a specific global value type
  /// into the destination module.
  GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
  Function *copyFunctionProto(const Function *SF);
  GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV);

  /// Perform "replace all uses with" operations. These work items need to be
  /// performed as part of materialization, but we postpone them to happen after
  /// materialization is done. The materializer called by ValueMapper is not
  /// expected to delete constants, as ValueMapper is holding pointers to some
  /// of them, but constant destruction may be indirectly triggered by RAUW.
  /// Hence, the need to move this out of the materialization call chain.
  void flushRAUWWorklist();

  /// When importing for ThinLTO, prevent importing of types listed on
  /// the DICompileUnit that we don't need a copy of in the importing
  /// module.
  void prepareCompileUnitsForImport();
  void linkNamedMDNodes();

  ///  Update attributes while linking.
  void updateAttributes(GlobalValue &GV);

public:
  IRLinker(Module &DstM, MDMapT &SharedMDs,
           IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
           ArrayRef<GlobalValue *> ValuesToLink,
           IRMover::LazyCallback AddLazyFor, bool IsPerformingImport)
      : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
        TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
        SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
        Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals,
               &TypeMap, &GValMaterializer),
        IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
            IndirectSymbolValueMap, &LValMaterializer)) {
    ValueMap.getMDMap() = std::move(SharedMDs);
    for (GlobalValue *GV : ValuesToLink)
      maybeAdd(GV);
    if (IsPerformingImport)
      prepareCompileUnitsForImport();
  }
  ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }

  Error run();
  Value *materialize(Value *V, bool ForIndirectSymbol);
};
}

/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
/// table. This is good for all clients except for us. Go through the trouble
/// to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
  // If the global doesn't force its name or if it already has the right name,
  // there is nothing for us to do.
  if (GV->hasLocalLinkage() || GV->getName() == Name)
    return;

  Module *M = GV->getParent();

  // If there is a conflict, rename the conflict.
  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    GV->takeName(ConflictGV);
    ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
  } else {
    GV->setName(Name); // Force the name back
  }
}

Value *GlobalValueMaterializer::materialize(Value *SGV) {
  return TheIRLinker.materialize(SGV, false);
}

Value *LocalValueMaterializer::materialize(Value *SGV) {
  return TheIRLinker.materialize(SGV, true);
}

Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
  auto *SGV = dyn_cast<GlobalValue>(V);
  if (!SGV)
    return nullptr;

  // When linking a global from other modules than source & dest, skip
  // materializing it because it would be mapped later when its containing
  // module is linked. Linking it now would potentially pull in many types that
  // may not be mapped properly.
  if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get())
    return nullptr;

  Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
  if (!NewProto) {
    setError(NewProto.takeError());
    return nullptr;
  }
  if (!*NewProto)
    return nullptr;

  GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
  if (!New)
    return *NewProto;

  // If we already created the body, just return.
  if (auto *F = dyn_cast<Function>(New)) {
    if (!F->isDeclaration())
      return New;
  } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
    if (V->hasInitializer() || V->hasAppendingLinkage())
      return New;
  } else if (auto *GA = dyn_cast<GlobalAlias>(New)) {
    if (GA->getAliasee())
      return New;
  } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) {
    if (GI->getResolver())
      return New;
  } else {
    llvm_unreachable("Invalid GlobalValue type");
  }

  // If the global is being linked for an indirect symbol, it may have already
  // been scheduled to satisfy a regular symbol. Similarly, a global being linked
  // for a regular symbol may have already been scheduled for an indirect
  // symbol. Check for these cases by looking in the other value map and
  // confirming the same value has been scheduled.  If there is an entry in the
  // ValueMap but the value is different, it means that the value already had a
  // definition in the destination module (linkonce for instance), but we need a
  // new definition for the indirect symbol ("New" will be different).
  if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) ||
      (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New))
    return New;

  if (ForIndirectSymbol || shouldLink(New, *SGV))
    setError(linkGlobalValueBody(*New, *SGV));

  updateAttributes(*New);
  return New;
}

/// Loop through the global variables in the src module and merge them into the
/// dest module.
GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
  // No linking to be performed or linking from the source: simply create an
  // identical version of the symbol over in the dest module... the
  // initializer will be filled in later by LinkGlobalInits.
  GlobalVariable *NewDGV =
      new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
                         SGVar->isConstant(), GlobalValue::ExternalLinkage,
                         /*init*/ nullptr, SGVar->getName(),
                         /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
                         SGVar->getAddressSpace());
  NewDGV->setAlignment(SGVar->getAlign());
  NewDGV->copyAttributesFrom(SGVar);
  return NewDGV;
}

AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
  for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
    for (int AttrIdx = Attribute::FirstTypeAttr;
         AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
      Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
      if (Attrs.hasAttributeAtIndex(i, TypedAttr)) {
        if (Type *Ty =
                Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
          Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
                                                    TypeMap.get(Ty));
          break;
        }
      }
    }
  }
  return Attrs;
}

/// Link the function in the source module into the destination module if
/// needed, setting up mapping information.
Function *IRLinker::copyFunctionProto(const Function *SF) {
  // If there is no linkage to be performed or we are linking from the source,
  // bring SF over.
  auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
                             GlobalValue::ExternalLinkage,
                             SF->getAddressSpace(), SF->getName(), &DstM);
  F->copyAttributesFrom(SF);
  F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
  return F;
}

/// Set up prototypes for any indirect symbols that come over from the source
/// module.
GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) {
  // If there is no linkage to be performed or we're linking from the source,
  // bring over SGA.
  auto *Ty = TypeMap.get(SGV->getValueType());

  if (auto *GA = dyn_cast<GlobalAlias>(SGV)) {
    auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(),
                                    GlobalValue::ExternalLinkage,
                                    SGV->getName(), &DstM);
    DGA->copyAttributesFrom(GA);
    return DGA;
  }

  if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) {
    auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(),
                                    GlobalValue::ExternalLinkage,
                                    SGV->getName(), nullptr, &DstM);
    DGI->copyAttributesFrom(GI);
    return DGI;
  }

  llvm_unreachable("Invalid source global value type");
}

GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
                                            bool ForDefinition) {
  GlobalValue *NewGV;
  if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
    NewGV = copyGlobalVariableProto(SGVar);
  } else if (auto *SF = dyn_cast<Function>(SGV)) {
    NewGV = copyFunctionProto(SF);
  } else {
    if (ForDefinition)
      NewGV = copyIndirectSymbolProto(SGV);
    else if (SGV->getValueType()->isFunctionTy())
      NewGV =
          Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
                           GlobalValue::ExternalLinkage, SGV->getAddressSpace(),
                           SGV->getName(), &DstM);
    else
      NewGV =
          new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
                             /*isConstant*/ false, GlobalValue::ExternalLinkage,
                             /*init*/ nullptr, SGV->getName(),
                             /*insertbefore*/ nullptr,
                             SGV->getThreadLocalMode(), SGV->getAddressSpace());
  }

  if (ForDefinition)
    NewGV->setLinkage(SGV->getLinkage());
  else if (SGV->hasExternalWeakLinkage())
    NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);

  if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
    // Metadata for global variables and function declarations is copied eagerly.
    if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
      NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
  }

  // Remove these copied constants in case this stays a declaration, since
  // they point to the source module. If the def is linked the values will
  // be mapped in during linkFunctionBody.
  if (auto *NewF = dyn_cast<Function>(NewGV)) {
    NewF->setPersonalityFn(nullptr);
    NewF->setPrefixData(nullptr);
    NewF->setPrologueData(nullptr);
  }

  return NewGV;
}

static StringRef getTypeNamePrefix(StringRef Name) {
  size_t DotPos = Name.rfind('.');
  return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
          !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
             ? Name
             : Name.substr(0, DotPos);
}

/// Loop over all of the linked values to compute type mappings.  For example,
/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
/// types 'Foo' but one got renamed when the module was loaded into the same
/// LLVMContext.
void IRLinker::computeTypeMapping() {
  for (GlobalValue &SGV : SrcM->globals()) {
    GlobalValue *DGV = getLinkedToGlobal(&SGV);
    if (!DGV)
      continue;

    if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
      continue;
    }

    // Unify the element type of appending arrays.
    ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
    ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
  }

  for (GlobalValue &SGV : *SrcM)
    if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
      if (DGV->getType() == SGV.getType()) {
        // If the types of DGV and SGV are the same, it means that DGV is from
        // the source module and got added to DstM from a shared metadata.  We
        // shouldn't map this type to itself in case the type's components get
        // remapped to a new type from DstM (for instance, during the loop over
        // SrcM->getIdentifiedStructTypes() below).
        continue;
      }

      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
    }

  for (GlobalValue &SGV : SrcM->aliases())
    if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());

  // Incorporate types by name, scanning all the types in the source module.
  // At this point, the destination module may have a type "%foo = { i32 }" for
  // example.  When the source module got loaded into the same LLVMContext, if
  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
  std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
  for (StructType *ST : Types) {
    if (!ST->hasName())
      continue;

    if (TypeMap.DstStructTypesSet.hasType(ST)) {
      // This is actually a type from the destination module.
      // getIdentifiedStructTypes() can have found it by walking debug info
      // metadata nodes, some of which get linked by name when ODR Type Uniquing
      // is enabled on the Context, from the source to the destination module.
      continue;
    }

    auto STTypePrefix = getTypeNamePrefix(ST->getName());
    if (STTypePrefix.size() == ST->getName().size())
      continue;

    // Check to see if the destination module has a struct with the prefix name.
    StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix);
    if (!DST)
      continue;

    // Don't use it if this actually came from the source module. They're in
    // the same LLVMContext after all. Also don't use it unless the type is
    // actually used in the destination module. This can happen in situations
    // like this:
    //
    //      Module A                         Module B
    //      --------                         --------
    //   %Z = type { %A }                %B = type { %C.1 }
    //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
    //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
    //   %C = type { i8* }               %B.3 = type { %C.1 }
    //
    // When we link Module B with Module A, the '%B' in Module B is
    // used. However, that would then use '%C.1'. But when we process '%C.1',
    // we prefer to take the '%C' version. So we are then left with both
    // '%C.1' and '%C' being used for the same types. This leads to some
    // variables using one type and some using the other.
    if (TypeMap.DstStructTypesSet.hasType(DST))
      TypeMap.addTypeMapping(DST, ST);
  }

  // Now that we have discovered all of the type equivalences, get a body for
  // any 'opaque' types in the dest module that are now resolved.
  TypeMap.linkDefinedTypeBodies();
}

static void getArrayElements(const Constant *C,
                             SmallVectorImpl<Constant *> &Dest) {
  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();

  for (unsigned i = 0; i != NumElements; ++i)
    Dest.push_back(C->getAggregateElement(i));
}

/// If there were any appending global variables, link them together now.
Expected<Constant *>
IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
                                const GlobalVariable *SrcGV) {
  // Check that both variables have compatible properties.
  if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) {
    if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
      return stringErr(
          "Linking globals named '" + SrcGV->getName() +
          "': can only link appending global with another appending "
          "global!");

    if (DstGV->isConstant() != SrcGV->isConstant())
      return stringErr("Appending variables linked with different const'ness!");

    if (DstGV->getAlign() != SrcGV->getAlign())
      return stringErr(
          "Appending variables with different alignment need to be linked!");

    if (DstGV->getVisibility() != SrcGV->getVisibility())
      return stringErr(
          "Appending variables with different visibility need to be linked!");

    if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
      return stringErr(
          "Appending variables with different unnamed_addr need to be linked!");

    if (DstGV->getSection() != SrcGV->getSection())
      return stringErr(
          "Appending variables with different section name need to be linked!");

    if (DstGV->getAddressSpace() != SrcGV->getAddressSpace())
      return stringErr("Appending variables with different address spaces need "
                       "to be linked!");
  }

  // Do not need to do anything if source is a declaration.
  if (SrcGV->isDeclaration())
    return DstGV;

  Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
                    ->getElementType();

  // FIXME: This upgrade is done during linking to support the C API.  Once the
  // old form is deprecated, we should move this upgrade to
  // llvm::UpgradeGlobalVariable() and simplify the logic here and in
  // Mapper::mapAppendingVariable() in ValueMapper.cpp.
  StringRef Name = SrcGV->getName();
  bool IsNewStructor = false;
  bool IsOldStructor = false;
  if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
    if (cast<StructType>(EltTy)->getNumElements() == 3)
      IsNewStructor = true;
    else
      IsOldStructor = true;
  }

  PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
  if (IsOldStructor) {
    auto &ST = *cast<StructType>(EltTy);
    Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
    EltTy = StructType::get(SrcGV->getContext(), Tys, false);
  }

  uint64_t DstNumElements = 0;
  if (DstGV && !DstGV->isDeclaration()) {
    ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
    DstNumElements = DstTy->getNumElements();

    // Check to see that they two arrays agree on type.
    if (EltTy != DstTy->getElementType())
      return stringErr("Appending variables with different element types!");
  }

  SmallVector<Constant *, 16> SrcElements;
  getArrayElements(SrcGV->getInitializer(), SrcElements);

  if (IsNewStructor) {
    erase_if(SrcElements, [this](Constant *E) {
      auto *Key =
          dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
      if (!Key)
        return false;
      GlobalValue *DGV = getLinkedToGlobal(Key);
      return !shouldLink(DGV, *Key);
    });
  }
  uint64_t NewSize = DstNumElements + SrcElements.size();
  ArrayType *NewType = ArrayType::get(EltTy, NewSize);

  // Create the new global variable.
  GlobalVariable *NG = new GlobalVariable(
      DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
      /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
      SrcGV->getAddressSpace());

  NG->copyAttributesFrom(SrcGV);
  forceRenaming(NG, SrcGV->getName());

  Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));

  Mapper.scheduleMapAppendingVariable(
      *NG,
      (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr,
      IsOldStructor, SrcElements);

  // Replace any uses of the two global variables with uses of the new
  // global.
  if (DstGV) {
    RAUWWorklist.push_back(
        std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
  }

  return Ret;
}

bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
  if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
    return true;

  if (DGV && !DGV->isDeclarationForLinker())
    return false;

  if (SGV.isDeclaration() || DoneLinkingBodies)
    return false;

  // Callback to the client to give a chance to lazily add the Global to the
  // list of value to link.
  bool LazilyAdded = false;
  if (AddLazyFor)
    AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
      maybeAdd(&GV);
      LazilyAdded = true;
    });
  return LazilyAdded;
}

Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
                                                    bool ForIndirectSymbol) {
  GlobalValue *DGV = getLinkedToGlobal(SGV);

  bool ShouldLink = shouldLink(DGV, *SGV);

  // just missing from map
  if (ShouldLink) {
    auto I = ValueMap.find(SGV);
    if (I != ValueMap.end())
      return cast<Constant>(I->second);

    I = IndirectSymbolValueMap.find(SGV);
    if (I != IndirectSymbolValueMap.end())
      return cast<Constant>(I->second);
  }

  if (!ShouldLink && ForIndirectSymbol)
    DGV = nullptr;

  // Handle the ultra special appending linkage case first.
  if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage()))
    return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
                                 cast<GlobalVariable>(SGV));

  bool NeedsRenaming = false;
  GlobalValue *NewGV;
  if (DGV && !ShouldLink) {
    NewGV = DGV;
  } else {
    // If we are done linking global value bodies (i.e. we are performing
    // metadata linking), don't link in the global value due to this
    // reference, simply map it to null.
    if (DoneLinkingBodies)
      return nullptr;

    NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
    if (ShouldLink || !ForIndirectSymbol)
      NeedsRenaming = true;
  }

  // Overloaded intrinsics have overloaded types names as part of their
  // names. If we renamed overloaded types we should rename the intrinsic
  // as well.
  if (Function *F = dyn_cast<Function>(NewGV))
    if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
      NewGV->eraseFromParent();
      NewGV = *Remangled;
      NeedsRenaming = false;
    }

  if (NeedsRenaming)
    forceRenaming(NewGV, SGV->getName());

  if (ShouldLink || ForIndirectSymbol) {
    if (const Comdat *SC = SGV->getComdat()) {
      if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
        Comdat *DC = DstM.getOrInsertComdat(SC->getName());
        DC->setSelectionKind(SC->getSelectionKind());
        GO->setComdat(DC);
      }
    }
  }

  if (!ShouldLink && ForIndirectSymbol)
    NewGV->setLinkage(GlobalValue::InternalLinkage);

  Constant *C = NewGV;
  // Only create a bitcast if necessary. In particular, with
  // DebugTypeODRUniquing we may reach metadata in the destination module
  // containing a GV from the source module, in which case SGV will be
  // the same as DGV and NewGV, and TypeMap.get() will assert since it
  // assumes it is being invoked on a type in the source module.
  if (DGV && NewGV != SGV) {
    C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
      NewGV, TypeMap.get(SGV->getType()));
  }

  if (DGV && NewGV != DGV) {
    // Schedule "replace all uses with" to happen after materializing is
    // done. It is not safe to do it now, since ValueMapper may be holding
    // pointers to constants that will get deleted if RAUW runs.
    RAUWWorklist.push_back(std::make_pair(
        DGV,
        ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
  }

  return C;
}

/// Update the initializers in the Dest module now that all globals that may be
/// referenced are in Dest.
void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
  // Figure out what the initializer looks like in the dest module.
  Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
}

/// Copy the source function over into the dest function and fix up references
/// to values. At this point we know that Dest is an external function, and
/// that Src is not.
Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
  assert(Dst.isDeclaration() && !Src.isDeclaration());

  // Materialize if needed.
  if (Error Err = Src.materialize())
    return Err;

  // Link in the operands without remapping.
  if (Src.hasPrefixData())
    Dst.setPrefixData(Src.getPrefixData());
  if (Src.hasPrologueData())
    Dst.setPrologueData(Src.getPrologueData());
  if (Src.hasPersonalityFn())
    Dst.setPersonalityFn(Src.getPersonalityFn());

  // Copy over the metadata attachments without remapping.
  Dst.copyMetadata(&Src, 0);

  // Steal arguments and splice the body of Src into Dst.
  Dst.stealArgumentListFrom(Src);
  Dst.splice(Dst.end(), &Src);

  // Everything has been moved over.  Remap it.
  Mapper.scheduleRemapFunction(Dst);
  return Error::success();
}

void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) {
  Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID);
}

void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) {
  Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID);
}

Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
  if (auto *F = dyn_cast<Function>(&Src))
    return linkFunctionBody(cast<Function>(Dst), *F);
  if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
    linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
    return Error::success();
  }
  if (auto *GA = dyn_cast<GlobalAlias>(&Src)) {
    linkAliasAliasee(cast<GlobalAlias>(Dst), *GA);
    return Error::success();
  }
  linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src));
  return Error::success();
}

void IRLinker::flushRAUWWorklist() {
  for (const auto &Elem : RAUWWorklist) {
    GlobalValue *Old;
    Value *New;
    std::tie(Old, New) = Elem;

    Old->replaceAllUsesWith(New);
    Old->eraseFromParent();
  }
  RAUWWorklist.clear();
}

void IRLinker::prepareCompileUnitsForImport() {
  NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
  if (!SrcCompileUnits)
    return;
  // When importing for ThinLTO, prevent importing of types listed on
  // the DICompileUnit that we don't need a copy of in the importing
  // module. They will be emitted by the originating module.
  for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
    auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
    assert(CU && "Expected valid compile unit");
    // Enums, macros, and retained types don't need to be listed on the
    // imported DICompileUnit. This means they will only be imported
    // if reached from the mapped IR.
    CU->replaceEnumTypes(nullptr);
    CU->replaceMacros(nullptr);
    CU->replaceRetainedTypes(nullptr);

    // The original definition (or at least its debug info - if the variable is
    // internalized and optimized away) will remain in the source module, so
    // there's no need to import them.
    // If LLVM ever does more advanced optimizations on global variables
    // (removing/localizing write operations, for instance) that can track
    // through debug info, this decision may need to be revisited - but do so
    // with care when it comes to debug info size. Emitting small CUs containing
    // only a few imported entities into every destination module may be very
    // size inefficient.
    CU->replaceGlobalVariables(nullptr);

    // Imported entities only need to be mapped in if they have local
    // scope, as those might correspond to an imported entity inside a
    // function being imported (any locally scoped imported entities that
    // don't end up referenced by an imported function will not be emitted
    // into the object). Imported entities not in a local scope
    // (e.g. on the namespace) only need to be emitted by the originating
    // module. Create a list of the locally scoped imported entities, and
    // replace the source CUs imported entity list with the new list, so
    // only those are mapped in.
    // FIXME: Locally-scoped imported entities could be moved to the
    // functions they are local to instead of listing them on the CU, and
    // we would naturally only link in those needed by function importing.
    SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
    bool ReplaceImportedEntities = false;
    for (auto *IE : CU->getImportedEntities()) {
      DIScope *Scope = IE->getScope();
      assert(Scope && "Invalid Scope encoding!");
      if (isa<DILocalScope>(Scope))
        AllImportedModules.emplace_back(IE);
      else
        ReplaceImportedEntities = true;
    }
    if (ReplaceImportedEntities) {
      if (!AllImportedModules.empty())
        CU->replaceImportedEntities(MDTuple::get(
            CU->getContext(),
            SmallVector<Metadata *, 16>(AllImportedModules.begin(),
                                        AllImportedModules.end())));
      else
        // If there were no local scope imported entities, we can map
        // the whole list to nullptr.
        CU->replaceImportedEntities(nullptr);
    }
  }
}

/// Insert all of the named MDNodes in Src into the Dest module.
void IRLinker::linkNamedMDNodes() {
  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
  for (const NamedMDNode &NMD : SrcM->named_metadata()) {
    // Don't link module flags here. Do them separately.
    if (&NMD == SrcModFlags)
      continue;
    // Don't import pseudo probe descriptors here for thinLTO. They will be
    // emitted by the originating module.
    if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) {
      if (!DstM.getNamedMetadata(NMD.getName()))
        emitWarning("Pseudo-probe ignored: source module '" +
                    SrcM->getModuleIdentifier() +
                    "' is compiled with -fpseudo-probe-for-profiling while "
                    "destination module '" +
                    DstM.getModuleIdentifier() + "' is not\n");
      continue;
    }
    // The stats are computed per module and will all be merged in the binary.
    // Importing the metadata will cause duplication of the stats.
    if (IsPerformingImport && NMD.getName() == "llvm.stats")
      continue;

    NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
    // Add Src elements into Dest node.
    for (const MDNode *Op : NMD.operands())
      DestNMD->addOperand(Mapper.mapMDNode(*Op));
  }
}

/// Merge the linker flags in Src into the Dest module.
Error IRLinker::linkModuleFlagsMetadata() {
  // If the source module has no module flags, we are done.
  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
  if (!SrcModFlags)
    return Error::success();

  // Check for module flag for updates before do anything.
  UpgradeModuleFlags(*SrcM);

  // If the destination module doesn't have module flags yet, then just copy
  // over the source module's flags.
  NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
  if (DstModFlags->getNumOperands() == 0) {
    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
      DstModFlags->addOperand(SrcModFlags->getOperand(I));

    return Error::success();
  }

  // First build a map of the existing module flags and requirements.
  DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
  SmallSetVector<MDNode *, 16> Requirements;
  SmallVector<unsigned, 0> Mins;
  DenseSet<MDString *> SeenMin;
  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
    MDNode *Op = DstModFlags->getOperand(I);
    uint64_t Behavior =
        mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue();
    MDString *ID = cast<MDString>(Op->getOperand(1));

    if (Behavior == Module::Require) {
      Requirements.insert(cast<MDNode>(Op->getOperand(2)));
    } else {
      if (Behavior == Module::Min)
        Mins.push_back(I);
      Flags[ID] = std::make_pair(Op, I);
    }
  }

  // Merge in the flags from the source module, and also collect its set of
  // requirements.
  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
    MDNode *SrcOp = SrcModFlags->getOperand(I);
    ConstantInt *SrcBehavior =
        mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
    MDString *ID = cast<MDString>(SrcOp->getOperand(1));
    MDNode *DstOp;
    unsigned DstIndex;
    std::tie(DstOp, DstIndex) = Flags.lookup(ID);
    unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
    SeenMin.insert(ID);

    // If this is a requirement, add it and continue.
    if (SrcBehaviorValue == Module::Require) {
      // If the destination module does not already have this requirement, add
      // it.
      if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
        DstModFlags->addOperand(SrcOp);
      }
      continue;
    }

    // If there is no existing flag with this ID, just add it.
    if (!DstOp) {
      if (SrcBehaviorValue == Module::Min) {
        Mins.push_back(DstModFlags->getNumOperands());
        SeenMin.erase(ID);
      }
      Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
      DstModFlags->addOperand(SrcOp);
      continue;
    }

    // Otherwise, perform a merge.
    ConstantInt *DstBehavior =
        mdconst::extract<ConstantInt>(DstOp->getOperand(0));
    unsigned DstBehaviorValue = DstBehavior->getZExtValue();

    auto overrideDstValue = [&]() {
      DstModFlags->setOperand(DstIndex, SrcOp);
      Flags[ID].first = SrcOp;
    };

    // If either flag has override behavior, handle it first.
    if (DstBehaviorValue == Module::Override) {
      // Diagnose inconsistent flags which both have override behavior.
      if (SrcBehaviorValue == Module::Override &&
          SrcOp->getOperand(2) != DstOp->getOperand(2))
        return stringErr("linking module flags '" + ID->getString() +
                         "': IDs have conflicting override values in '" +
                         SrcM->getModuleIdentifier() + "' and '" +
                         DstM.getModuleIdentifier() + "'");
      continue;
    } else if (SrcBehaviorValue == Module::Override) {
      // Update the destination flag to that of the source.
      overrideDstValue();
      continue;
    }

    // Diagnose inconsistent merge behavior types.
    if (SrcBehaviorValue != DstBehaviorValue) {
      bool MinAndWarn = (SrcBehaviorValue == Module::Min &&
                         DstBehaviorValue == Module::Warning) ||
                        (DstBehaviorValue == Module::Min &&
                         SrcBehaviorValue == Module::Warning);
      bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
                         DstBehaviorValue == Module::Warning) ||
                        (DstBehaviorValue == Module::Max &&
                         SrcBehaviorValue == Module::Warning);
      if (!(MaxAndWarn || MinAndWarn))
        return stringErr("linking module flags '" + ID->getString() +
                         "': IDs have conflicting behaviors in '" +
                         SrcM->getModuleIdentifier() + "' and '" +
                         DstM.getModuleIdentifier() + "'");
    }

    auto ensureDistinctOp = [&](MDNode *DstValue) {
      assert(isa<MDTuple>(DstValue) &&
             "Expected MDTuple when appending module flags");
      if (DstValue->isDistinct())
        return dyn_cast<MDTuple>(DstValue);
      ArrayRef<MDOperand> DstOperands = DstValue->operands();
      MDTuple *New = MDTuple::getDistinct(
          DstM.getContext(),
          SmallVector<Metadata *, 4>(DstOperands.begin(), DstOperands.end()));
      Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
      MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps);
      DstModFlags->setOperand(DstIndex, Flag);
      Flags[ID].first = Flag;
      return New;
    };

    // Emit a warning if the values differ and either source or destination
    // request Warning behavior.
    if ((DstBehaviorValue == Module::Warning ||
         SrcBehaviorValue == Module::Warning) &&
        SrcOp->getOperand(2) != DstOp->getOperand(2)) {
      std::string Str;
      raw_string_ostream(Str)
          << "linking module flags '" << ID->getString()
          << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
          << "' from " << SrcM->getModuleIdentifier() << " with '"
          << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
          << ')';
      emitWarning(Str);
    }

    // Choose the minimum if either source or destination request Min behavior.
    if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) {
      ConstantInt *DstValue =
          mdconst::extract<ConstantInt>(DstOp->getOperand(2));
      ConstantInt *SrcValue =
          mdconst::extract<ConstantInt>(SrcOp->getOperand(2));

      // The resulting flag should have a Min behavior, and contain the minimum
      // value from between the source and destination values.
      Metadata *FlagOps[] = {
          (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID,
          (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp)
              ->getOperand(2)};
      MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
      DstModFlags->setOperand(DstIndex, Flag);
      Flags[ID].first = Flag;
      continue;
    }

    // Choose the maximum if either source or destination request Max behavior.
    if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
      ConstantInt *DstValue =
          mdconst::extract<ConstantInt>(DstOp->getOperand(2));
      ConstantInt *SrcValue =
          mdconst::extract<ConstantInt>(SrcOp->getOperand(2));

      // The resulting flag should have a Max behavior, and contain the maximum
      // value from between the source and destination values.
      Metadata *FlagOps[] = {
          (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
          (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
              ->getOperand(2)};
      MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
      DstModFlags->setOperand(DstIndex, Flag);
      Flags[ID].first = Flag;
      continue;
    }

    // Perform the merge for standard behavior types.
    switch (SrcBehaviorValue) {
    case Module::Require:
    case Module::Override:
      llvm_unreachable("not possible");
    case Module::Error: {
      // Emit an error if the values differ.
      if (SrcOp->getOperand(2) != DstOp->getOperand(2))
        return stringErr("linking module flags '" + ID->getString() +
                         "': IDs have conflicting values in '" +
                         SrcM->getModuleIdentifier() + "' and '" +
                         DstM.getModuleIdentifier() + "'");
      continue;
    }
    case Module::Warning: {
      break;
    }
    case Module::Max: {
      break;
    }
    case Module::Append: {
      MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
      for (const auto &O : SrcValue->operands())
        DstValue->push_back(O);
      break;
    }
    case Module::AppendUnique: {
      SmallSetVector<Metadata *, 16> Elts;
      MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
      Elts.insert(DstValue->op_begin(), DstValue->op_end());
      Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
      for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++)
        DstValue->push_back(Elts[I]);
      break;
    }
    }

  }

  // For the Min behavior, set the value to 0 if either module does not have the
  // flag.
  for (auto Idx : Mins) {
    MDNode *Op = DstModFlags->getOperand(Idx);
    MDString *ID = cast<MDString>(Op->getOperand(1));
    if (!SeenMin.count(ID)) {
      ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2));
      Metadata *FlagOps[] = {
          Op->getOperand(0), ID,
          ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))};
      DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps));
    }
  }

  // Check all of the requirements.
  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
    MDNode *Requirement = Requirements[I];
    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
    Metadata *ReqValue = Requirement->getOperand(1);

    MDNode *Op = Flags[Flag].first;
    if (!Op || Op->getOperand(2) != ReqValue)
      return stringErr("linking module flags '" + Flag->getString() +
                       "': does not have the required value");
  }
  return Error::success();
}

/// Return InlineAsm adjusted with target-specific directives if required.
/// For ARM and Thumb, we have to add directives to select the appropriate ISA
/// to support mixing module-level inline assembly from ARM and Thumb modules.
static std::string adjustInlineAsm(const std::string &InlineAsm,
                                   const Triple &Triple) {
  if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
    return ".text\n.balign 2\n.thumb\n" + InlineAsm;
  if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
    return ".text\n.balign 4\n.arm\n" + InlineAsm;
  return InlineAsm;
}

void IRLinker::updateAttributes(GlobalValue &GV) {
  /// Remove nocallback attribute while linking, because nocallback attribute
  /// indicates that the function is only allowed to jump back into caller's
  /// module only by a return or an exception. When modules are linked, this
  /// property cannot be guaranteed anymore. For example, the nocallback
  /// function may contain a call to another module. But if we merge its caller
  /// and callee module here, and not the module containing the nocallback
  /// function definition itself, the nocallback property will be violated
  /// (since the nocallback function will call back into the newly merged module
  /// containing both its caller and callee). This could happen if the module
  /// containing the nocallback function definition is native code, so it does
  /// not participate in the LTO link. Note if the nocallback function does
  /// participate in the LTO link, and thus ends up in the merged module
  /// containing its caller and callee, removing the attribute doesn't hurt as
  /// it has no effect on definitions in the same module.
  if (auto *F = dyn_cast<Function>(&GV)) {
    if (!F->isIntrinsic())
      F->removeFnAttr(llvm::Attribute::NoCallback);

    // Remove nocallback attribute when it is on a call-site.
    for (BasicBlock &BB : *F)
      for (Instruction &I : BB)
        if (CallBase *CI = dyn_cast<CallBase>(&I))
          CI->removeFnAttr(Attribute::NoCallback);
  }
}

Error IRLinker::run() {
  // Ensure metadata materialized before value mapping.
  if (SrcM->getMaterializer())
    if (Error Err = SrcM->getMaterializer()->materializeMetadata())
      return Err;

  // Inherit the target data from the source module if the destination module
  // doesn't have one already.
  if (DstM.getDataLayout().isDefault())
    DstM.setDataLayout(SrcM->getDataLayout());

  // Copy the target triple from the source to dest if the dest's is empty.
  if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
    DstM.setTargetTriple(SrcM->getTargetTriple());

  Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());

  // During CUDA compilation we have to link with the bitcode supplied with
  // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has
  // the layout that is different from the one used by LLVM/clang (it does not
  // include i128). Issuing a warning is not very helpful as there's not much
  // the user can do about it.
  bool EnableDLWarning = true;
  bool EnableTripleWarning = true;
  if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) {
    std::string ModuleId = SrcM->getModuleIdentifier();
    StringRef FileName = llvm::sys::path::filename(ModuleId);
    bool SrcIsLibDevice =
        FileName.startswith("libdevice") && FileName.endswith(".10.bc");
    bool SrcHasLibDeviceDL =
        (SrcM->getDataLayoutStr().empty() ||
         SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64");
    // libdevice bitcode uses nvptx64-nvidia-gpulibs or just
    // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with
    // all NVPTX variants.
    bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA &&
                                  SrcTriple.getOSName() == "gpulibs") ||
                                 (SrcTriple.getVendorName() == "unknown" &&
                                  SrcTriple.getOSName() == "unknown");
    EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple);
    EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL);
  }

  if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) {
    emitWarning("Linking two modules of different data layouts: '" +
                SrcM->getModuleIdentifier() + "' is '" +
                SrcM->getDataLayoutStr() + "' whereas '" +
                DstM.getModuleIdentifier() + "' is '" +
                DstM.getDataLayoutStr() + "'\n");
  }

  if (EnableTripleWarning && !SrcM->getTargetTriple().empty() &&
      !SrcTriple.isCompatibleWith(DstTriple))
    emitWarning("Linking two modules of different target triples: '" +
                SrcM->getModuleIdentifier() + "' is '" +
                SrcM->getTargetTriple() + "' whereas '" +
                DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
                "'\n");

  DstM.setTargetTriple(SrcTriple.merge(DstTriple));

  // Loop over all of the linked values to compute type mappings.
  computeTypeMapping();

  std::reverse(Worklist.begin(), Worklist.end());
  while (!Worklist.empty()) {
    GlobalValue *GV = Worklist.back();
    Worklist.pop_back();

    // Already mapped.
    if (ValueMap.find(GV) != ValueMap.end() ||
        IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
      continue;

    assert(!GV->isDeclaration());
    Mapper.mapValue(*GV);
    if (FoundError)
      return std::move(*FoundError);
    flushRAUWWorklist();
  }

  // Note that we are done linking global value bodies. This prevents
  // metadata linking from creating new references.
  DoneLinkingBodies = true;
  Mapper.addFlags(RF_NullMapMissingGlobalValues);

  // Remap all of the named MDNodes in Src into the DstM module. We do this
  // after linking GlobalValues so that MDNodes that reference GlobalValues
  // are properly remapped.
  linkNamedMDNodes();

  if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
    // Append the module inline asm string.
    DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(),
                                               SrcTriple));
  } else if (IsPerformingImport) {
    // Import any symver directives for symbols in DstM.
    ModuleSymbolTable::CollectAsmSymvers(*SrcM,
                                         [&](StringRef Name, StringRef Alias) {
      if (DstM.getNamedValue(Name)) {
        SmallString<256> S(".symver ");
        S += Name;
        S += ", ";
        S += Alias;
        DstM.appendModuleInlineAsm(S);
      }
    });
  }

  // Reorder the globals just added to the destination module to match their
  // original order in the source module.
  Module::GlobalListType &Globals = DstM.getGlobalList();
  for (GlobalVariable &GV : SrcM->globals()) {
    if (GV.hasAppendingLinkage())
      continue;
    Value *NewValue = Mapper.mapValue(GV);
    if (NewValue) {
      auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts());
      if (NewGV)
        Globals.splice(Globals.end(), Globals, NewGV->getIterator());
    }
  }

  // Merge the module flags into the DstM module.
  return linkModuleFlagsMetadata();
}

IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
    : ETypes(E), IsPacked(P) {}

IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
    : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}

bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
  return IsPacked == That.IsPacked && ETypes == That.ETypes;
}

bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
  return !this->operator==(That);
}

StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
  return DenseMapInfo<StructType *>::getEmptyKey();
}

StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
  return DenseMapInfo<StructType *>::getTombstoneKey();
}

unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
  return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
                      Key.IsPacked);
}

unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
  return getHashValue(KeyTy(ST));
}

bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
                                         const StructType *RHS) {
  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
    return false;
  return LHS == KeyTy(RHS);
}

bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
                                         const StructType *RHS) {
  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
    return LHS == RHS;
  return KeyTy(LHS) == KeyTy(RHS);
}

void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
  assert(!Ty->isOpaque());
  NonOpaqueStructTypes.insert(Ty);
}

void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
  assert(!Ty->isOpaque());
  NonOpaqueStructTypes.insert(Ty);
  bool Removed = OpaqueStructTypes.erase(Ty);
  (void)Removed;
  assert(Removed);
}

void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
  assert(Ty->isOpaque());
  OpaqueStructTypes.insert(Ty);
}

StructType *
IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
                                                bool IsPacked) {
  IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
  auto I = NonOpaqueStructTypes.find_as(Key);
  return I == NonOpaqueStructTypes.end() ? nullptr : *I;
}

bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
  if (Ty->isOpaque())
    return OpaqueStructTypes.count(Ty);
  auto I = NonOpaqueStructTypes.find(Ty);
  return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
}

IRMover::IRMover(Module &M) : Composite(M) {
  TypeFinder StructTypes;
  StructTypes.run(M, /* OnlyNamed */ false);
  for (StructType *Ty : StructTypes) {
    if (Ty->isOpaque())
      IdentifiedStructTypes.addOpaque(Ty);
    else
      IdentifiedStructTypes.addNonOpaque(Ty);
  }
  // Self-map metadatas in the destination module. This is needed when
  // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
  // destination module may be reached from the source module.
  for (const auto *MD : StructTypes.getVisitedMetadata()) {
    SharedMDs[MD].reset(const_cast<MDNode *>(MD));
  }
}

Error IRMover::move(std::unique_ptr<Module> Src,
                    ArrayRef<GlobalValue *> ValuesToLink,
                    LazyCallback AddLazyFor, bool IsPerformingImport) {
  IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
                       std::move(Src), ValuesToLink, std::move(AddLazyFor),
                       IsPerformingImport);
  Error E = TheIRLinker.run();
  Composite.dropTriviallyDeadConstantArrays();
  return E;
}