aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
blob: 2fe49fefae2d45c3fe3989d8c40d97db34de62a1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//

#include "RuntimeDyldELF.h"
#include "RuntimeDyldCheckerImpl.h"
#include "Targets/RuntimeDyldELFMips.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;

#define DEBUG_TYPE "dyld"

static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }

static void or32AArch64Imm(void *L, uint64_t Imm) {
  or32le(L, (Imm & 0xFFF) << 10);
}

template <class T> static void write(bool isBE, void *P, T V) {
  isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
}

static void write32AArch64Addr(void *L, uint64_t Imm) {
  uint32_t ImmLo = (Imm & 0x3) << 29;
  uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
  uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
  write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
}

// Return the bits [Start, End] from Val shifted Start bits.
// For instance, getBits(0xF0, 4, 8) returns 0xF.
static uint64_t getBits(uint64_t Val, int Start, int End) {
  uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
  return (Val >> Start) & Mask;
}

namespace {

template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)

  typedef typename ELFT::uint addr_type;

  DyldELFObject(ELFObjectFile<ELFT> &&Obj);

public:
  static Expected<std::unique_ptr<DyldELFObject>>
  create(MemoryBufferRef Wrapper);

  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);

  void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);

  // Methods for type inquiry through isa, cast and dyn_cast
  static bool classof(const Binary *v) {
    return (isa<ELFObjectFile<ELFT>>(v) &&
            classof(cast<ELFObjectFile<ELFT>>(v)));
  }
  static bool classof(const ELFObjectFile<ELFT> *v) {
    return v->isDyldType();
  }
};



// The MemoryBuffer passed into this constructor is just a wrapper around the
// actual memory.  Ultimately, the Binary parent class will take ownership of
// this MemoryBuffer object but not the underlying memory.
template <class ELFT>
DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
    : ELFObjectFile<ELFT>(std::move(Obj)) {
  this->isDyldELFObject = true;
}

template <class ELFT>
Expected<std::unique_ptr<DyldELFObject<ELFT>>>
DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
  auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
  if (auto E = Obj.takeError())
    return std::move(E);
  std::unique_ptr<DyldELFObject<ELFT>> Ret(
      new DyldELFObject<ELFT>(std::move(*Obj)));
  return std::move(Ret);
}

template <class ELFT>
void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
                                               uint64_t Addr) {
  DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
  Elf_Shdr *shdr =
      const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));

  // This assumes the address passed in matches the target address bitness
  // The template-based type cast handles everything else.
  shdr->sh_addr = static_cast<addr_type>(Addr);
}

template <class ELFT>
void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
                                              uint64_t Addr) {

  Elf_Sym *sym = const_cast<Elf_Sym *>(
      ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));

  // This assumes the address passed in matches the target address bitness
  // The template-based type cast handles everything else.
  sym->st_value = static_cast<addr_type>(Addr);
}

class LoadedELFObjectInfo final
    : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
                                    RuntimeDyld::LoadedObjectInfo> {
public:
  LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
      : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}

  OwningBinary<ObjectFile>
  getObjectForDebug(const ObjectFile &Obj) const override;
};

template <typename ELFT>
static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
                      const LoadedELFObjectInfo &L) {
  typedef typename ELFT::Shdr Elf_Shdr;
  typedef typename ELFT::uint addr_type;

  Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
      DyldELFObject<ELFT>::create(Buffer);
  if (Error E = ObjOrErr.takeError())
    return std::move(E);

  std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);

  // Iterate over all sections in the object.
  auto SI = SourceObject.section_begin();
  for (const auto &Sec : Obj->sections()) {
    Expected<StringRef> NameOrErr = Sec.getName();
    if (!NameOrErr) {
      consumeError(NameOrErr.takeError());
      continue;
    }

    if (*NameOrErr != "") {
      DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
      Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));

      if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
        // This assumes that the address passed in matches the target address
        // bitness. The template-based type cast handles everything else.
        shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
      }
    }
    ++SI;
  }

  return std::move(Obj);
}

static OwningBinary<ObjectFile>
createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
  assert(Obj.isELF() && "Not an ELF object file.");

  std::unique_ptr<MemoryBuffer> Buffer =
    MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());

  Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
  handleAllErrors(DebugObj.takeError());
  if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
    DebugObj =
        createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
  else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
    DebugObj =
        createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
  else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
    DebugObj =
        createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
  else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
    DebugObj =
        createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
  else
    llvm_unreachable("Unexpected ELF format");

  handleAllErrors(DebugObj.takeError());
  return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
}

OwningBinary<ObjectFile>
LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
  return createELFDebugObject(Obj, *this);
}

} // anonymous namespace

namespace llvm {

RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
                               JITSymbolResolver &Resolver)
    : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
RuntimeDyldELF::~RuntimeDyldELF() = default;

void RuntimeDyldELF::registerEHFrames() {
  for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
    SID EHFrameSID = UnregisteredEHFrameSections[i];
    uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
    size_t EHFrameSize = Sections[EHFrameSID].getSize();
    MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
  }
  UnregisteredEHFrameSections.clear();
}

std::unique_ptr<RuntimeDyldELF>
llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
                             RuntimeDyld::MemoryManager &MemMgr,
                             JITSymbolResolver &Resolver) {
  switch (Arch) {
  default:
    return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
  case Triple::mips:
  case Triple::mipsel:
  case Triple::mips64:
  case Triple::mips64el:
    return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
  }
}

std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
  if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
    return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
  else {
    HasError = true;
    raw_string_ostream ErrStream(ErrorStr);
    logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
    return nullptr;
  }
}

void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
                                             uint64_t Offset, uint64_t Value,
                                             uint32_t Type, int64_t Addend,
                                             uint64_t SymOffset) {
  switch (Type) {
  default:
    report_fatal_error("Relocation type not implemented yet!");
    break;
  case ELF::R_X86_64_NONE:
    break;
  case ELF::R_X86_64_8: {
    Value += Addend;
    assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
    uint8_t TruncatedAddr = (Value & 0xFF);
    *Section.getAddressWithOffset(Offset) = TruncatedAddr;
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
                      << format("%p\n", Section.getAddressWithOffset(Offset)));
    break;
  }
  case ELF::R_X86_64_16: {
    Value += Addend;
    assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
    uint16_t TruncatedAddr = (Value & 0xFFFF);
    support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
        TruncatedAddr;
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
                      << format("%p\n", Section.getAddressWithOffset(Offset)));
    break;
  }
  case ELF::R_X86_64_64: {
    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
        Value + Addend;
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
                      << format("%p\n", Section.getAddressWithOffset(Offset)));
    break;
  }
  case ELF::R_X86_64_32:
  case ELF::R_X86_64_32S: {
    Value += Addend;
    assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
           (Type == ELF::R_X86_64_32S &&
            ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
    uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
        TruncatedAddr;
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
                      << format("%p\n", Section.getAddressWithOffset(Offset)));
    break;
  }
  case ELF::R_X86_64_PC8: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    int64_t RealOffset = Value + Addend - FinalAddress;
    assert(isInt<8>(RealOffset));
    int8_t TruncOffset = (RealOffset & 0xFF);
    Section.getAddress()[Offset] = TruncOffset;
    break;
  }
  case ELF::R_X86_64_PC32: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    int64_t RealOffset = Value + Addend - FinalAddress;
    assert(isInt<32>(RealOffset));
    int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
        TruncOffset;
    break;
  }
  case ELF::R_X86_64_PC64: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    int64_t RealOffset = Value + Addend - FinalAddress;
    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
        RealOffset;
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
                      << format("%p\n", FinalAddress));
    break;
  }
  case ELF::R_X86_64_GOTOFF64: {
    // Compute Value - GOTBase.
    uint64_t GOTBase = 0;
    for (const auto &Section : Sections) {
      if (Section.getName() == ".got") {
        GOTBase = Section.getLoadAddressWithOffset(0);
        break;
      }
    }
    assert(GOTBase != 0 && "missing GOT");
    int64_t GOTOffset = Value - GOTBase + Addend;
    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
    break;
  }
  case ELF::R_X86_64_DTPMOD64: {
    // We only have one DSO, so the module id is always 1.
    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
    break;
  }
  case ELF::R_X86_64_DTPOFF64:
  case ELF::R_X86_64_TPOFF64: {
    // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
    // offset in the *initial* TLS block. Since we are statically linking, all
    // TLS blocks already exist in the initial block, so resolve both
    // relocations equally.
    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
        Value + Addend;
    break;
  }
  case ELF::R_X86_64_DTPOFF32:
  case ELF::R_X86_64_TPOFF32: {
    // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
    // be resolved equally.
    int64_t RealValue = Value + Addend;
    assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
    int32_t TruncValue = RealValue;
    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
        TruncValue;
    break;
  }
  }
}

void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
                                          uint64_t Offset, uint32_t Value,
                                          uint32_t Type, int32_t Addend) {
  switch (Type) {
  case ELF::R_386_32: {
    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
        Value + Addend;
    break;
  }
  // Handle R_386_PLT32 like R_386_PC32 since it should be able to
  // reach any 32 bit address.
  case ELF::R_386_PLT32:
  case ELF::R_386_PC32: {
    uint32_t FinalAddress =
        Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
    uint32_t RealOffset = Value + Addend - FinalAddress;
    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
        RealOffset;
    break;
  }
  default:
    // There are other relocation types, but it appears these are the
    // only ones currently used by the LLVM ELF object writer
    report_fatal_error("Relocation type not implemented yet!");
    break;
  }
}

void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
                                              uint64_t Offset, uint64_t Value,
                                              uint32_t Type, int64_t Addend) {
  uint32_t *TargetPtr =
      reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
  uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
  // Data should use target endian. Code should always use little endian.
  bool isBE = Arch == Triple::aarch64_be;

  LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
                    << format("%llx", Section.getAddressWithOffset(Offset))
                    << " FinalAddress: 0x" << format("%llx", FinalAddress)
                    << " Value: 0x" << format("%llx", Value) << " Type: 0x"
                    << format("%x", Type) << " Addend: 0x"
                    << format("%llx", Addend) << "\n");

  switch (Type) {
  default:
    report_fatal_error("Relocation type not implemented yet!");
    break;
  case ELF::R_AARCH64_NONE:
    break;
  case ELF::R_AARCH64_ABS16: {
    uint64_t Result = Value + Addend;
    assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
    write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
    break;
  }
  case ELF::R_AARCH64_ABS32: {
    uint64_t Result = Value + Addend;
    assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
    write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
    break;
  }
  case ELF::R_AARCH64_ABS64:
    write(isBE, TargetPtr, Value + Addend);
    break;
  case ELF::R_AARCH64_PLT32: {
    uint64_t Result = Value + Addend - FinalAddress;
    assert(static_cast<int64_t>(Result) >= INT32_MIN &&
           static_cast<int64_t>(Result) <= INT32_MAX);
    write(isBE, TargetPtr, static_cast<uint32_t>(Result));
    break;
  }
  case ELF::R_AARCH64_PREL16: {
    uint64_t Result = Value + Addend - FinalAddress;
    assert(static_cast<int64_t>(Result) >= INT16_MIN &&
           static_cast<int64_t>(Result) <= UINT16_MAX);
    write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
    break;
  }
  case ELF::R_AARCH64_PREL32: {
    uint64_t Result = Value + Addend - FinalAddress;
    assert(static_cast<int64_t>(Result) >= INT32_MIN &&
           static_cast<int64_t>(Result) <= UINT32_MAX);
    write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
    break;
  }
  case ELF::R_AARCH64_PREL64:
    write(isBE, TargetPtr, Value + Addend - FinalAddress);
    break;
  case ELF::R_AARCH64_CONDBR19: {
    uint64_t BranchImm = Value + Addend - FinalAddress;

    assert(isInt<21>(BranchImm));
    *TargetPtr &= 0xff00001fU;
    // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
    or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
    break;
  }
  case ELF::R_AARCH64_TSTBR14: {
    uint64_t BranchImm = Value + Addend - FinalAddress;

    assert(isInt<16>(BranchImm));

    *TargetPtr &= 0xfff8001fU;
    // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
    or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
    break;
  }
  case ELF::R_AARCH64_CALL26: // fallthrough
  case ELF::R_AARCH64_JUMP26: {
    // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
    // calculation.
    uint64_t BranchImm = Value + Addend - FinalAddress;

    // "Check that -2^27 <= result < 2^27".
    assert(isInt<28>(BranchImm));
    or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
    break;
  }
  case ELF::R_AARCH64_MOVW_UABS_G3:
    or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
    break;
  case ELF::R_AARCH64_MOVW_UABS_G2_NC:
    or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
    break;
  case ELF::R_AARCH64_MOVW_UABS_G1_NC:
    or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
    break;
  case ELF::R_AARCH64_MOVW_UABS_G0_NC:
    or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
    break;
  case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
    // Operation: Page(S+A) - Page(P)
    uint64_t Result =
        ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);

    // Check that -2^32 <= X < 2^32
    assert(isInt<33>(Result) && "overflow check failed for relocation");

    // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
    // from bits 32:12 of X.
    write32AArch64Addr(TargetPtr, Result >> 12);
    break;
  }
  case ELF::R_AARCH64_ADD_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:0 of X
    or32AArch64Imm(TargetPtr, Value + Addend);
    break;
  case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:0 of X
    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
    break;
  case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:1 of X
    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
    break;
  case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:2 of X
    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
    break;
  case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:3 of X
    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
    break;
  case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
    // Operation: S + A
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:4 of X
    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
    break;
  case ELF::R_AARCH64_LD_PREL_LO19: {
    // Operation: S + A - P
    uint64_t Result = Value + Addend - FinalAddress;

    // "Check that -2^20 <= result < 2^20".
    assert(isInt<21>(Result));

    *TargetPtr &= 0xff00001fU;
    // Immediate goes in bits 23:5 of LD imm instruction, taken
    // from bits 20:2 of X
    *TargetPtr |= ((Result & 0xffc) << (5 - 2));
    break;
  }
  case ELF::R_AARCH64_ADR_PREL_LO21: {
    // Operation: S + A - P
    uint64_t Result = Value + Addend - FinalAddress;

    // "Check that -2^20 <= result < 2^20".
    assert(isInt<21>(Result));

    *TargetPtr &= 0x9f00001fU;
    // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
    // from bits 20:0 of X
    *TargetPtr |= ((Result & 0xffc) << (5 - 2));
    *TargetPtr |= (Result & 0x3) << 29;
    break;
  }
  }
}

void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
                                          uint64_t Offset, uint32_t Value,
                                          uint32_t Type, int32_t Addend) {
  // TODO: Add Thumb relocations.
  uint32_t *TargetPtr =
      reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
  uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
  Value += Addend;

  LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
                    << Section.getAddressWithOffset(Offset)
                    << " FinalAddress: " << format("%p", FinalAddress)
                    << " Value: " << format("%x", Value)
                    << " Type: " << format("%x", Type)
                    << " Addend: " << format("%x", Addend) << "\n");

  switch (Type) {
  default:
    llvm_unreachable("Not implemented relocation type!");

  case ELF::R_ARM_NONE:
    break;
    // Write a 31bit signed offset
  case ELF::R_ARM_PREL31:
    support::ulittle32_t::ref{TargetPtr} =
        (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
        ((Value - FinalAddress) & ~0x80000000);
    break;
  case ELF::R_ARM_TARGET1:
  case ELF::R_ARM_ABS32:
    support::ulittle32_t::ref{TargetPtr} = Value;
    break;
    // Write first 16 bit of 32 bit value to the mov instruction.
    // Last 4 bit should be shifted.
  case ELF::R_ARM_MOVW_ABS_NC:
  case ELF::R_ARM_MOVT_ABS:
    if (Type == ELF::R_ARM_MOVW_ABS_NC)
      Value = Value & 0xFFFF;
    else if (Type == ELF::R_ARM_MOVT_ABS)
      Value = (Value >> 16) & 0xFFFF;
    support::ulittle32_t::ref{TargetPtr} =
        (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
        (((Value >> 12) & 0xF) << 16);
    break;
    // Write 24 bit relative value to the branch instruction.
  case ELF::R_ARM_PC24: // Fall through.
  case ELF::R_ARM_CALL: // Fall through.
  case ELF::R_ARM_JUMP24:
    int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
    RelValue = (RelValue & 0x03FFFFFC) >> 2;
    assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
    support::ulittle32_t::ref{TargetPtr} =
        (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
    break;
  }
}

void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
  if (Arch == Triple::UnknownArch ||
      !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
    IsMipsO32ABI = false;
    IsMipsN32ABI = false;
    IsMipsN64ABI = false;
    return;
  }
  if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
    unsigned AbiVariant = E->getPlatformFlags();
    IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
    IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
  }
  IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips");
}

// Return the .TOC. section and offset.
Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
                                          ObjSectionToIDMap &LocalSections,
                                          RelocationValueRef &Rel) {
  // Set a default SectionID in case we do not find a TOC section below.
  // This may happen for references to TOC base base (sym@toc, .odp
  // relocation) without a .toc directive.  In this case just use the
  // first section (which is usually the .odp) since the code won't
  // reference the .toc base directly.
  Rel.SymbolName = nullptr;
  Rel.SectionID = 0;

  // The TOC consists of sections .got, .toc, .tocbss, .plt in that
  // order. The TOC starts where the first of these sections starts.
  for (auto &Section : Obj.sections()) {
    Expected<StringRef> NameOrErr = Section.getName();
    if (!NameOrErr)
      return NameOrErr.takeError();
    StringRef SectionName = *NameOrErr;

    if (SectionName == ".got"
        || SectionName == ".toc"
        || SectionName == ".tocbss"
        || SectionName == ".plt") {
      if (auto SectionIDOrErr =
            findOrEmitSection(Obj, Section, false, LocalSections))
        Rel.SectionID = *SectionIDOrErr;
      else
        return SectionIDOrErr.takeError();
      break;
    }
  }

  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
  // thus permitting a full 64 Kbytes segment.
  Rel.Addend = 0x8000;

  return Error::success();
}

// Returns the sections and offset associated with the ODP entry referenced
// by Symbol.
Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
                                          ObjSectionToIDMap &LocalSections,
                                          RelocationValueRef &Rel) {
  // Get the ELF symbol value (st_value) to compare with Relocation offset in
  // .opd entries
  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
       si != se; ++si) {

    Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
    if (!RelSecOrErr)
      report_fatal_error(Twine(toString(RelSecOrErr.takeError())));

    section_iterator RelSecI = *RelSecOrErr;
    if (RelSecI == Obj.section_end())
      continue;

    Expected<StringRef> NameOrErr = RelSecI->getName();
    if (!NameOrErr)
      return NameOrErr.takeError();
    StringRef RelSectionName = *NameOrErr;

    if (RelSectionName != ".opd")
      continue;

    for (elf_relocation_iterator i = si->relocation_begin(),
                                 e = si->relocation_end();
         i != e;) {
      // The R_PPC64_ADDR64 relocation indicates the first field
      // of a .opd entry
      uint64_t TypeFunc = i->getType();
      if (TypeFunc != ELF::R_PPC64_ADDR64) {
        ++i;
        continue;
      }

      uint64_t TargetSymbolOffset = i->getOffset();
      symbol_iterator TargetSymbol = i->getSymbol();
      int64_t Addend;
      if (auto AddendOrErr = i->getAddend())
        Addend = *AddendOrErr;
      else
        return AddendOrErr.takeError();

      ++i;
      if (i == e)
        break;

      // Just check if following relocation is a R_PPC64_TOC
      uint64_t TypeTOC = i->getType();
      if (TypeTOC != ELF::R_PPC64_TOC)
        continue;

      // Finally compares the Symbol value and the target symbol offset
      // to check if this .opd entry refers to the symbol the relocation
      // points to.
      if (Rel.Addend != (int64_t)TargetSymbolOffset)
        continue;

      section_iterator TSI = Obj.section_end();
      if (auto TSIOrErr = TargetSymbol->getSection())
        TSI = *TSIOrErr;
      else
        return TSIOrErr.takeError();
      assert(TSI != Obj.section_end() && "TSI should refer to a valid section");

      bool IsCode = TSI->isText();
      if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
                                                  LocalSections))
        Rel.SectionID = *SectionIDOrErr;
      else
        return SectionIDOrErr.takeError();
      Rel.Addend = (intptr_t)Addend;
      return Error::success();
    }
  }
  llvm_unreachable("Attempting to get address of ODP entry!");
}

// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.

static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }

static inline uint16_t applyPPChi(uint64_t value) {
  return (value >> 16) & 0xffff;
}

static inline uint16_t applyPPCha (uint64_t value) {
  return ((value + 0x8000) >> 16) & 0xffff;
}

static inline uint16_t applyPPChigher(uint64_t value) {
  return (value >> 32) & 0xffff;
}

static inline uint16_t applyPPChighera (uint64_t value) {
  return ((value + 0x8000) >> 32) & 0xffff;
}

static inline uint16_t applyPPChighest(uint64_t value) {
  return (value >> 48) & 0xffff;
}

static inline uint16_t applyPPChighesta (uint64_t value) {
  return ((value + 0x8000) >> 48) & 0xffff;
}

void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
                                            uint64_t Offset, uint64_t Value,
                                            uint32_t Type, int64_t Addend) {
  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
  switch (Type) {
  default:
    report_fatal_error("Relocation type not implemented yet!");
    break;
  case ELF::R_PPC_ADDR16_LO:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    break;
  case ELF::R_PPC_ADDR16_HI:
    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
    break;
  case ELF::R_PPC_ADDR16_HA:
    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
    break;
  }
}

void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
                                            uint64_t Offset, uint64_t Value,
                                            uint32_t Type, int64_t Addend) {
  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
  switch (Type) {
  default:
    report_fatal_error("Relocation type not implemented yet!");
    break;
  case ELF::R_PPC64_ADDR16:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_DS:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
    break;
  case ELF::R_PPC64_ADDR16_LO:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_LO_DS:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
    break;
  case ELF::R_PPC64_ADDR16_HI:
  case ELF::R_PPC64_ADDR16_HIGH:
    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HA:
  case ELF::R_PPC64_ADDR16_HIGHA:
    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHER:
    writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHERA:
    writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHEST:
    writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHESTA:
    writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR14: {
    assert(((Value + Addend) & 3) == 0);
    // Preserve the AA/LK bits in the branch instruction
    uint8_t aalk = *(LocalAddress + 3);
    writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
  } break;
  case ELF::R_PPC64_REL16_LO: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt16BE(LocalAddress, applyPPClo(Delta));
  } break;
  case ELF::R_PPC64_REL16_HI: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt16BE(LocalAddress, applyPPChi(Delta));
  } break;
  case ELF::R_PPC64_REL16_HA: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt16BE(LocalAddress, applyPPCha(Delta));
  } break;
  case ELF::R_PPC64_ADDR32: {
    int64_t Result = static_cast<int64_t>(Value + Addend);
    if (SignExtend64<32>(Result) != Result)
      llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
    writeInt32BE(LocalAddress, Result);
  } break;
  case ELF::R_PPC64_REL24: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
    if (SignExtend64<26>(delta) != delta)
      llvm_unreachable("Relocation R_PPC64_REL24 overflow");
    // We preserve bits other than LI field, i.e. PO and AA/LK fields.
    uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
    writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
  } break;
  case ELF::R_PPC64_REL32: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
    if (SignExtend64<32>(delta) != delta)
      llvm_unreachable("Relocation R_PPC64_REL32 overflow");
    writeInt32BE(LocalAddress, delta);
  } break;
  case ELF::R_PPC64_REL64: {
    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt64BE(LocalAddress, Delta);
  } break;
  case ELF::R_PPC64_ADDR64:
    writeInt64BE(LocalAddress, Value + Addend);
    break;
  }
}

void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
                                              uint64_t Offset, uint64_t Value,
                                              uint32_t Type, int64_t Addend) {
  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
  switch (Type) {
  default:
    report_fatal_error("Relocation type not implemented yet!");
    break;
  case ELF::R_390_PC16DBL:
  case ELF::R_390_PLT16DBL: {
    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
    assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
    writeInt16BE(LocalAddress, Delta / 2);
    break;
  }
  case ELF::R_390_PC32DBL:
  case ELF::R_390_PLT32DBL: {
    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
    assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
    writeInt32BE(LocalAddress, Delta / 2);
    break;
  }
  case ELF::R_390_PC16: {
    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
    assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
    writeInt16BE(LocalAddress, Delta);
    break;
  }
  case ELF::R_390_PC32: {
    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
    assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
    writeInt32BE(LocalAddress, Delta);
    break;
  }
  case ELF::R_390_PC64: {
    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
    writeInt64BE(LocalAddress, Delta);
    break;
  }
  case ELF::R_390_8:
    *LocalAddress = (uint8_t)(Value + Addend);
    break;
  case ELF::R_390_16:
    writeInt16BE(LocalAddress, Value + Addend);
    break;
  case ELF::R_390_32:
    writeInt32BE(LocalAddress, Value + Addend);
    break;
  case ELF::R_390_64:
    writeInt64BE(LocalAddress, Value + Addend);
    break;
  }
}

void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
                                          uint64_t Offset, uint64_t Value,
                                          uint32_t Type, int64_t Addend) {
  bool isBE = Arch == Triple::bpfeb;

  switch (Type) {
  default:
    report_fatal_error("Relocation type not implemented yet!");
    break;
  case ELF::R_BPF_NONE:
  case ELF::R_BPF_64_64:
  case ELF::R_BPF_64_32:
  case ELF::R_BPF_64_NODYLD32:
    break;
  case ELF::R_BPF_64_ABS64: {
    write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
                      << format("%p\n", Section.getAddressWithOffset(Offset)));
    break;
  }
  case ELF::R_BPF_64_ABS32: {
    Value += Addend;
    assert(Value <= UINT32_MAX);
    write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
    LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
                      << format("%p\n", Section.getAddressWithOffset(Offset)));
    break;
  }
  }
}

// The target location for the relocation is described by RE.SectionID and
// RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
// SectionEntry has three members describing its location.
// SectionEntry::Address is the address at which the section has been loaded
// into memory in the current (host) process.  SectionEntry::LoadAddress is the
// address that the section will have in the target process.
// SectionEntry::ObjAddress is the address of the bits for this section in the
// original emitted object image (also in the current address space).
//
// Relocations will be applied as if the section were loaded at
// SectionEntry::LoadAddress, but they will be applied at an address based
// on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
// Target memory contents if they are required for value calculations.
//
// The Value parameter here is the load address of the symbol for the
// relocation to be applied.  For relocations which refer to symbols in the
// current object Value will be the LoadAddress of the section in which
// the symbol resides (RE.Addend provides additional information about the
// symbol location).  For external symbols, Value will be the address of the
// symbol in the target address space.
void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
                                       uint64_t Value) {
  const SectionEntry &Section = Sections[RE.SectionID];
  return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
                           RE.SymOffset, RE.SectionID);
}

void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
                                       uint64_t Offset, uint64_t Value,
                                       uint32_t Type, int64_t Addend,
                                       uint64_t SymOffset, SID SectionID) {
  switch (Arch) {
  case Triple::x86_64:
    resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
    break;
  case Triple::x86:
    resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
                         (uint32_t)(Addend & 0xffffffffL));
    break;
  case Triple::aarch64:
  case Triple::aarch64_be:
    resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
    break;
  case Triple::arm: // Fall through.
  case Triple::armeb:
  case Triple::thumb:
  case Triple::thumbeb:
    resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
                         (uint32_t)(Addend & 0xffffffffL));
    break;
  case Triple::ppc: // Fall through.
  case Triple::ppcle:
    resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
    break;
  case Triple::ppc64: // Fall through.
  case Triple::ppc64le:
    resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
    break;
  case Triple::systemz:
    resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
    break;
  case Triple::bpfel:
  case Triple::bpfeb:
    resolveBPFRelocation(Section, Offset, Value, Type, Addend);
    break;
  default:
    llvm_unreachable("Unsupported CPU type!");
  }
}

void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
  return (void *)(Sections[SectionID].getObjAddress() + Offset);
}

void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
  RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
  if (Value.SymbolName)
    addRelocationForSymbol(RE, Value.SymbolName);
  else
    addRelocationForSection(RE, Value.SectionID);
}

uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
                                                 bool IsLocal) const {
  switch (RelType) {
  case ELF::R_MICROMIPS_GOT16:
    if (IsLocal)
      return ELF::R_MICROMIPS_LO16;
    break;
  case ELF::R_MICROMIPS_HI16:
    return ELF::R_MICROMIPS_LO16;
  case ELF::R_MIPS_GOT16:
    if (IsLocal)
      return ELF::R_MIPS_LO16;
    break;
  case ELF::R_MIPS_HI16:
    return ELF::R_MIPS_LO16;
  case ELF::R_MIPS_PCHI16:
    return ELF::R_MIPS_PCLO16;
  default:
    break;
  }
  return ELF::R_MIPS_NONE;
}

// Sometimes we don't need to create thunk for a branch.
// This typically happens when branch target is located
// in the same object file. In such case target is either
// a weak symbol or symbol in a different executable section.
// This function checks if branch target is located in the
// same object file and if distance between source and target
// fits R_AARCH64_CALL26 relocation. If both conditions are
// met, it emits direct jump to the target and returns true.
// Otherwise false is returned and thunk is created.
bool RuntimeDyldELF::resolveAArch64ShortBranch(
    unsigned SectionID, relocation_iterator RelI,
    const RelocationValueRef &Value) {
  uint64_t Address;
  if (Value.SymbolName) {
    auto Loc = GlobalSymbolTable.find(Value.SymbolName);

    // Don't create direct branch for external symbols.
    if (Loc == GlobalSymbolTable.end())
      return false;

    const auto &SymInfo = Loc->second;
    Address =
        uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
            SymInfo.getOffset()));
  } else {
    Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
  }
  uint64_t Offset = RelI->getOffset();
  uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);

  // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
  // If distance between source and target is out of range then we should
  // create thunk.
  if (!isInt<28>(Address + Value.Addend - SourceAddress))
    return false;

  resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
                    Value.Addend);

  return true;
}

void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
                                          const RelocationValueRef &Value,
                                          relocation_iterator RelI,
                                          StubMap &Stubs) {

  LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
  SectionEntry &Section = Sections[SectionID];

  uint64_t Offset = RelI->getOffset();
  unsigned RelType = RelI->getType();
  // Look for an existing stub.
  StubMap::const_iterator i = Stubs.find(Value);
  if (i != Stubs.end()) {
    resolveRelocation(Section, Offset,
                      (uint64_t)Section.getAddressWithOffset(i->second),
                      RelType, 0);
    LLVM_DEBUG(dbgs() << " Stub function found\n");
  } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
    // Create a new stub function.
    LLVM_DEBUG(dbgs() << " Create a new stub function\n");
    Stubs[Value] = Section.getStubOffset();
    uint8_t *StubTargetAddr = createStubFunction(
        Section.getAddressWithOffset(Section.getStubOffset()));

    RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
                              ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
    RelocationEntry REmovk_g2(SectionID,
                              StubTargetAddr - Section.getAddress() + 4,
                              ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
    RelocationEntry REmovk_g1(SectionID,
                              StubTargetAddr - Section.getAddress() + 8,
                              ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
    RelocationEntry REmovk_g0(SectionID,
                              StubTargetAddr - Section.getAddress() + 12,
                              ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);

    if (Value.SymbolName) {
      addRelocationForSymbol(REmovz_g3, Value.SymbolName);
      addRelocationForSymbol(REmovk_g2, Value.SymbolName);
      addRelocationForSymbol(REmovk_g1, Value.SymbolName);
      addRelocationForSymbol(REmovk_g0, Value.SymbolName);
    } else {
      addRelocationForSection(REmovz_g3, Value.SectionID);
      addRelocationForSection(REmovk_g2, Value.SectionID);
      addRelocationForSection(REmovk_g1, Value.SectionID);
      addRelocationForSection(REmovk_g0, Value.SectionID);
    }
    resolveRelocation(Section, Offset,
                      reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
                          Section.getStubOffset())),
                      RelType, 0);
    Section.advanceStubOffset(getMaxStubSize());
  }
}

Expected<relocation_iterator>
RuntimeDyldELF::processRelocationRef(
    unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
    ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
  const auto &Obj = cast<ELFObjectFileBase>(O);
  uint64_t RelType = RelI->getType();
  int64_t Addend = 0;
  if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
    Addend = *AddendOrErr;
  else
    consumeError(AddendOrErr.takeError());
  elf_symbol_iterator Symbol = RelI->getSymbol();

  // Obtain the symbol name which is referenced in the relocation
  StringRef TargetName;
  if (Symbol != Obj.symbol_end()) {
    if (auto TargetNameOrErr = Symbol->getName())
      TargetName = *TargetNameOrErr;
    else
      return TargetNameOrErr.takeError();
  }
  LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
                    << " TargetName: " << TargetName << "\n");
  RelocationValueRef Value;
  // First search for the symbol in the local symbol table
  SymbolRef::Type SymType = SymbolRef::ST_Unknown;

  // Search for the symbol in the global symbol table
  RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
  if (Symbol != Obj.symbol_end()) {
    gsi = GlobalSymbolTable.find(TargetName.data());
    Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
    if (!SymTypeOrErr) {
      std::string Buf;
      raw_string_ostream OS(Buf);
      logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
      report_fatal_error(Twine(OS.str()));
    }
    SymType = *SymTypeOrErr;
  }
  if (gsi != GlobalSymbolTable.end()) {
    const auto &SymInfo = gsi->second;
    Value.SectionID = SymInfo.getSectionID();
    Value.Offset = SymInfo.getOffset();
    Value.Addend = SymInfo.getOffset() + Addend;
  } else {
    switch (SymType) {
    case SymbolRef::ST_Debug: {
      // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
      // and can be changed by another developers. Maybe best way is add
      // a new symbol type ST_Section to SymbolRef and use it.
      auto SectionOrErr = Symbol->getSection();
      if (!SectionOrErr) {
        std::string Buf;
        raw_string_ostream OS(Buf);
        logAllUnhandledErrors(SectionOrErr.takeError(), OS);
        report_fatal_error(Twine(OS.str()));
      }
      section_iterator si = *SectionOrErr;
      if (si == Obj.section_end())
        llvm_unreachable("Symbol section not found, bad object file format!");
      LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
      bool isCode = si->isText();
      if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
                                                  ObjSectionToID))
        Value.SectionID = *SectionIDOrErr;
      else
        return SectionIDOrErr.takeError();
      Value.Addend = Addend;
      break;
    }
    case SymbolRef::ST_Data:
    case SymbolRef::ST_Function:
    case SymbolRef::ST_Unknown: {
      Value.SymbolName = TargetName.data();
      Value.Addend = Addend;

      // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
      // will manifest here as a NULL symbol name.
      // We can set this as a valid (but empty) symbol name, and rely
      // on addRelocationForSymbol to handle this.
      if (!Value.SymbolName)
        Value.SymbolName = "";
      break;
    }
    default:
      llvm_unreachable("Unresolved symbol type!");
      break;
    }
  }

  uint64_t Offset = RelI->getOffset();

  LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
                    << "\n");
  if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
    if ((RelType == ELF::R_AARCH64_CALL26 ||
         RelType == ELF::R_AARCH64_JUMP26) &&
        MemMgr.allowStubAllocation()) {
      resolveAArch64Branch(SectionID, Value, RelI, Stubs);
    } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
      // Create new GOT entry or find existing one. If GOT entry is
      // to be created, then we also emit ABS64 relocation for it.
      uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
                                 ELF::R_AARCH64_ADR_PREL_PG_HI21);

    } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
      uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
                                 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
    } else {
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    }
  } else if (Arch == Triple::arm) {
    if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
      RelType == ELF::R_ARM_JUMP24) {
      // This is an ARM branch relocation, need to use a stub function.
      LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
      SectionEntry &Section = Sections[SectionID];

      // Look for an existing stub.
      StubMap::const_iterator i = Stubs.find(Value);
      if (i != Stubs.end()) {
        resolveRelocation(
            Section, Offset,
            reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
            RelType, 0);
        LLVM_DEBUG(dbgs() << " Stub function found\n");
      } else {
        // Create a new stub function.
        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
        Stubs[Value] = Section.getStubOffset();
        uint8_t *StubTargetAddr = createStubFunction(
            Section.getAddressWithOffset(Section.getStubOffset()));
        RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
                           ELF::R_ARM_ABS32, Value.Addend);
        if (Value.SymbolName)
          addRelocationForSymbol(RE, Value.SymbolName);
        else
          addRelocationForSection(RE, Value.SectionID);

        resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
                                               Section.getAddressWithOffset(
                                                   Section.getStubOffset())),
                          RelType, 0);
        Section.advanceStubOffset(getMaxStubSize());
      }
    } else {
      uint32_t *Placeholder =
        reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
      if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
          RelType == ELF::R_ARM_ABS32) {
        Value.Addend += *Placeholder;
      } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
        // See ELF for ARM documentation
        Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
      }
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    }
  } else if (IsMipsO32ABI) {
    uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
        computePlaceholderAddress(SectionID, Offset));
    uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
    if (RelType == ELF::R_MIPS_26) {
      // This is an Mips branch relocation, need to use a stub function.
      LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
      SectionEntry &Section = Sections[SectionID];

      // Extract the addend from the instruction.
      // We shift up by two since the Value will be down shifted again
      // when applying the relocation.
      uint32_t Addend = (Opcode & 0x03ffffff) << 2;

      Value.Addend += Addend;

      //  Look up for existing stub.
      StubMap::const_iterator i = Stubs.find(Value);
      if (i != Stubs.end()) {
        RelocationEntry RE(SectionID, Offset, RelType, i->second);
        addRelocationForSection(RE, SectionID);
        LLVM_DEBUG(dbgs() << " Stub function found\n");
      } else {
        // Create a new stub function.
        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
        Stubs[Value] = Section.getStubOffset();

        unsigned AbiVariant = Obj.getPlatformFlags();

        uint8_t *StubTargetAddr = createStubFunction(
            Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);

        // Creating Hi and Lo relocations for the filled stub instructions.
        RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
                             ELF::R_MIPS_HI16, Value.Addend);
        RelocationEntry RELo(SectionID,
                             StubTargetAddr - Section.getAddress() + 4,
                             ELF::R_MIPS_LO16, Value.Addend);

        if (Value.SymbolName) {
          addRelocationForSymbol(REHi, Value.SymbolName);
          addRelocationForSymbol(RELo, Value.SymbolName);
        } else {
          addRelocationForSection(REHi, Value.SectionID);
          addRelocationForSection(RELo, Value.SectionID);
        }

        RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
        addRelocationForSection(RE, SectionID);
        Section.advanceStubOffset(getMaxStubSize());
      }
    } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
      int64_t Addend = (Opcode & 0x0000ffff) << 16;
      RelocationEntry RE(SectionID, Offset, RelType, Addend);
      PendingRelocs.push_back(std::make_pair(Value, RE));
    } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
      int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
      for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
        const RelocationValueRef &MatchingValue = I->first;
        RelocationEntry &Reloc = I->second;
        if (MatchingValue == Value &&
            RelType == getMatchingLoRelocation(Reloc.RelType) &&
            SectionID == Reloc.SectionID) {
          Reloc.Addend += Addend;
          if (Value.SymbolName)
            addRelocationForSymbol(Reloc, Value.SymbolName);
          else
            addRelocationForSection(Reloc, Value.SectionID);
          I = PendingRelocs.erase(I);
        } else
          ++I;
      }
      RelocationEntry RE(SectionID, Offset, RelType, Addend);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    } else {
      if (RelType == ELF::R_MIPS_32)
        Value.Addend += Opcode;
      else if (RelType == ELF::R_MIPS_PC16)
        Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
      else if (RelType == ELF::R_MIPS_PC19_S2)
        Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
      else if (RelType == ELF::R_MIPS_PC21_S2)
        Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
      else if (RelType == ELF::R_MIPS_PC26_S2)
        Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    }
  } else if (IsMipsN32ABI || IsMipsN64ABI) {
    uint32_t r_type = RelType & 0xff;
    RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
    if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
        || r_type == ELF::R_MIPS_GOT_DISP) {
      StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
      if (i != GOTSymbolOffsets.end())
        RE.SymOffset = i->second;
      else {
        RE.SymOffset = allocateGOTEntries(1);
        GOTSymbolOffsets[TargetName] = RE.SymOffset;
      }
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    } else if (RelType == ELF::R_MIPS_26) {
      // This is an Mips branch relocation, need to use a stub function.
      LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
      SectionEntry &Section = Sections[SectionID];

      //  Look up for existing stub.
      StubMap::const_iterator i = Stubs.find(Value);
      if (i != Stubs.end()) {
        RelocationEntry RE(SectionID, Offset, RelType, i->second);
        addRelocationForSection(RE, SectionID);
        LLVM_DEBUG(dbgs() << " Stub function found\n");
      } else {
        // Create a new stub function.
        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
        Stubs[Value] = Section.getStubOffset();

        unsigned AbiVariant = Obj.getPlatformFlags();

        uint8_t *StubTargetAddr = createStubFunction(
            Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);

        if (IsMipsN32ABI) {
          // Creating Hi and Lo relocations for the filled stub instructions.
          RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
                               ELF::R_MIPS_HI16, Value.Addend);
          RelocationEntry RELo(SectionID,
                               StubTargetAddr - Section.getAddress() + 4,
                               ELF::R_MIPS_LO16, Value.Addend);
          if (Value.SymbolName) {
            addRelocationForSymbol(REHi, Value.SymbolName);
            addRelocationForSymbol(RELo, Value.SymbolName);
          } else {
            addRelocationForSection(REHi, Value.SectionID);
            addRelocationForSection(RELo, Value.SectionID);
          }
        } else {
          // Creating Highest, Higher, Hi and Lo relocations for the filled stub
          // instructions.
          RelocationEntry REHighest(SectionID,
                                    StubTargetAddr - Section.getAddress(),
                                    ELF::R_MIPS_HIGHEST, Value.Addend);
          RelocationEntry REHigher(SectionID,
                                   StubTargetAddr - Section.getAddress() + 4,
                                   ELF::R_MIPS_HIGHER, Value.Addend);
          RelocationEntry REHi(SectionID,
                               StubTargetAddr - Section.getAddress() + 12,
                               ELF::R_MIPS_HI16, Value.Addend);
          RelocationEntry RELo(SectionID,
                               StubTargetAddr - Section.getAddress() + 20,
                               ELF::R_MIPS_LO16, Value.Addend);
          if (Value.SymbolName) {
            addRelocationForSymbol(REHighest, Value.SymbolName);
            addRelocationForSymbol(REHigher, Value.SymbolName);
            addRelocationForSymbol(REHi, Value.SymbolName);
            addRelocationForSymbol(RELo, Value.SymbolName);
          } else {
            addRelocationForSection(REHighest, Value.SectionID);
            addRelocationForSection(REHigher, Value.SectionID);
            addRelocationForSection(REHi, Value.SectionID);
            addRelocationForSection(RELo, Value.SectionID);
          }
        }
        RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
        addRelocationForSection(RE, SectionID);
        Section.advanceStubOffset(getMaxStubSize());
      }
    } else {
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    }

  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
    if (RelType == ELF::R_PPC64_REL24) {
      // Determine ABI variant in use for this object.
      unsigned AbiVariant = Obj.getPlatformFlags();
      AbiVariant &= ELF::EF_PPC64_ABI;
      // A PPC branch relocation will need a stub function if the target is
      // an external symbol (either Value.SymbolName is set, or SymType is
      // Symbol::ST_Unknown) or if the target address is not within the
      // signed 24-bits branch address.
      SectionEntry &Section = Sections[SectionID];
      uint8_t *Target = Section.getAddressWithOffset(Offset);
      bool RangeOverflow = false;
      bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
      if (!IsExtern) {
        if (AbiVariant != 2) {
          // In the ELFv1 ABI, a function call may point to the .opd entry,
          // so the final symbol value is calculated based on the relocation
          // values in the .opd section.
          if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
            return std::move(Err);
        } else {
          // In the ELFv2 ABI, a function symbol may provide a local entry
          // point, which must be used for direct calls.
          if (Value.SectionID == SectionID){
            uint8_t SymOther = Symbol->getOther();
            Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
          }
        }
        uint8_t *RelocTarget =
            Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
        int64_t delta = static_cast<int64_t>(Target - RelocTarget);
        // If it is within 26-bits branch range, just set the branch target
        if (SignExtend64<26>(delta) != delta) {
          RangeOverflow = true;
        } else if ((AbiVariant != 2) ||
                   (AbiVariant == 2  && Value.SectionID == SectionID)) {
          RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
          addRelocationForSection(RE, Value.SectionID);
        }
      }
      if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
          RangeOverflow) {
        // It is an external symbol (either Value.SymbolName is set, or
        // SymType is SymbolRef::ST_Unknown) or out of range.
        StubMap::const_iterator i = Stubs.find(Value);
        if (i != Stubs.end()) {
          // Symbol function stub already created, just relocate to it
          resolveRelocation(Section, Offset,
                            reinterpret_cast<uint64_t>(
                                Section.getAddressWithOffset(i->second)),
                            RelType, 0);
          LLVM_DEBUG(dbgs() << " Stub function found\n");
        } else {
          // Create a new stub function.
          LLVM_DEBUG(dbgs() << " Create a new stub function\n");
          Stubs[Value] = Section.getStubOffset();
          uint8_t *StubTargetAddr = createStubFunction(
              Section.getAddressWithOffset(Section.getStubOffset()),
              AbiVariant);
          RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
                             ELF::R_PPC64_ADDR64, Value.Addend);

          // Generates the 64-bits address loads as exemplified in section
          // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
          // apply to the low part of the instructions, so we have to update
          // the offset according to the target endianness.
          uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
          if (!IsTargetLittleEndian)
            StubRelocOffset += 2;

          RelocationEntry REhst(SectionID, StubRelocOffset + 0,
                                ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
          RelocationEntry REhr(SectionID, StubRelocOffset + 4,
                               ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
          RelocationEntry REh(SectionID, StubRelocOffset + 12,
                              ELF::R_PPC64_ADDR16_HI, Value.Addend);
          RelocationEntry REl(SectionID, StubRelocOffset + 16,
                              ELF::R_PPC64_ADDR16_LO, Value.Addend);

          if (Value.SymbolName) {
            addRelocationForSymbol(REhst, Value.SymbolName);
            addRelocationForSymbol(REhr, Value.SymbolName);
            addRelocationForSymbol(REh, Value.SymbolName);
            addRelocationForSymbol(REl, Value.SymbolName);
          } else {
            addRelocationForSection(REhst, Value.SectionID);
            addRelocationForSection(REhr, Value.SectionID);
            addRelocationForSection(REh, Value.SectionID);
            addRelocationForSection(REl, Value.SectionID);
          }

          resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
                                                 Section.getAddressWithOffset(
                                                     Section.getStubOffset())),
                            RelType, 0);
          Section.advanceStubOffset(getMaxStubSize());
        }
        if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
          // Restore the TOC for external calls
          if (AbiVariant == 2)
            writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
          else
            writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
        }
      }
    } else if (RelType == ELF::R_PPC64_TOC16 ||
               RelType == ELF::R_PPC64_TOC16_DS ||
               RelType == ELF::R_PPC64_TOC16_LO ||
               RelType == ELF::R_PPC64_TOC16_LO_DS ||
               RelType == ELF::R_PPC64_TOC16_HI ||
               RelType == ELF::R_PPC64_TOC16_HA) {
      // These relocations are supposed to subtract the TOC address from
      // the final value.  This does not fit cleanly into the RuntimeDyld
      // scheme, since there may be *two* sections involved in determining
      // the relocation value (the section of the symbol referred to by the
      // relocation, and the TOC section associated with the current module).
      //
      // Fortunately, these relocations are currently only ever generated
      // referring to symbols that themselves reside in the TOC, which means
      // that the two sections are actually the same.  Thus they cancel out
      // and we can immediately resolve the relocation right now.
      switch (RelType) {
      case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
      case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
      case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
      case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
      case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
      case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
      default: llvm_unreachable("Wrong relocation type.");
      }

      RelocationValueRef TOCValue;
      if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
        return std::move(Err);
      if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
        llvm_unreachable("Unsupported TOC relocation.");
      Value.Addend -= TOCValue.Addend;
      resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
    } else {
      // There are two ways to refer to the TOC address directly: either
      // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
      // ignored), or via any relocation that refers to the magic ".TOC."
      // symbols (in which case the addend is respected).
      if (RelType == ELF::R_PPC64_TOC) {
        RelType = ELF::R_PPC64_ADDR64;
        if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
          return std::move(Err);
      } else if (TargetName == ".TOC.") {
        if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
          return std::move(Err);
        Value.Addend += Addend;
      }

      RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);

      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    }
  } else if (Arch == Triple::systemz &&
             (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
    // Create function stubs for both PLT and GOT references, regardless of
    // whether the GOT reference is to data or code.  The stub contains the
    // full address of the symbol, as needed by GOT references, and the
    // executable part only adds an overhead of 8 bytes.
    //
    // We could try to conserve space by allocating the code and data
    // parts of the stub separately.  However, as things stand, we allocate
    // a stub for every relocation, so using a GOT in JIT code should be
    // no less space efficient than using an explicit constant pool.
    LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
    SectionEntry &Section = Sections[SectionID];

    // Look for an existing stub.
    StubMap::const_iterator i = Stubs.find(Value);
    uintptr_t StubAddress;
    if (i != Stubs.end()) {
      StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
      LLVM_DEBUG(dbgs() << " Stub function found\n");
    } else {
      // Create a new stub function.
      LLVM_DEBUG(dbgs() << " Create a new stub function\n");

      uintptr_t BaseAddress = uintptr_t(Section.getAddress());
      StubAddress =
          alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment());
      unsigned StubOffset = StubAddress - BaseAddress;

      Stubs[Value] = StubOffset;
      createStubFunction((uint8_t *)StubAddress);
      RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
                         Value.Offset);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
      Section.advanceStubOffset(getMaxStubSize());
    }

    if (RelType == ELF::R_390_GOTENT)
      resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
                        Addend);
    else
      resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
  } else if (Arch == Triple::x86_64) {
    if (RelType == ELF::R_X86_64_PLT32) {
      // The way the PLT relocations normally work is that the linker allocates
      // the
      // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
      // entry will then jump to an address provided by the GOT.  On first call,
      // the
      // GOT address will point back into PLT code that resolves the symbol. After
      // the first call, the GOT entry points to the actual function.
      //
      // For local functions we're ignoring all of that here and just replacing
      // the PLT32 relocation type with PC32, which will translate the relocation
      // into a PC-relative call directly to the function. For external symbols we
      // can't be sure the function will be within 2^32 bytes of the call site, so
      // we need to create a stub, which calls into the GOT.  This case is
      // equivalent to the usual PLT implementation except that we use the stub
      // mechanism in RuntimeDyld (which puts stubs at the end of the section)
      // rather than allocating a PLT section.
      if (Value.SymbolName && MemMgr.allowStubAllocation()) {
        // This is a call to an external function.
        // Look for an existing stub.
        SectionEntry *Section = &Sections[SectionID];
        StubMap::const_iterator i = Stubs.find(Value);
        uintptr_t StubAddress;
        if (i != Stubs.end()) {
          StubAddress = uintptr_t(Section->getAddress()) + i->second;
          LLVM_DEBUG(dbgs() << " Stub function found\n");
        } else {
          // Create a new stub function (equivalent to a PLT entry).
          LLVM_DEBUG(dbgs() << " Create a new stub function\n");

          uintptr_t BaseAddress = uintptr_t(Section->getAddress());
          StubAddress = alignTo(BaseAddress + Section->getStubOffset(),
                                getStubAlignment());
          unsigned StubOffset = StubAddress - BaseAddress;
          Stubs[Value] = StubOffset;
          createStubFunction((uint8_t *)StubAddress);

          // Bump our stub offset counter
          Section->advanceStubOffset(getMaxStubSize());

          // Allocate a GOT Entry
          uint64_t GOTOffset = allocateGOTEntries(1);
          // This potentially creates a new Section which potentially
          // invalidates the Section pointer, so reload it.
          Section = &Sections[SectionID];

          // The load of the GOT address has an addend of -4
          resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
                                     ELF::R_X86_64_PC32);

          // Fill in the value of the symbol we're targeting into the GOT
          addRelocationForSymbol(
              computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
              Value.SymbolName);
        }

        // Make the target call a call into the stub table.
        resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
                          Addend);
      } else {
        Value.Addend += support::ulittle32_t::ref(
            computePlaceholderAddress(SectionID, Offset));
        processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
      }
    } else if (RelType == ELF::R_X86_64_GOTPCREL ||
               RelType == ELF::R_X86_64_GOTPCRELX ||
               RelType == ELF::R_X86_64_REX_GOTPCRELX) {
      uint64_t GOTOffset = allocateGOTEntries(1);
      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
                                 ELF::R_X86_64_PC32);

      // Fill in the value of the symbol we're targeting into the GOT
      RelocationEntry RE =
          computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    } else if (RelType == ELF::R_X86_64_GOT64) {
      // Fill in a 64-bit GOT offset.
      uint64_t GOTOffset = allocateGOTEntries(1);
      resolveRelocation(Sections[SectionID], Offset, GOTOffset,
                        ELF::R_X86_64_64, 0);

      // Fill in the value of the symbol we're targeting into the GOT
      RelocationEntry RE =
          computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    } else if (RelType == ELF::R_X86_64_GOTPC32) {
      // Materialize the address of the base of the GOT relative to the PC.
      // This doesn't create a GOT entry, but it does mean we need a GOT
      // section.
      (void)allocateGOTEntries(0);
      resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
    } else if (RelType == ELF::R_X86_64_GOTPC64) {
      (void)allocateGOTEntries(0);
      resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
    } else if (RelType == ELF::R_X86_64_GOTOFF64) {
      // GOTOFF relocations ultimately require a section difference relocation.
      (void)allocateGOTEntries(0);
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    } else if (RelType == ELF::R_X86_64_PC32) {
      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    } else if (RelType == ELF::R_X86_64_PC64) {
      Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
      processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
    } else if (RelType == ELF::R_X86_64_TLSGD ||
               RelType == ELF::R_X86_64_TLSLD) {
      // The next relocation must be the relocation for __tls_get_addr.
      ++RelI;
      auto &GetAddrRelocation = *RelI;
      processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
                                 GetAddrRelocation);
    } else {
      processSimpleRelocation(SectionID, Offset, RelType, Value);
    }
  } else {
    if (Arch == Triple::x86) {
      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
    }
    processSimpleRelocation(SectionID, Offset, RelType, Value);
  }
  return ++RelI;
}

void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
                                                     uint64_t Offset,
                                                     RelocationValueRef Value,
                                                     int64_t Addend) {
  // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
  // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
  // only mentions one optimization even though there are two different
  // code sequences for the Initial Exec TLS Model. We match the code to
  // find out which one was used.

  // A possible TLS code sequence and its replacement
  struct CodeSequence {
    // The expected code sequence
    ArrayRef<uint8_t> ExpectedCodeSequence;
    // The negative offset of the GOTTPOFF relocation to the beginning of
    // the sequence
    uint64_t TLSSequenceOffset;
    // The new code sequence
    ArrayRef<uint8_t> NewCodeSequence;
    // The offset of the new TPOFF relocation
    uint64_t TpoffRelocationOffset;
  };

  std::array<CodeSequence, 2> CodeSequences;

  // Initial Exec Code Model Sequence
  {
    static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
        0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
        0x00,                                    // mov %fs:0, %rax
        0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
                                                 // %rax
    };
    CodeSequences[0].ExpectedCodeSequence =
        ArrayRef<uint8_t>(ExpectedCodeSequenceList);
    CodeSequences[0].TLSSequenceOffset = 12;

    static const std::initializer_list<uint8_t> NewCodeSequenceList = {
        0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
        0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
    };
    CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
    CodeSequences[0].TpoffRelocationOffset = 12;
  }

  // Initial Exec Code Model Sequence, II
  {
    static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
        0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
        0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00  // mov %fs:(%rax), %rax
    };
    CodeSequences[1].ExpectedCodeSequence =
        ArrayRef<uint8_t>(ExpectedCodeSequenceList);
    CodeSequences[1].TLSSequenceOffset = 3;

    static const std::initializer_list<uint8_t> NewCodeSequenceList = {
        0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00,             // 6 byte nop
        0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
    };
    CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
    CodeSequences[1].TpoffRelocationOffset = 10;
  }

  bool Resolved = false;
  auto &Section = Sections[SectionID];
  for (const auto &C : CodeSequences) {
    assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
           "Old and new code sequences must have the same size");

    if (Offset < C.TLSSequenceOffset ||
        (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
            Section.getSize()) {
      // This can't be a matching sequence as it doesn't fit in the current
      // section
      continue;
    }

    auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
    auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
    if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
        C.ExpectedCodeSequence) {
      continue;
    }

    memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());

    // The original GOTTPOFF relocation has an addend as it is PC relative,
    // so it needs to be corrected. The TPOFF32 relocation is used as an
    // absolute value (which is an offset from %fs:0), so remove the addend
    // again.
    RelocationEntry RE(SectionID,
                       TLSSequenceStartOffset + C.TpoffRelocationOffset,
                       ELF::R_X86_64_TPOFF32, Value.Addend - Addend);

    if (Value.SymbolName)
      addRelocationForSymbol(RE, Value.SymbolName);
    else
      addRelocationForSection(RE, Value.SectionID);

    Resolved = true;
    break;
  }

  if (!Resolved) {
    // The GOTTPOFF relocation was not used in one of the sequences
    // described in the spec, so we can't optimize it to a TPOFF
    // relocation.
    uint64_t GOTOffset = allocateGOTEntries(1);
    resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
                               ELF::R_X86_64_PC32);
    RelocationEntry RE =
        computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
    if (Value.SymbolName)
      addRelocationForSymbol(RE, Value.SymbolName);
    else
      addRelocationForSection(RE, Value.SectionID);
  }
}

void RuntimeDyldELF::processX86_64TLSRelocation(
    unsigned SectionID, uint64_t Offset, uint64_t RelType,
    RelocationValueRef Value, int64_t Addend,
    const RelocationRef &GetAddrRelocation) {
  // Since we are statically linking and have no additional DSOs, we can resolve
  // the relocation directly without using __tls_get_addr.
  // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
  // to replace it with the Local Exec relocation variant.

  // Find out whether the code was compiled with the large or small memory
  // model. For this we look at the next relocation which is the relocation
  // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
  // small code model, with a 64 bit relocation it's the large code model.
  bool IsSmallCodeModel;
  // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
  bool IsGOTPCRel = false;

  switch (GetAddrRelocation.getType()) {
  case ELF::R_X86_64_GOTPCREL:
  case ELF::R_X86_64_REX_GOTPCRELX:
  case ELF::R_X86_64_GOTPCRELX:
    IsGOTPCRel = true;
    [[fallthrough]];
  case ELF::R_X86_64_PLT32:
    IsSmallCodeModel = true;
    break;
  case ELF::R_X86_64_PLTOFF64:
    IsSmallCodeModel = false;
    break;
  default:
    report_fatal_error(
        "invalid TLS relocations for General/Local Dynamic TLS Model: "
        "expected PLT or GOT relocation for __tls_get_addr function");
  }

  // The negative offset to the start of the TLS code sequence relative to
  // the offset of the TLSGD/TLSLD relocation
  uint64_t TLSSequenceOffset;
  // The expected start of the code sequence
  ArrayRef<uint8_t> ExpectedCodeSequence;
  // The new TLS code sequence that will replace the existing code
  ArrayRef<uint8_t> NewCodeSequence;

  if (RelType == ELF::R_X86_64_TLSGD) {
    // The offset of the new TPOFF32 relocation (offset starting from the
    // beginning of the whole TLS sequence)
    uint64_t TpoffRelocOffset;

    if (IsSmallCodeModel) {
      if (!IsGOTPCRel) {
        static const std::initializer_list<uint8_t> CodeSequence = {
            0x66, // data16 (no-op prefix)
            0x48, 0x8d, 0x3d, 0x00, 0x00,
            0x00, 0x00,                  // lea <disp32>(%rip), %rdi
            0x66, 0x66,                  // two data16 prefixes
            0x48,                        // rex64 (no-op prefix)
            0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
        };
        ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
        TLSSequenceOffset = 4;
      } else {
        // This code sequence is not described in the TLS spec but gcc
        // generates it sometimes.
        static const std::initializer_list<uint8_t> CodeSequence = {
            0x66, // data16 (no-op prefix)
            0x48, 0x8d, 0x3d, 0x00, 0x00,
            0x00, 0x00, // lea <disp32>(%rip), %rdi
            0x66,       // data16 prefix (no-op prefix)
            0x48,       // rex64 (no-op prefix)
            0xff, 0x15, 0x00, 0x00, 0x00,
            0x00 // call *__tls_get_addr@gotpcrel(%rip)
        };
        ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
        TLSSequenceOffset = 4;
      }

      // The replacement code for the small code model. It's the same for
      // both sequences.
      static const std::initializer_list<uint8_t> SmallSequence = {
          0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
          0x00,                                    // mov %fs:0, %rax
          0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
                                                   // %rax
      };
      NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
      TpoffRelocOffset = 12;
    } else {
      static const std::initializer_list<uint8_t> CodeSequence = {
          0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
                                                    // %rdi
          0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
          0x00,             // movabs $__tls_get_addr@pltoff, %rax
          0x48, 0x01, 0xd8, // add %rbx, %rax
          0xff, 0xd0        // call *%rax
      };
      ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
      TLSSequenceOffset = 3;

      // The replacement code for the large code model
      static const std::initializer_list<uint8_t> LargeSequence = {
          0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
          0x00,                                     // mov %fs:0, %rax
          0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
                                                    // %rax
          0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00        // nopw 0x0(%rax,%rax,1)
      };
      NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
      TpoffRelocOffset = 12;
    }

    // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
    // The new TPOFF32 relocations is used as an absolute offset from
    // %fs:0, so remove the TLSGD/TLSLD addend again.
    RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
                       ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
    if (Value.SymbolName)
      addRelocationForSymbol(RE, Value.SymbolName);
    else
      addRelocationForSection(RE, Value.SectionID);
  } else if (RelType == ELF::R_X86_64_TLSLD) {
    if (IsSmallCodeModel) {
      if (!IsGOTPCRel) {
        static const std::initializer_list<uint8_t> CodeSequence = {
            0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
            0x00, 0xe8, 0x00, 0x00, 0x00, 0x00  // call __tls_get_addr@plt
        };
        ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
        TLSSequenceOffset = 3;

        // The replacement code for the small code model
        static const std::initializer_list<uint8_t> SmallSequence = {
            0x66, 0x66, 0x66, // three data16 prefixes (no-op)
            0x64, 0x48, 0x8b, 0x04, 0x25,
            0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
        };
        NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
      } else {
        // This code sequence is not described in the TLS spec but gcc
        // generates it sometimes.
        static const std::initializer_list<uint8_t> CodeSequence = {
            0x48, 0x8d, 0x3d, 0x00,
            0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
            0xff, 0x15, 0x00, 0x00,
            0x00, 0x00 // call
                       // *__tls_get_addr@gotpcrel(%rip)
        };
        ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
        TLSSequenceOffset = 3;

        // The replacement is code is just like above but it needs to be
        // one byte longer.
        static const std::initializer_list<uint8_t> SmallSequence = {
            0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
            0x64, 0x48, 0x8b, 0x04, 0x25,
            0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
        };
        NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
      }
    } else {
      // This is the same sequence as for the TLSGD sequence with the large
      // memory model above
      static const std::initializer_list<uint8_t> CodeSequence = {
          0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
                                                    // %rdi
          0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
          0x48,       // movabs $__tls_get_addr@pltoff, %rax
          0x01, 0xd8, // add %rbx, %rax
          0xff, 0xd0  // call *%rax
      };
      ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
      TLSSequenceOffset = 3;

      // The replacement code for the large code model
      static const std::initializer_list<uint8_t> LargeSequence = {
          0x66, 0x66, 0x66, // three data16 prefixes (no-op)
          0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
          0x00,                                                // 10 byte nop
          0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
      };
      NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
    }
  } else {
    llvm_unreachable("both TLS relocations handled above");
  }

  assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
         "Old and new code sequences must have the same size");

  auto &Section = Sections[SectionID];
  if (Offset < TLSSequenceOffset ||
      (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
          Section.getSize()) {
    report_fatal_error("unexpected end of section in TLS sequence");
  }

  auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
  if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
      ExpectedCodeSequence) {
    report_fatal_error(
        "invalid TLS sequence for Global/Local Dynamic TLS Model");
  }

  memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
}

size_t RuntimeDyldELF::getGOTEntrySize() {
  // We don't use the GOT in all of these cases, but it's essentially free
  // to put them all here.
  size_t Result = 0;
  switch (Arch) {
  case Triple::x86_64:
  case Triple::aarch64:
  case Triple::aarch64_be:
  case Triple::ppc64:
  case Triple::ppc64le:
  case Triple::systemz:
    Result = sizeof(uint64_t);
    break;
  case Triple::x86:
  case Triple::arm:
  case Triple::thumb:
    Result = sizeof(uint32_t);
    break;
  case Triple::mips:
  case Triple::mipsel:
  case Triple::mips64:
  case Triple::mips64el:
    if (IsMipsO32ABI || IsMipsN32ABI)
      Result = sizeof(uint32_t);
    else if (IsMipsN64ABI)
      Result = sizeof(uint64_t);
    else
      llvm_unreachable("Mips ABI not handled");
    break;
  default:
    llvm_unreachable("Unsupported CPU type!");
  }
  return Result;
}

uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
  if (GOTSectionID == 0) {
    GOTSectionID = Sections.size();
    // Reserve a section id. We'll allocate the section later
    // once we know the total size
    Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
  }
  uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
  CurrentGOTIndex += no;
  return StartOffset;
}

uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
                                             unsigned GOTRelType) {
  auto E = GOTOffsetMap.insert({Value, 0});
  if (E.second) {
    uint64_t GOTOffset = allocateGOTEntries(1);

    // Create relocation for newly created GOT entry
    RelocationEntry RE =
        computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
    if (Value.SymbolName)
      addRelocationForSymbol(RE, Value.SymbolName);
    else
      addRelocationForSection(RE, Value.SectionID);

    E.first->second = GOTOffset;
  }

  return E.first->second;
}

void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
                                                uint64_t Offset,
                                                uint64_t GOTOffset,
                                                uint32_t Type) {
  // Fill in the relative address of the GOT Entry into the stub
  RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
  addRelocationForSection(GOTRE, GOTSectionID);
}

RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
                                                   uint64_t SymbolOffset,
                                                   uint32_t Type) {
  return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
}

void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) {
  // This should never return an error as `processNewSymbol` wouldn't have been
  // called if getFlags() returned an error before.
  auto ObjSymbolFlags = cantFail(ObjSymbol.getFlags());

  if (ObjSymbolFlags & SymbolRef::SF_Indirect) {
    if (IFuncStubSectionID == 0) {
      // Create a dummy section for the ifunc stubs. It will be actually
      // allocated in finalizeLoad() below.
      IFuncStubSectionID = Sections.size();
      Sections.push_back(
          SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
      // First 64B are reserverd for the IFunc resolver
      IFuncStubOffset = 64;
    }

    IFuncStubs.push_back(IFuncStub{IFuncStubOffset, Symbol});
    // Modify the symbol so that it points to the ifunc stub instead of to the
    // resolver function.
    Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset,
                              Symbol.getFlags());
    IFuncStubOffset += getMaxIFuncStubSize();
  }
}

Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
                                  ObjSectionToIDMap &SectionMap) {
  if (IsMipsO32ABI)
    if (!PendingRelocs.empty())
      return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");

  // Create the IFunc stubs if necessary. This must be done before processing
  // the GOT entries, as the IFunc stubs may create some.
  if (IFuncStubSectionID != 0) {
    uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection(
        IFuncStubOffset, 1, IFuncStubSectionID, ".text.__llvm_IFuncStubs");
    if (!IFuncStubsAddr)
      return make_error<RuntimeDyldError>(
          "Unable to allocate memory for IFunc stubs!");
    Sections[IFuncStubSectionID] =
        SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset,
                     IFuncStubOffset, 0);

    createIFuncResolver(IFuncStubsAddr);

    LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
                      << IFuncStubSectionID << " Addr: "
                      << Sections[IFuncStubSectionID].getAddress() << '\n');
    for (auto &IFuncStub : IFuncStubs) {
      auto &Symbol = IFuncStub.OriginalSymbol;
      LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID()
                        << " Offset: " << format("%p", Symbol.getOffset())
                        << " IFuncStubOffset: "
                        << format("%p\n", IFuncStub.StubOffset));
      createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset,
                      Symbol.getSectionID(), Symbol.getOffset());
    }

    IFuncStubSectionID = 0;
    IFuncStubOffset = 0;
    IFuncStubs.clear();
  }

  // If necessary, allocate the global offset table
  if (GOTSectionID != 0) {
    // Allocate memory for the section
    size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
    uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
                                               GOTSectionID, ".got", false);
    if (!Addr)
      return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");

    Sections[GOTSectionID] =
        SectionEntry(".got", Addr, TotalSize, TotalSize, 0);

    // For now, initialize all GOT entries to zero.  We'll fill them in as
    // needed when GOT-based relocations are applied.
    memset(Addr, 0, TotalSize);
    if (IsMipsN32ABI || IsMipsN64ABI) {
      // To correctly resolve Mips GOT relocations, we need a mapping from
      // object's sections to GOTs.
      for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
           SI != SE; ++SI) {
        if (SI->relocation_begin() != SI->relocation_end()) {
          Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
          if (!RelSecOrErr)
            return make_error<RuntimeDyldError>(
                toString(RelSecOrErr.takeError()));

          section_iterator RelocatedSection = *RelSecOrErr;
          ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
          assert(i != SectionMap.end());
          SectionToGOTMap[i->second] = GOTSectionID;
        }
      }
      GOTSymbolOffsets.clear();
    }
  }

  // Look for and record the EH frame section.
  ObjSectionToIDMap::iterator i, e;
  for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
    const SectionRef &Section = i->first;

    StringRef Name;
    Expected<StringRef> NameOrErr = Section.getName();
    if (NameOrErr)
      Name = *NameOrErr;
    else
      consumeError(NameOrErr.takeError());

    if (Name == ".eh_frame") {
      UnregisteredEHFrameSections.push_back(i->second);
      break;
    }
  }

  GOTSectionID = 0;
  CurrentGOTIndex = 0;

  return Error::success();
}

bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
  return Obj.isELF();
}

void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const {
  if (Arch == Triple::x86_64) {
    // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
    // (see createIFuncStub() for details)
    // The following code first saves all registers that contain the original
    // function arguments as those registers are not saved by the resolver
    // function. %r11 is saved as well so that the GOT2 entry can be updated
    // afterwards. Then it calls the actual IFunc resolver function whose
    // address is stored in GOT2. After the resolver function returns, all
    // saved registers are restored and the return value is written to GOT1.
    // Finally, jump to the now resolved function.
    // clang-format off
    const uint8_t StubCode[] = {
        0x57,                   // push %rdi
        0x56,                   // push %rsi
        0x52,                   // push %rdx
        0x51,                   // push %rcx
        0x41, 0x50,             // push %r8
        0x41, 0x51,             // push %r9
        0x41, 0x53,             // push %r11
        0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
        0x41, 0x5b,             // pop %r11
        0x41, 0x59,             // pop %r9
        0x41, 0x58,             // pop %r8
        0x59,                   // pop %rcx
        0x5a,                   // pop %rdx
        0x5e,                   // pop %rsi
        0x5f,                   // pop %rdi
        0x49, 0x89, 0x03,       // mov %rax,(%r11)
        0xff, 0xe0              // jmp *%rax
    };
    // clang-format on
    static_assert(sizeof(StubCode) <= 64,
                  "maximum size of the IFunc resolver is 64B");
    memcpy(Addr, StubCode, sizeof(StubCode));
  } else {
    report_fatal_error(
        "IFunc resolver is not supported for target architecture");
  }
}

void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID,
                                     uint64_t IFuncResolverOffset,
                                     uint64_t IFuncStubOffset,
                                     unsigned IFuncSectionID,
                                     uint64_t IFuncOffset) {
  auto &IFuncStubSection = Sections[IFuncStubSectionID];
  auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset);

  if (Arch == Triple::x86_64) {
    // The first instruction loads a PC-relative address into %r11 which is a
    // GOT entry for this stub. This initially contains the address to the
    // IFunc resolver. We can use %r11 here as it's caller saved but not used
    // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
    // code in the PLT. The IFunc resolver will use %r11 to update the GOT
    // entry.
    //
    // The next instruction just jumps to the address contained in the GOT
    // entry. As mentioned above, we do this two-step jump by first setting
    // %r11 so that the IFunc resolver has access to it.
    //
    // The IFunc resolver of course also needs to know the actual address of
    // the actual IFunc resolver function. This will be stored in a GOT entry
    // right next to the first one for this stub. So, the IFunc resolver will
    // be able to call it with %r11+8.
    //
    // In total, two adjacent GOT entries (+relocation) and one additional
    // relocation are required:
    // GOT1: Address of the IFunc resolver.
    // GOT2: Address of the IFunc resolver function.
    // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
    uint64_t GOT1 = allocateGOTEntries(2);
    uint64_t GOT2 = GOT1 + getGOTEntrySize();

    RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64,
                        IFuncResolverOffset, {});
    addRelocationForSection(RE1, IFuncStubSectionID);
    RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {});
    addRelocationForSection(RE2, IFuncSectionID);

    const uint8_t StubCode[] = {
        0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
        0x41, 0xff, 0x23                          // jmpq *(%r11)
    };
    assert(sizeof(StubCode) <= getMaxIFuncStubSize() &&
           "IFunc stub size must not exceed getMaxIFuncStubSize()");
    memcpy(Addr, StubCode, sizeof(StubCode));

    // The PC-relative value starts 4 bytes from the end of the leaq
    // instruction, so the addend is -4.
    resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3,
                               GOT1 - 4, ELF::R_X86_64_PC32);
  } else {
    report_fatal_error("IFunc stub is not supported for target architecture");
  }
}

unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
  if (Arch == Triple::x86_64) {
    return 10;
  }
  return 0;
}

bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
  unsigned RelTy = R.getType();
  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
    return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
           RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;

  if (Arch == Triple::x86_64)
    return RelTy == ELF::R_X86_64_GOTPCREL ||
           RelTy == ELF::R_X86_64_GOTPCRELX ||
           RelTy == ELF::R_X86_64_GOT64 ||
           RelTy == ELF::R_X86_64_REX_GOTPCRELX;
  return false;
}

bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
  if (Arch != Triple::x86_64)
    return true;  // Conservative answer

  switch (R.getType()) {
  default:
    return true;  // Conservative answer


  case ELF::R_X86_64_GOTPCREL:
  case ELF::R_X86_64_GOTPCRELX:
  case ELF::R_X86_64_REX_GOTPCRELX:
  case ELF::R_X86_64_GOTPC64:
  case ELF::R_X86_64_GOT64:
  case ELF::R_X86_64_GOTOFF64:
  case ELF::R_X86_64_PC32:
  case ELF::R_X86_64_PC64:
  case ELF::R_X86_64_64:
    // We know that these reloation types won't need a stub function.  This list
    // can be extended as needed.
    return false;
  }
}

} // namespace llvm