aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/CodeGen/RegisterScavenging.cpp
blob: 8d10a5558315eac1150f7f4c45184c518d348ecb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
//===- RegisterScavenging.cpp - Machine register scavenging ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements the machine register scavenger. It can provide
/// information, such as unused registers, at any point in a machine basic
/// block. It also provides a mechanism to make registers available by evicting
/// them to spill slots.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <limits>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "reg-scavenging"

STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged");

void RegScavenger::setRegUsed(Register Reg, LaneBitmask LaneMask) {
  LiveUnits.addRegMasked(Reg, LaneMask);
}

void RegScavenger::init(MachineBasicBlock &MBB) {
  MachineFunction &MF = *MBB.getParent();
  TII = MF.getSubtarget().getInstrInfo();
  TRI = MF.getSubtarget().getRegisterInfo();
  MRI = &MF.getRegInfo();
  LiveUnits.init(*TRI);

  assert((NumRegUnits == 0 || NumRegUnits == TRI->getNumRegUnits()) &&
         "Target changed?");

  // Self-initialize.
  if (!this->MBB) {
    NumRegUnits = TRI->getNumRegUnits();
    KillRegUnits.resize(NumRegUnits);
    DefRegUnits.resize(NumRegUnits);
    TmpRegUnits.resize(NumRegUnits);
  }
  this->MBB = &MBB;

  for (ScavengedInfo &SI : Scavenged) {
    SI.Reg = 0;
    SI.Restore = nullptr;
  }

  Tracking = false;
}

void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) {
  init(MBB);
  LiveUnits.addLiveIns(MBB);
}

void RegScavenger::enterBasicBlockEnd(MachineBasicBlock &MBB) {
  init(MBB);
  LiveUnits.addLiveOuts(MBB);

  // Move internal iterator at the last instruction of the block.
  if (!MBB.empty()) {
    MBBI = std::prev(MBB.end());
    Tracking = true;
  }
}

void RegScavenger::addRegUnits(BitVector &BV, MCRegister Reg) {
  for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
    BV.set(*RUI);
}

void RegScavenger::removeRegUnits(BitVector &BV, MCRegister Reg) {
  for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
    BV.reset(*RUI);
}

void RegScavenger::determineKillsAndDefs() {
  assert(Tracking && "Must be tracking to determine kills and defs");

  MachineInstr &MI = *MBBI;
  assert(!MI.isDebugInstr() && "Debug values have no kills or defs");

  // Find out which registers are early clobbered, killed, defined, and marked
  // def-dead in this instruction.
  KillRegUnits.reset();
  DefRegUnits.reset();
  for (const MachineOperand &MO : MI.operands()) {
    if (MO.isRegMask()) {
      TmpRegUnits.reset();
      for (unsigned RU = 0, RUEnd = TRI->getNumRegUnits(); RU != RUEnd; ++RU) {
        for (MCRegUnitRootIterator RURI(RU, TRI); RURI.isValid(); ++RURI) {
          if (MO.clobbersPhysReg(*RURI)) {
            TmpRegUnits.set(RU);
            break;
          }
        }
      }

      // Apply the mask.
      KillRegUnits |= TmpRegUnits;
    }
    if (!MO.isReg())
      continue;
    if (!MO.getReg().isPhysical() || isReserved(MO.getReg()))
      continue;
    MCRegister Reg = MO.getReg().asMCReg();

    if (MO.isUse()) {
      // Ignore undef uses.
      if (MO.isUndef())
        continue;
      if (MO.isKill())
        addRegUnits(KillRegUnits, Reg);
    } else {
      assert(MO.isDef());
      if (MO.isDead())
        addRegUnits(KillRegUnits, Reg);
      else
        addRegUnits(DefRegUnits, Reg);
    }
  }
}

void RegScavenger::forward() {
  // Move ptr forward.
  if (!Tracking) {
    MBBI = MBB->begin();
    Tracking = true;
  } else {
    assert(MBBI != MBB->end() && "Already past the end of the basic block!");
    MBBI = std::next(MBBI);
  }
  assert(MBBI != MBB->end() && "Already at the end of the basic block!");

  MachineInstr &MI = *MBBI;

  for (ScavengedInfo &I : Scavenged) {
    if (I.Restore != &MI)
      continue;

    I.Reg = 0;
    I.Restore = nullptr;
  }

  if (MI.isDebugOrPseudoInstr())
    return;

  determineKillsAndDefs();

  // Verify uses and defs.
#ifndef NDEBUG
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg.isPhysical() || isReserved(Reg))
      continue;
    if (MO.isUse()) {
      if (MO.isUndef())
        continue;
      if (!isRegUsed(Reg)) {
        // Check if it's partial live: e.g.
        // D0 = insert_subreg undef D0, S0
        // ... D0
        // The problem is the insert_subreg could be eliminated. The use of
        // D0 is using a partially undef value. This is not *incorrect* since
        // S1 is can be freely clobbered.
        // Ideally we would like a way to model this, but leaving the
        // insert_subreg around causes both correctness and performance issues.
        bool SubUsed = false;
        for (const MCPhysReg &SubReg : TRI->subregs(Reg))
          if (isRegUsed(SubReg)) {
            SubUsed = true;
            break;
          }
        bool SuperUsed = false;
        for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
          if (isRegUsed(*SR)) {
            SuperUsed = true;
            break;
          }
        }
        if (!SubUsed && !SuperUsed) {
          MBB->getParent()->verify(nullptr, "In Register Scavenger");
          llvm_unreachable("Using an undefined register!");
        }
        (void)SubUsed;
        (void)SuperUsed;
      }
    } else {
      assert(MO.isDef());
#if 0
      // FIXME: Enable this once we've figured out how to correctly transfer
      // implicit kills during codegen passes like the coalescer.
      assert((KillRegs.test(Reg) || isUnused(Reg) ||
              isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) &&
             "Re-defining a live register!");
#endif
    }
  }
#endif // NDEBUG

  // Commit the changes.
  setUnused(KillRegUnits);
  setUsed(DefRegUnits);
}

void RegScavenger::backward() {
  assert(Tracking && "Must be tracking to determine kills and defs");

  const MachineInstr &MI = *MBBI;
  LiveUnits.stepBackward(MI);

  // Expire scavenge spill frameindex uses.
  for (ScavengedInfo &I : Scavenged) {
    if (I.Restore == &MI) {
      I.Reg = 0;
      I.Restore = nullptr;
    }
  }

  if (MBBI == MBB->begin()) {
    MBBI = MachineBasicBlock::iterator(nullptr);
    Tracking = false;
  } else
    --MBBI;
}

bool RegScavenger::isRegUsed(Register Reg, bool includeReserved) const {
  if (isReserved(Reg))
    return includeReserved;
  return !LiveUnits.available(Reg);
}

Register RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const {
  for (Register Reg : *RC) {
    if (!isRegUsed(Reg)) {
      LLVM_DEBUG(dbgs() << "Scavenger found unused reg: " << printReg(Reg, TRI)
                        << "\n");
      return Reg;
    }
  }
  return 0;
}

BitVector RegScavenger::getRegsAvailable(const TargetRegisterClass *RC) {
  BitVector Mask(TRI->getNumRegs());
  for (Register Reg : *RC)
    if (!isRegUsed(Reg))
      Mask.set(Reg);
  return Mask;
}

Register RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI,
                                       BitVector &Candidates,
                                       unsigned InstrLimit,
                                       MachineBasicBlock::iterator &UseMI) {
  int Survivor = Candidates.find_first();
  assert(Survivor > 0 && "No candidates for scavenging");

  MachineBasicBlock::iterator ME = MBB->getFirstTerminator();
  assert(StartMI != ME && "MI already at terminator");
  MachineBasicBlock::iterator RestorePointMI = StartMI;
  MachineBasicBlock::iterator MI = StartMI;

  bool inVirtLiveRange = false;
  for (++MI; InstrLimit > 0 && MI != ME; ++MI, --InstrLimit) {
    if (MI->isDebugOrPseudoInstr()) {
      ++InstrLimit; // Don't count debug instructions
      continue;
    }
    bool isVirtKillInsn = false;
    bool isVirtDefInsn = false;
    // Remove any candidates touched by instruction.
    for (const MachineOperand &MO : MI->operands()) {
      if (MO.isRegMask())
        Candidates.clearBitsNotInMask(MO.getRegMask());
      if (!MO.isReg() || MO.isUndef() || !MO.getReg())
        continue;
      if (MO.getReg().isVirtual()) {
        if (MO.isDef())
          isVirtDefInsn = true;
        else if (MO.isKill())
          isVirtKillInsn = true;
        continue;
      }
      for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
        Candidates.reset(*AI);
    }
    // If we're not in a virtual reg's live range, this is a valid
    // restore point.
    if (!inVirtLiveRange) RestorePointMI = MI;

    // Update whether we're in the live range of a virtual register
    if (isVirtKillInsn) inVirtLiveRange = false;
    if (isVirtDefInsn) inVirtLiveRange = true;

    // Was our survivor untouched by this instruction?
    if (Candidates.test(Survivor))
      continue;

    // All candidates gone?
    if (Candidates.none())
      break;

    Survivor = Candidates.find_first();
  }
  // If we ran off the end, that's where we want to restore.
  if (MI == ME) RestorePointMI = ME;
  assert(RestorePointMI != StartMI &&
         "No available scavenger restore location!");

  // We ran out of candidates, so stop the search.
  UseMI = RestorePointMI;
  return Survivor;
}

/// Given the bitvector \p Available of free register units at position
/// \p From. Search backwards to find a register that is part of \p
/// Candidates and not used/clobbered until the point \p To. If there is
/// multiple candidates continue searching and pick the one that is not used/
/// clobbered for the longest time.
/// Returns the register and the earliest position we know it to be free or
/// the position MBB.end() if no register is available.
static std::pair<MCPhysReg, MachineBasicBlock::iterator>
findSurvivorBackwards(const MachineRegisterInfo &MRI,
    MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
    const LiveRegUnits &LiveOut, ArrayRef<MCPhysReg> AllocationOrder,
    bool RestoreAfter) {
  bool FoundTo = false;
  MCPhysReg Survivor = 0;
  MachineBasicBlock::iterator Pos;
  MachineBasicBlock &MBB = *From->getParent();
  unsigned InstrLimit = 25;
  unsigned InstrCountDown = InstrLimit;
  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  LiveRegUnits Used(TRI);

  assert(From->getParent() == To->getParent() &&
         "Target instruction is in other than current basic block, use "
         "enterBasicBlockEnd first");

  for (MachineBasicBlock::iterator I = From;; --I) {
    const MachineInstr &MI = *I;

    Used.accumulate(MI);

    if (I == To) {
      // See if one of the registers in RC wasn't used so far.
      for (MCPhysReg Reg : AllocationOrder) {
        if (!MRI.isReserved(Reg) && Used.available(Reg) &&
            LiveOut.available(Reg))
          return std::make_pair(Reg, MBB.end());
      }
      // Otherwise we will continue up to InstrLimit instructions to find
      // the register which is not defined/used for the longest time.
      FoundTo = true;
      Pos = To;
      // Note: It was fine so far to start our search at From, however now that
      // we have to spill, and can only place the restore after From then
      // add the regs used/defed by std::next(From) to the set.
      if (RestoreAfter)
        Used.accumulate(*std::next(From));
    }
    if (FoundTo) {
      // Don't search to FrameSetup instructions if we were searching from
      // Non-FrameSetup instructions. Otherwise, the spill position may point
      // before FrameSetup instructions.
      if (!From->getFlag(MachineInstr::FrameSetup) &&
          MI.getFlag(MachineInstr::FrameSetup))
        break;

      if (Survivor == 0 || !Used.available(Survivor)) {
        MCPhysReg AvilableReg = 0;
        for (MCPhysReg Reg : AllocationOrder) {
          if (!MRI.isReserved(Reg) && Used.available(Reg)) {
            AvilableReg = Reg;
            break;
          }
        }
        if (AvilableReg == 0)
          break;
        Survivor = AvilableReg;
      }
      if (--InstrCountDown == 0)
        break;

      // Keep searching when we find a vreg since the spilled register will
      // be usefull for this other vreg as well later.
      bool FoundVReg = false;
      for (const MachineOperand &MO : MI.operands()) {
        if (MO.isReg() && MO.getReg().isVirtual()) {
          FoundVReg = true;
          break;
        }
      }
      if (FoundVReg) {
        InstrCountDown = InstrLimit;
        Pos = I;
      }
      if (I == MBB.begin())
        break;
    }
    assert(I != MBB.begin() && "Did not find target instruction while "
                               "iterating backwards");
  }

  return std::make_pair(Survivor, Pos);
}

static unsigned getFrameIndexOperandNum(MachineInstr &MI) {
  unsigned i = 0;
  while (!MI.getOperand(i).isFI()) {
    ++i;
    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
  }
  return i;
}

RegScavenger::ScavengedInfo &
RegScavenger::spill(Register Reg, const TargetRegisterClass &RC, int SPAdj,
                    MachineBasicBlock::iterator Before,
                    MachineBasicBlock::iterator &UseMI) {
  // Find an available scavenging slot with size and alignment matching
  // the requirements of the class RC.
  const MachineFunction &MF = *Before->getMF();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  unsigned NeedSize = TRI->getSpillSize(RC);
  Align NeedAlign = TRI->getSpillAlign(RC);

  unsigned SI = Scavenged.size(), Diff = std::numeric_limits<unsigned>::max();
  int FIB = MFI.getObjectIndexBegin(), FIE = MFI.getObjectIndexEnd();
  for (unsigned I = 0; I < Scavenged.size(); ++I) {
    if (Scavenged[I].Reg != 0)
      continue;
    // Verify that this slot is valid for this register.
    int FI = Scavenged[I].FrameIndex;
    if (FI < FIB || FI >= FIE)
      continue;
    unsigned S = MFI.getObjectSize(FI);
    Align A = MFI.getObjectAlign(FI);
    if (NeedSize > S || NeedAlign > A)
      continue;
    // Avoid wasting slots with large size and/or large alignment. Pick one
    // that is the best fit for this register class (in street metric).
    // Picking a larger slot than necessary could happen if a slot for a
    // larger register is reserved before a slot for a smaller one. When
    // trying to spill a smaller register, the large slot would be found
    // first, thus making it impossible to spill the larger register later.
    unsigned D = (S - NeedSize) + (A.value() - NeedAlign.value());
    if (D < Diff) {
      SI = I;
      Diff = D;
    }
  }

  if (SI == Scavenged.size()) {
    // We need to scavenge a register but have no spill slot, the target
    // must know how to do it (if not, we'll assert below).
    Scavenged.push_back(ScavengedInfo(FIE));
  }

  // Avoid infinite regress
  Scavenged[SI].Reg = Reg;

  // If the target knows how to save/restore the register, let it do so;
  // otherwise, use the emergency stack spill slot.
  if (!TRI->saveScavengerRegister(*MBB, Before, UseMI, &RC, Reg)) {
    // Spill the scavenged register before \p Before.
    int FI = Scavenged[SI].FrameIndex;
    if (FI < FIB || FI >= FIE) {
      report_fatal_error(Twine("Error while trying to spill ") +
                         TRI->getName(Reg) + " from class " +
                         TRI->getRegClassName(&RC) +
                         ": Cannot scavenge register without an emergency "
                         "spill slot!");
    }
    TII->storeRegToStackSlot(*MBB, Before, Reg, true, FI, &RC, TRI, Register());
    MachineBasicBlock::iterator II = std::prev(Before);

    unsigned FIOperandNum = getFrameIndexOperandNum(*II);
    TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);

    // Restore the scavenged register before its use (or first terminator).
    TII->loadRegFromStackSlot(*MBB, UseMI, Reg, FI, &RC, TRI, Register());
    II = std::prev(UseMI);

    FIOperandNum = getFrameIndexOperandNum(*II);
    TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
  }
  return Scavenged[SI];
}

Register RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
                                        MachineBasicBlock::iterator I,
                                        int SPAdj, bool AllowSpill) {
  MachineInstr &MI = *I;
  const MachineFunction &MF = *MI.getMF();
  // Consider all allocatable registers in the register class initially
  BitVector Candidates = TRI->getAllocatableSet(MF, RC);

  // Exclude all the registers being used by the instruction.
  for (const MachineOperand &MO : MI.operands()) {
    if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) &&
        !MO.getReg().isVirtual())
      for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
        Candidates.reset(*AI);
  }

  // If we have already scavenged some registers, remove them from the
  // candidates. If we end up recursively calling eliminateFrameIndex, we don't
  // want to be clobbering previously scavenged registers or their associated
  // stack slots.
  for (ScavengedInfo &SI : Scavenged) {
    if (SI.Reg) {
      if (isRegUsed(SI.Reg)) {
        LLVM_DEBUG(
          dbgs() << "Removing " << printReg(SI.Reg, TRI) <<
          " from scavenging candidates since it was already scavenged\n");
        for (MCRegAliasIterator AI(SI.Reg, TRI, true); AI.isValid(); ++AI)
          Candidates.reset(*AI);
      }
    }
  }

  // Try to find a register that's unused if there is one, as then we won't
  // have to spill.
  BitVector Available = getRegsAvailable(RC);
  Available &= Candidates;
  if (Available.any())
    Candidates = Available;

  // Find the register whose use is furthest away.
  MachineBasicBlock::iterator UseMI;
  Register SReg = findSurvivorReg(I, Candidates, 25, UseMI);

  // If we found an unused register there is no reason to spill it.
  if (!isRegUsed(SReg)) {
    LLVM_DEBUG(dbgs() << "Scavenged register: " << printReg(SReg, TRI) << "\n");
    return SReg;
  }

  if (!AllowSpill)
    return 0;

#ifndef NDEBUG
  for (ScavengedInfo &SI : Scavenged) {
    assert(SI.Reg != SReg && "scavenged a previously scavenged register");
  }
#endif

  ScavengedInfo &Scavenged = spill(SReg, *RC, SPAdj, I, UseMI);
  Scavenged.Restore = &*std::prev(UseMI);

  LLVM_DEBUG(dbgs() << "Scavenged register (with spill): "
                    << printReg(SReg, TRI) << "\n");

  return SReg;
}

Register RegScavenger::scavengeRegisterBackwards(const TargetRegisterClass &RC,
                                                 MachineBasicBlock::iterator To,
                                                 bool RestoreAfter, int SPAdj,
                                                 bool AllowSpill) {
  const MachineBasicBlock &MBB = *To->getParent();
  const MachineFunction &MF = *MBB.getParent();

  // Find the register whose use is furthest away.
  MachineBasicBlock::iterator UseMI;
  ArrayRef<MCPhysReg> AllocationOrder = RC.getRawAllocationOrder(MF);
  std::pair<MCPhysReg, MachineBasicBlock::iterator> P =
      findSurvivorBackwards(*MRI, MBBI, To, LiveUnits, AllocationOrder,
                            RestoreAfter);
  MCPhysReg Reg = P.first;
  MachineBasicBlock::iterator SpillBefore = P.second;
  // Found an available register?
  if (Reg != 0 && SpillBefore == MBB.end()) {
    LLVM_DEBUG(dbgs() << "Scavenged free register: " << printReg(Reg, TRI)
               << '\n');
    return Reg;
  }

  if (!AllowSpill)
    return 0;

  assert(Reg != 0 && "No register left to scavenge!");

  MachineBasicBlock::iterator ReloadAfter =
    RestoreAfter ? std::next(MBBI) : MBBI;
  MachineBasicBlock::iterator ReloadBefore = std::next(ReloadAfter);
  if (ReloadBefore != MBB.end())
    LLVM_DEBUG(dbgs() << "Reload before: " << *ReloadBefore << '\n');
  ScavengedInfo &Scavenged = spill(Reg, RC, SPAdj, SpillBefore, ReloadBefore);
  Scavenged.Restore = &*std::prev(SpillBefore);
  LiveUnits.removeReg(Reg);
  LLVM_DEBUG(dbgs() << "Scavenged register with spill: " << printReg(Reg, TRI)
             << " until " << *SpillBefore);
  return Reg;
}

/// Allocate a register for the virtual register \p VReg. The last use of
/// \p VReg is around the current position of the register scavenger \p RS.
/// \p ReserveAfter controls whether the scavenged register needs to be reserved
/// after the current instruction, otherwise it will only be reserved before the
/// current instruction.
static Register scavengeVReg(MachineRegisterInfo &MRI, RegScavenger &RS,
                             Register VReg, bool ReserveAfter) {
  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
#ifndef NDEBUG
  // Verify that all definitions and uses are in the same basic block.
  const MachineBasicBlock *CommonMBB = nullptr;
  // Real definition for the reg, re-definitions are not considered.
  const MachineInstr *RealDef = nullptr;
  for (MachineOperand &MO : MRI.reg_nodbg_operands(VReg)) {
    MachineBasicBlock *MBB = MO.getParent()->getParent();
    if (CommonMBB == nullptr)
      CommonMBB = MBB;
    assert(MBB == CommonMBB && "All defs+uses must be in the same basic block");
    if (MO.isDef()) {
      const MachineInstr &MI = *MO.getParent();
      if (!MI.readsRegister(VReg, &TRI)) {
        assert((!RealDef || RealDef == &MI) &&
               "Can have at most one definition which is not a redefinition");
        RealDef = &MI;
      }
    }
  }
  assert(RealDef != nullptr && "Must have at least 1 Def");
#endif

  // We should only have one definition of the register. However to accommodate
  // the requirements of two address code we also allow definitions in
  // subsequent instructions provided they also read the register. That way
  // we get a single contiguous lifetime.
  //
  // Definitions in MRI.def_begin() are unordered, search for the first.
  MachineRegisterInfo::def_iterator FirstDef = llvm::find_if(
      MRI.def_operands(VReg), [VReg, &TRI](const MachineOperand &MO) {
        return !MO.getParent()->readsRegister(VReg, &TRI);
      });
  assert(FirstDef != MRI.def_end() &&
         "Must have one definition that does not redefine vreg");
  MachineInstr &DefMI = *FirstDef->getParent();

  // The register scavenger will report a free register inserting an emergency
  // spill/reload if necessary.
  int SPAdj = 0;
  const TargetRegisterClass &RC = *MRI.getRegClass(VReg);
  Register SReg = RS.scavengeRegisterBackwards(RC, DefMI.getIterator(),
                                               ReserveAfter, SPAdj);
  MRI.replaceRegWith(VReg, SReg);
  ++NumScavengedRegs;
  return SReg;
}

/// Allocate (scavenge) vregs inside a single basic block.
/// Returns true if the target spill callback created new vregs and a 2nd pass
/// is necessary.
static bool scavengeFrameVirtualRegsInBlock(MachineRegisterInfo &MRI,
                                            RegScavenger &RS,
                                            MachineBasicBlock &MBB) {
  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  RS.enterBasicBlockEnd(MBB);

  unsigned InitialNumVirtRegs = MRI.getNumVirtRegs();
  bool NextInstructionReadsVReg = false;
  for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ) {
    --I;
    // Move RegScavenger to the position between *I and *std::next(I).
    RS.backward(I);

    // Look for unassigned vregs in the uses of *std::next(I).
    if (NextInstructionReadsVReg) {
      MachineBasicBlock::iterator N = std::next(I);
      const MachineInstr &NMI = *N;
      for (const MachineOperand &MO : NMI.operands()) {
        if (!MO.isReg())
          continue;
        Register Reg = MO.getReg();
        // We only care about virtual registers and ignore virtual registers
        // created by the target callbacks in the process (those will be handled
        // in a scavenging round).
        if (!Reg.isVirtual() ||
            Register::virtReg2Index(Reg) >= InitialNumVirtRegs)
          continue;
        if (!MO.readsReg())
          continue;

        Register SReg = scavengeVReg(MRI, RS, Reg, true);
        N->addRegisterKilled(SReg, &TRI, false);
        RS.setRegUsed(SReg);
      }
    }

    // Look for unassigned vregs in the defs of *I.
    NextInstructionReadsVReg = false;
    const MachineInstr &MI = *I;
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg())
        continue;
      Register Reg = MO.getReg();
      // Only vregs, no newly created vregs (see above).
      if (!Reg.isVirtual() ||
          Register::virtReg2Index(Reg) >= InitialNumVirtRegs)
        continue;
      // We have to look at all operands anyway so we can precalculate here
      // whether there is a reading operand. This allows use to skip the use
      // step in the next iteration if there was none.
      assert(!MO.isInternalRead() && "Cannot assign inside bundles");
      assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses");
      if (MO.readsReg()) {
        NextInstructionReadsVReg = true;
      }
      if (MO.isDef()) {
        Register SReg = scavengeVReg(MRI, RS, Reg, false);
        I->addRegisterDead(SReg, &TRI, false);
      }
    }
  }
#ifndef NDEBUG
  for (const MachineOperand &MO : MBB.front().operands()) {
    if (!MO.isReg() || !MO.getReg().isVirtual())
      continue;
    assert(!MO.isInternalRead() && "Cannot assign inside bundles");
    assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses");
    assert(!MO.readsReg() && "Vreg use in first instruction not allowed");
  }
#endif

  return MRI.getNumVirtRegs() != InitialNumVirtRegs;
}

void llvm::scavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger &RS) {
  // FIXME: Iterating over the instruction stream is unnecessary. We can simply
  // iterate over the vreg use list, which at this point only contains machine
  // operands for which eliminateFrameIndex need a new scratch reg.
  MachineRegisterInfo &MRI = MF.getRegInfo();
  // Shortcut.
  if (MRI.getNumVirtRegs() == 0) {
    MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
    return;
  }

  // Run through the instructions and find any virtual registers.
  for (MachineBasicBlock &MBB : MF) {
    if (MBB.empty())
      continue;

    bool Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB);
    if (Again) {
      LLVM_DEBUG(dbgs() << "Warning: Required two scavenging passes for block "
                        << MBB.getName() << '\n');
      Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB);
      // The target required a 2nd run (because it created new vregs while
      // spilling). Refuse to do another pass to keep compiletime in check.
      if (Again)
        report_fatal_error("Incomplete scavenging after 2nd pass");
    }
  }

  MRI.clearVirtRegs();
  MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
}

namespace {

/// This class runs register scavenging independ of the PrologEpilogInserter.
/// This is used in for testing.
class ScavengerTest : public MachineFunctionPass {
public:
  static char ID;

  ScavengerTest() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override {
    const TargetSubtargetInfo &STI = MF.getSubtarget();
    const TargetFrameLowering &TFL = *STI.getFrameLowering();

    RegScavenger RS;
    // Let's hope that calling those outside of PrologEpilogueInserter works
    // well enough to initialize the scavenger with some emergency spillslots
    // for the target.
    BitVector SavedRegs;
    TFL.determineCalleeSaves(MF, SavedRegs, &RS);
    TFL.processFunctionBeforeFrameFinalized(MF, &RS);

    // Let's scavenge the current function
    scavengeFrameVirtualRegs(MF, RS);
    return true;
  }
};

} // end anonymous namespace

char ScavengerTest::ID;

INITIALIZE_PASS(ScavengerTest, "scavenger-test",
                "Scavenge virtual registers inside basic blocks", false, false)