1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
|
//===- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass is responsible for finalizing the functions frame layout, saving
// callee saved registers, and for emitting prolog & epilog code for the
// function.
//
// This pass must be run after register allocation. After this pass is
// executed, it is illegal to construct MO_FrameIndex operands.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <limits>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "prologepilog"
using MBBVector = SmallVector<MachineBasicBlock *, 4>;
STATISTIC(NumLeafFuncWithSpills, "Number of leaf functions with CSRs");
STATISTIC(NumFuncSeen, "Number of functions seen in PEI");
namespace {
class PEI : public MachineFunctionPass {
public:
static char ID;
PEI() : MachineFunctionPass(ID) {
initializePEIPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
bool runOnMachineFunction(MachineFunction &MF) override;
private:
RegScavenger *RS;
// MinCSFrameIndex, MaxCSFrameIndex - Keeps the range of callee saved
// stack frame indexes.
unsigned MinCSFrameIndex = std::numeric_limits<unsigned>::max();
unsigned MaxCSFrameIndex = 0;
// Save and Restore blocks of the current function. Typically there is a
// single save block, unless Windows EH funclets are involved.
MBBVector SaveBlocks;
MBBVector RestoreBlocks;
// Flag to control whether to use the register scavenger to resolve
// frame index materialization registers. Set according to
// TRI->requiresFrameIndexScavenging() for the current function.
bool FrameIndexVirtualScavenging;
// Flag to control whether the scavenger should be passed even though
// FrameIndexVirtualScavenging is used.
bool FrameIndexEliminationScavenging;
// Emit remarks.
MachineOptimizationRemarkEmitter *ORE = nullptr;
void calculateCallFrameInfo(MachineFunction &MF);
void calculateSaveRestoreBlocks(MachineFunction &MF);
void spillCalleeSavedRegs(MachineFunction &MF);
void calculateFrameObjectOffsets(MachineFunction &MF);
void replaceFrameIndices(MachineFunction &MF);
void replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &MF,
int &SPAdj);
// Frame indices in debug values are encoded in a target independent
// way with simply the frame index and offset rather than any
// target-specific addressing mode.
bool replaceFrameIndexDebugInstr(MachineFunction &MF, MachineInstr &MI,
unsigned OpIdx, int SPAdj = 0);
// Does same as replaceFrameIndices but using the backward MIR walk and
// backward register scavenger walk. Does not yet support call sequence
// processing.
void replaceFrameIndicesBackward(MachineBasicBlock *BB, MachineFunction &MF,
int &SPAdj);
void insertPrologEpilogCode(MachineFunction &MF);
void insertZeroCallUsedRegs(MachineFunction &MF);
};
} // end anonymous namespace
char PEI::ID = 0;
char &llvm::PrologEpilogCodeInserterID = PEI::ID;
INITIALIZE_PASS_BEGIN(PEI, DEBUG_TYPE, "Prologue/Epilogue Insertion", false,
false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
INITIALIZE_PASS_END(PEI, DEBUG_TYPE,
"Prologue/Epilogue Insertion & Frame Finalization", false,
false)
MachineFunctionPass *llvm::createPrologEpilogInserterPass() {
return new PEI();
}
STATISTIC(NumBytesStackSpace,
"Number of bytes used for stack in all functions");
void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// StackObjSet - A set of stack object indexes
using StackObjSet = SmallSetVector<int, 8>;
using SavedDbgValuesMap =
SmallDenseMap<MachineBasicBlock *, SmallVector<MachineInstr *, 4>, 4>;
/// Stash DBG_VALUEs that describe parameters and which are placed at the start
/// of the block. Later on, after the prologue code has been emitted, the
/// stashed DBG_VALUEs will be reinserted at the start of the block.
static void stashEntryDbgValues(MachineBasicBlock &MBB,
SavedDbgValuesMap &EntryDbgValues) {
SmallVector<const MachineInstr *, 4> FrameIndexValues;
for (auto &MI : MBB) {
if (!MI.isDebugInstr())
break;
if (!MI.isDebugValue() || !MI.getDebugVariable()->isParameter())
continue;
if (any_of(MI.debug_operands(),
[](const MachineOperand &MO) { return MO.isFI(); })) {
// We can only emit valid locations for frame indices after the frame
// setup, so do not stash away them.
FrameIndexValues.push_back(&MI);
continue;
}
const DILocalVariable *Var = MI.getDebugVariable();
const DIExpression *Expr = MI.getDebugExpression();
auto Overlaps = [Var, Expr](const MachineInstr *DV) {
return Var == DV->getDebugVariable() &&
Expr->fragmentsOverlap(DV->getDebugExpression());
};
// See if the debug value overlaps with any preceding debug value that will
// not be stashed. If that is the case, then we can't stash this value, as
// we would then reorder the values at reinsertion.
if (llvm::none_of(FrameIndexValues, Overlaps))
EntryDbgValues[&MBB].push_back(&MI);
}
// Remove stashed debug values from the block.
if (EntryDbgValues.count(&MBB))
for (auto *MI : EntryDbgValues[&MBB])
MI->removeFromParent();
}
/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
bool PEI::runOnMachineFunction(MachineFunction &MF) {
NumFuncSeen++;
const Function &F = MF.getFunction();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
RS = TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr;
FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(MF);
ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
// Calculate the MaxCallFrameSize and AdjustsStack variables for the
// function's frame information. Also eliminates call frame pseudo
// instructions.
calculateCallFrameInfo(MF);
// Determine placement of CSR spill/restore code and prolog/epilog code:
// place all spills in the entry block, all restores in return blocks.
calculateSaveRestoreBlocks(MF);
// Stash away DBG_VALUEs that should not be moved by insertion of prolog code.
SavedDbgValuesMap EntryDbgValues;
for (MachineBasicBlock *SaveBlock : SaveBlocks)
stashEntryDbgValues(*SaveBlock, EntryDbgValues);
// Handle CSR spilling and restoring, for targets that need it.
if (MF.getTarget().usesPhysRegsForValues())
spillCalleeSavedRegs(MF);
// Allow the target machine to make final modifications to the function
// before the frame layout is finalized.
TFI->processFunctionBeforeFrameFinalized(MF, RS);
// Calculate actual frame offsets for all abstract stack objects...
calculateFrameObjectOffsets(MF);
// Add prolog and epilog code to the function. This function is required
// to align the stack frame as necessary for any stack variables or
// called functions. Because of this, calculateCalleeSavedRegisters()
// must be called before this function in order to set the AdjustsStack
// and MaxCallFrameSize variables.
if (!F.hasFnAttribute(Attribute::Naked))
insertPrologEpilogCode(MF);
// Reinsert stashed debug values at the start of the entry blocks.
for (auto &I : EntryDbgValues)
I.first->insert(I.first->begin(), I.second.begin(), I.second.end());
// Allow the target machine to make final modifications to the function
// before the frame layout is finalized.
TFI->processFunctionBeforeFrameIndicesReplaced(MF, RS);
// Replace all MO_FrameIndex operands with physical register references
// and actual offsets.
//
replaceFrameIndices(MF);
// If register scavenging is needed, as we've enabled doing it as a
// post-pass, scavenge the virtual registers that frame index elimination
// inserted.
if (TRI->requiresRegisterScavenging(MF) && FrameIndexVirtualScavenging)
scavengeFrameVirtualRegs(MF, *RS);
// Warn on stack size when we exceeds the given limit.
MachineFrameInfo &MFI = MF.getFrameInfo();
uint64_t StackSize = MFI.getStackSize();
unsigned Threshold = UINT_MAX;
if (MF.getFunction().hasFnAttribute("warn-stack-size")) {
bool Failed = MF.getFunction()
.getFnAttribute("warn-stack-size")
.getValueAsString()
.getAsInteger(10, Threshold);
// Verifier should have caught this.
assert(!Failed && "Invalid warn-stack-size fn attr value");
(void)Failed;
}
uint64_t UnsafeStackSize = MFI.getUnsafeStackSize();
if (MF.getFunction().hasFnAttribute(Attribute::SafeStack))
StackSize += UnsafeStackSize;
if (StackSize > Threshold) {
DiagnosticInfoStackSize DiagStackSize(F, StackSize, Threshold, DS_Warning);
F.getContext().diagnose(DiagStackSize);
int64_t SpillSize = 0;
for (int Idx = MFI.getObjectIndexBegin(), End = MFI.getObjectIndexEnd();
Idx != End; ++Idx) {
if (MFI.isSpillSlotObjectIndex(Idx))
SpillSize += MFI.getObjectSize(Idx);
}
float SpillPct =
static_cast<float>(SpillSize) / static_cast<float>(StackSize);
float VarPct = 1.0f - SpillPct;
int64_t VariableSize = StackSize - SpillSize;
dbgs() << formatv("{0}/{1} ({3:P}) spills, {2}/{1} ({4:P}) variables",
SpillSize, StackSize, VariableSize, SpillPct, VarPct);
if (UnsafeStackSize != 0) {
float UnsafePct =
static_cast<float>(UnsafeStackSize) / static_cast<float>(StackSize);
dbgs() << formatv(", {0}/{2} ({1:P}) unsafe stack", UnsafeStackSize,
UnsafePct, StackSize);
}
dbgs() << "\n";
}
ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "StackSize",
MF.getFunction().getSubprogram(),
&MF.front())
<< ore::NV("NumStackBytes", StackSize) << " stack bytes in function";
});
delete RS;
SaveBlocks.clear();
RestoreBlocks.clear();
MFI.setSavePoint(nullptr);
MFI.setRestorePoint(nullptr);
return true;
}
/// Calculate the MaxCallFrameSize and AdjustsStack
/// variables for the function's frame information and eliminate call frame
/// pseudo instructions.
void PEI::calculateCallFrameInfo(MachineFunction &MF) {
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned MaxCallFrameSize = 0;
bool AdjustsStack = MFI.adjustsStack();
// Get the function call frame set-up and tear-down instruction opcode
unsigned FrameSetupOpcode = TII.getCallFrameSetupOpcode();
unsigned FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
// Early exit for targets which have no call frame setup/destroy pseudo
// instructions.
if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
return;
std::vector<MachineBasicBlock::iterator> FrameSDOps;
for (MachineBasicBlock &BB : MF)
for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I)
if (TII.isFrameInstr(*I)) {
unsigned Size = TII.getFrameSize(*I);
if (Size > MaxCallFrameSize) MaxCallFrameSize = Size;
AdjustsStack = true;
FrameSDOps.push_back(I);
} else if (I->isInlineAsm()) {
// Some inline asm's need a stack frame, as indicated by operand 1.
unsigned ExtraInfo = I->getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
AdjustsStack = true;
}
assert(!MFI.isMaxCallFrameSizeComputed() ||
(MFI.getMaxCallFrameSize() == MaxCallFrameSize &&
MFI.adjustsStack() == AdjustsStack));
MFI.setAdjustsStack(AdjustsStack);
MFI.setMaxCallFrameSize(MaxCallFrameSize);
for (MachineBasicBlock::iterator I : FrameSDOps) {
// If call frames are not being included as part of the stack frame, and
// the target doesn't indicate otherwise, remove the call frame pseudos
// here. The sub/add sp instruction pairs are still inserted, but we don't
// need to track the SP adjustment for frame index elimination.
if (TFI->canSimplifyCallFramePseudos(MF))
TFI->eliminateCallFramePseudoInstr(MF, *I->getParent(), I);
}
}
/// Compute the sets of entry and return blocks for saving and restoring
/// callee-saved registers, and placing prolog and epilog code.
void PEI::calculateSaveRestoreBlocks(MachineFunction &MF) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
// Even when we do not change any CSR, we still want to insert the
// prologue and epilogue of the function.
// So set the save points for those.
// Use the points found by shrink-wrapping, if any.
if (MFI.getSavePoint()) {
SaveBlocks.push_back(MFI.getSavePoint());
assert(MFI.getRestorePoint() && "Both restore and save must be set");
MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
// If RestoreBlock does not have any successor and is not a return block
// then the end point is unreachable and we do not need to insert any
// epilogue.
if (!RestoreBlock->succ_empty() || RestoreBlock->isReturnBlock())
RestoreBlocks.push_back(RestoreBlock);
return;
}
// Save refs to entry and return blocks.
SaveBlocks.push_back(&MF.front());
for (MachineBasicBlock &MBB : MF) {
if (MBB.isEHFuncletEntry())
SaveBlocks.push_back(&MBB);
if (MBB.isReturnBlock())
RestoreBlocks.push_back(&MBB);
}
}
static void assignCalleeSavedSpillSlots(MachineFunction &F,
const BitVector &SavedRegs,
unsigned &MinCSFrameIndex,
unsigned &MaxCSFrameIndex) {
if (SavedRegs.empty())
return;
const TargetRegisterInfo *RegInfo = F.getSubtarget().getRegisterInfo();
const MCPhysReg *CSRegs = F.getRegInfo().getCalleeSavedRegs();
BitVector CSMask(SavedRegs.size());
for (unsigned i = 0; CSRegs[i]; ++i)
CSMask.set(CSRegs[i]);
std::vector<CalleeSavedInfo> CSI;
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
if (SavedRegs.test(Reg)) {
bool SavedSuper = false;
for (const MCPhysReg &SuperReg : RegInfo->superregs(Reg)) {
// Some backends set all aliases for some registers as saved, such as
// Mips's $fp, so they appear in SavedRegs but not CSRegs.
if (SavedRegs.test(SuperReg) && CSMask.test(SuperReg)) {
SavedSuper = true;
break;
}
}
if (!SavedSuper)
CSI.push_back(CalleeSavedInfo(Reg));
}
}
const TargetFrameLowering *TFI = F.getSubtarget().getFrameLowering();
MachineFrameInfo &MFI = F.getFrameInfo();
if (!TFI->assignCalleeSavedSpillSlots(F, RegInfo, CSI, MinCSFrameIndex,
MaxCSFrameIndex)) {
// If target doesn't implement this, use generic code.
if (CSI.empty())
return; // Early exit if no callee saved registers are modified!
unsigned NumFixedSpillSlots;
const TargetFrameLowering::SpillSlot *FixedSpillSlots =
TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots);
// Now that we know which registers need to be saved and restored, allocate
// stack slots for them.
for (auto &CS : CSI) {
// If the target has spilled this register to another register, we don't
// need to allocate a stack slot.
if (CS.isSpilledToReg())
continue;
unsigned Reg = CS.getReg();
const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
int FrameIdx;
if (RegInfo->hasReservedSpillSlot(F, Reg, FrameIdx)) {
CS.setFrameIdx(FrameIdx);
continue;
}
// Check to see if this physreg must be spilled to a particular stack slot
// on this target.
const TargetFrameLowering::SpillSlot *FixedSlot = FixedSpillSlots;
while (FixedSlot != FixedSpillSlots + NumFixedSpillSlots &&
FixedSlot->Reg != Reg)
++FixedSlot;
unsigned Size = RegInfo->getSpillSize(*RC);
if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) {
// Nope, just spill it anywhere convenient.
Align Alignment = RegInfo->getSpillAlign(*RC);
// We may not be able to satisfy the desired alignment specification of
// the TargetRegisterClass if the stack alignment is smaller. Use the
// min.
Alignment = std::min(Alignment, TFI->getStackAlign());
FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
} else {
// Spill it to the stack where we must.
FrameIdx = MFI.CreateFixedSpillStackObject(Size, FixedSlot->Offset);
}
CS.setFrameIdx(FrameIdx);
}
}
MFI.setCalleeSavedInfo(CSI);
}
/// Helper function to update the liveness information for the callee-saved
/// registers.
static void updateLiveness(MachineFunction &MF) {
MachineFrameInfo &MFI = MF.getFrameInfo();
// Visited will contain all the basic blocks that are in the region
// where the callee saved registers are alive:
// - Anything that is not Save or Restore -> LiveThrough.
// - Save -> LiveIn.
// - Restore -> LiveOut.
// The live-out is not attached to the block, so no need to keep
// Restore in this set.
SmallPtrSet<MachineBasicBlock *, 8> Visited;
SmallVector<MachineBasicBlock *, 8> WorkList;
MachineBasicBlock *Entry = &MF.front();
MachineBasicBlock *Save = MFI.getSavePoint();
if (!Save)
Save = Entry;
if (Entry != Save) {
WorkList.push_back(Entry);
Visited.insert(Entry);
}
Visited.insert(Save);
MachineBasicBlock *Restore = MFI.getRestorePoint();
if (Restore)
// By construction Restore cannot be visited, otherwise it
// means there exists a path to Restore that does not go
// through Save.
WorkList.push_back(Restore);
while (!WorkList.empty()) {
const MachineBasicBlock *CurBB = WorkList.pop_back_val();
// By construction, the region that is after the save point is
// dominated by the Save and post-dominated by the Restore.
if (CurBB == Save && Save != Restore)
continue;
// Enqueue all the successors not already visited.
// Those are by construction either before Save or after Restore.
for (MachineBasicBlock *SuccBB : CurBB->successors())
if (Visited.insert(SuccBB).second)
WorkList.push_back(SuccBB);
}
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
for (const CalleeSavedInfo &I : CSI) {
for (MachineBasicBlock *MBB : Visited) {
MCPhysReg Reg = I.getReg();
// Add the callee-saved register as live-in.
// It's killed at the spill.
if (!MRI.isReserved(Reg) && !MBB->isLiveIn(Reg))
MBB->addLiveIn(Reg);
}
// If callee-saved register is spilled to another register rather than
// spilling to stack, the destination register has to be marked as live for
// each MBB between the prologue and epilogue so that it is not clobbered
// before it is reloaded in the epilogue. The Visited set contains all
// blocks outside of the region delimited by prologue/epilogue.
if (I.isSpilledToReg()) {
for (MachineBasicBlock &MBB : MF) {
if (Visited.count(&MBB))
continue;
MCPhysReg DstReg = I.getDstReg();
if (!MBB.isLiveIn(DstReg))
MBB.addLiveIn(DstReg);
}
}
}
}
/// Insert spill code for the callee-saved registers used in the function.
static void insertCSRSaves(MachineBasicBlock &SaveBlock,
ArrayRef<CalleeSavedInfo> CSI) {
MachineFunction &MF = *SaveBlock.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
MachineBasicBlock::iterator I = SaveBlock.begin();
if (!TFI->spillCalleeSavedRegisters(SaveBlock, I, CSI, TRI)) {
for (const CalleeSavedInfo &CS : CSI) {
// Insert the spill to the stack frame.
unsigned Reg = CS.getReg();
if (CS.isSpilledToReg()) {
BuildMI(SaveBlock, I, DebugLoc(),
TII.get(TargetOpcode::COPY), CS.getDstReg())
.addReg(Reg, getKillRegState(true));
} else {
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(SaveBlock, I, Reg, true, CS.getFrameIdx(), RC,
TRI, Register());
}
}
}
}
/// Insert restore code for the callee-saved registers used in the function.
static void insertCSRRestores(MachineBasicBlock &RestoreBlock,
std::vector<CalleeSavedInfo> &CSI) {
MachineFunction &MF = *RestoreBlock.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
// Restore all registers immediately before the return and any
// terminators that precede it.
MachineBasicBlock::iterator I = RestoreBlock.getFirstTerminator();
if (!TFI->restoreCalleeSavedRegisters(RestoreBlock, I, CSI, TRI)) {
for (const CalleeSavedInfo &CI : reverse(CSI)) {
unsigned Reg = CI.getReg();
if (CI.isSpilledToReg()) {
BuildMI(RestoreBlock, I, DebugLoc(), TII.get(TargetOpcode::COPY), Reg)
.addReg(CI.getDstReg(), getKillRegState(true));
} else {
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.loadRegFromStackSlot(RestoreBlock, I, Reg, CI.getFrameIdx(), RC,
TRI, Register());
assert(I != RestoreBlock.begin() &&
"loadRegFromStackSlot didn't insert any code!");
// Insert in reverse order. loadRegFromStackSlot can insert
// multiple instructions.
}
}
}
}
void PEI::spillCalleeSavedRegs(MachineFunction &MF) {
// We can't list this requirement in getRequiredProperties because some
// targets (WebAssembly) use virtual registers past this point, and the pass
// pipeline is set up without giving the passes a chance to look at the
// TargetMachine.
// FIXME: Find a way to express this in getRequiredProperties.
assert(MF.getProperties().hasProperty(
MachineFunctionProperties::Property::NoVRegs));
const Function &F = MF.getFunction();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
MachineFrameInfo &MFI = MF.getFrameInfo();
MinCSFrameIndex = std::numeric_limits<unsigned>::max();
MaxCSFrameIndex = 0;
// Determine which of the registers in the callee save list should be saved.
BitVector SavedRegs;
TFI->determineCalleeSaves(MF, SavedRegs, RS);
// Assign stack slots for any callee-saved registers that must be spilled.
assignCalleeSavedSpillSlots(MF, SavedRegs, MinCSFrameIndex, MaxCSFrameIndex);
// Add the code to save and restore the callee saved registers.
if (!F.hasFnAttribute(Attribute::Naked)) {
MFI.setCalleeSavedInfoValid(true);
std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
if (!CSI.empty()) {
if (!MFI.hasCalls())
NumLeafFuncWithSpills++;
for (MachineBasicBlock *SaveBlock : SaveBlocks)
insertCSRSaves(*SaveBlock, CSI);
// Update the live-in information of all the blocks up to the save point.
updateLiveness(MF);
for (MachineBasicBlock *RestoreBlock : RestoreBlocks)
insertCSRRestores(*RestoreBlock, CSI);
}
}
}
/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
static inline void AdjustStackOffset(MachineFrameInfo &MFI, int FrameIdx,
bool StackGrowsDown, int64_t &Offset,
Align &MaxAlign, unsigned Skew) {
// If the stack grows down, add the object size to find the lowest address.
if (StackGrowsDown)
Offset += MFI.getObjectSize(FrameIdx);
Align Alignment = MFI.getObjectAlign(FrameIdx);
// If the alignment of this object is greater than that of the stack, then
// increase the stack alignment to match.
MaxAlign = std::max(MaxAlign, Alignment);
// Adjust to alignment boundary.
Offset = alignTo(Offset, Alignment, Skew);
if (StackGrowsDown) {
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset
<< "]\n");
MFI.setObjectOffset(FrameIdx, -Offset); // Set the computed offset
} else {
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset
<< "]\n");
MFI.setObjectOffset(FrameIdx, Offset);
Offset += MFI.getObjectSize(FrameIdx);
}
}
/// Compute which bytes of fixed and callee-save stack area are unused and keep
/// track of them in StackBytesFree.
static inline void
computeFreeStackSlots(MachineFrameInfo &MFI, bool StackGrowsDown,
unsigned MinCSFrameIndex, unsigned MaxCSFrameIndex,
int64_t FixedCSEnd, BitVector &StackBytesFree) {
// Avoid undefined int64_t -> int conversion below in extreme case.
if (FixedCSEnd > std::numeric_limits<int>::max())
return;
StackBytesFree.resize(FixedCSEnd, true);
SmallVector<int, 16> AllocatedFrameSlots;
// Add fixed objects.
for (int i = MFI.getObjectIndexBegin(); i != 0; ++i)
// StackSlot scavenging is only implemented for the default stack.
if (MFI.getStackID(i) == TargetStackID::Default)
AllocatedFrameSlots.push_back(i);
// Add callee-save objects if there are any.
if (MinCSFrameIndex <= MaxCSFrameIndex) {
for (int i = MinCSFrameIndex; i <= (int)MaxCSFrameIndex; ++i)
if (MFI.getStackID(i) == TargetStackID::Default)
AllocatedFrameSlots.push_back(i);
}
for (int i : AllocatedFrameSlots) {
// These are converted from int64_t, but they should always fit in int
// because of the FixedCSEnd check above.
int ObjOffset = MFI.getObjectOffset(i);
int ObjSize = MFI.getObjectSize(i);
int ObjStart, ObjEnd;
if (StackGrowsDown) {
// ObjOffset is negative when StackGrowsDown is true.
ObjStart = -ObjOffset - ObjSize;
ObjEnd = -ObjOffset;
} else {
ObjStart = ObjOffset;
ObjEnd = ObjOffset + ObjSize;
}
// Ignore fixed holes that are in the previous stack frame.
if (ObjEnd > 0)
StackBytesFree.reset(ObjStart, ObjEnd);
}
}
/// Assign frame object to an unused portion of the stack in the fixed stack
/// object range. Return true if the allocation was successful.
static inline bool scavengeStackSlot(MachineFrameInfo &MFI, int FrameIdx,
bool StackGrowsDown, Align MaxAlign,
BitVector &StackBytesFree) {
if (MFI.isVariableSizedObjectIndex(FrameIdx))
return false;
if (StackBytesFree.none()) {
// clear it to speed up later scavengeStackSlot calls to
// StackBytesFree.none()
StackBytesFree.clear();
return false;
}
Align ObjAlign = MFI.getObjectAlign(FrameIdx);
if (ObjAlign > MaxAlign)
return false;
int64_t ObjSize = MFI.getObjectSize(FrameIdx);
int FreeStart;
for (FreeStart = StackBytesFree.find_first(); FreeStart != -1;
FreeStart = StackBytesFree.find_next(FreeStart)) {
// Check that free space has suitable alignment.
unsigned ObjStart = StackGrowsDown ? FreeStart + ObjSize : FreeStart;
if (alignTo(ObjStart, ObjAlign) != ObjStart)
continue;
if (FreeStart + ObjSize > StackBytesFree.size())
return false;
bool AllBytesFree = true;
for (unsigned Byte = 0; Byte < ObjSize; ++Byte)
if (!StackBytesFree.test(FreeStart + Byte)) {
AllBytesFree = false;
break;
}
if (AllBytesFree)
break;
}
if (FreeStart == -1)
return false;
if (StackGrowsDown) {
int ObjStart = -(FreeStart + ObjSize);
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP["
<< ObjStart << "]\n");
MFI.setObjectOffset(FrameIdx, ObjStart);
} else {
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP["
<< FreeStart << "]\n");
MFI.setObjectOffset(FrameIdx, FreeStart);
}
StackBytesFree.reset(FreeStart, FreeStart + ObjSize);
return true;
}
/// AssignProtectedObjSet - Helper function to assign large stack objects (i.e.,
/// those required to be close to the Stack Protector) to stack offsets.
static void AssignProtectedObjSet(const StackObjSet &UnassignedObjs,
SmallSet<int, 16> &ProtectedObjs,
MachineFrameInfo &MFI, bool StackGrowsDown,
int64_t &Offset, Align &MaxAlign,
unsigned Skew) {
for (int i : UnassignedObjs) {
AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign, Skew);
ProtectedObjs.insert(i);
}
}
/// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the
/// abstract stack objects.
void PEI::calculateFrameObjectOffsets(MachineFunction &MF) {
const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
bool StackGrowsDown =
TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
// Loop over all of the stack objects, assigning sequential addresses...
MachineFrameInfo &MFI = MF.getFrameInfo();
// Start at the beginning of the local area.
// The Offset is the distance from the stack top in the direction
// of stack growth -- so it's always nonnegative.
int LocalAreaOffset = TFI.getOffsetOfLocalArea();
if (StackGrowsDown)
LocalAreaOffset = -LocalAreaOffset;
assert(LocalAreaOffset >= 0
&& "Local area offset should be in direction of stack growth");
int64_t Offset = LocalAreaOffset;
// Skew to be applied to alignment.
unsigned Skew = TFI.getStackAlignmentSkew(MF);
#ifdef EXPENSIVE_CHECKS
for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i)
if (!MFI.isDeadObjectIndex(i) &&
MFI.getStackID(i) == TargetStackID::Default)
assert(MFI.getObjectAlign(i) <= MFI.getMaxAlign() &&
"MaxAlignment is invalid");
#endif
// If there are fixed sized objects that are preallocated in the local area,
// non-fixed objects can't be allocated right at the start of local area.
// Adjust 'Offset' to point to the end of last fixed sized preallocated
// object.
for (int i = MFI.getObjectIndexBegin(); i != 0; ++i) {
// Only allocate objects on the default stack.
if (MFI.getStackID(i) != TargetStackID::Default)
continue;
int64_t FixedOff;
if (StackGrowsDown) {
// The maximum distance from the stack pointer is at lower address of
// the object -- which is given by offset. For down growing stack
// the offset is negative, so we negate the offset to get the distance.
FixedOff = -MFI.getObjectOffset(i);
} else {
// The maximum distance from the start pointer is at the upper
// address of the object.
FixedOff = MFI.getObjectOffset(i) + MFI.getObjectSize(i);
}
if (FixedOff > Offset) Offset = FixedOff;
}
Align MaxAlign = MFI.getMaxAlign();
// First assign frame offsets to stack objects that are used to spill
// callee saved registers.
if (MaxCSFrameIndex >= MinCSFrameIndex) {
for (unsigned i = 0; i <= MaxCSFrameIndex - MinCSFrameIndex; ++i) {
unsigned FrameIndex =
StackGrowsDown ? MinCSFrameIndex + i : MaxCSFrameIndex - i;
// Only allocate objects on the default stack.
if (MFI.getStackID(FrameIndex) != TargetStackID::Default)
continue;
// TODO: should this just be if (MFI.isDeadObjectIndex(FrameIndex))
if (!StackGrowsDown && MFI.isDeadObjectIndex(FrameIndex))
continue;
AdjustStackOffset(MFI, FrameIndex, StackGrowsDown, Offset, MaxAlign,
Skew);
}
}
assert(MaxAlign == MFI.getMaxAlign() &&
"MFI.getMaxAlign should already account for all callee-saved "
"registers without a fixed stack slot");
// FixedCSEnd is the stack offset to the end of the fixed and callee-save
// stack area.
int64_t FixedCSEnd = Offset;
// Make sure the special register scavenging spill slot is closest to the
// incoming stack pointer if a frame pointer is required and is closer
// to the incoming rather than the final stack pointer.
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
bool EarlyScavengingSlots = TFI.allocateScavengingFrameIndexesNearIncomingSP(MF);
if (RS && EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
for (int SFI : SFIs)
AdjustStackOffset(MFI, SFI, StackGrowsDown, Offset, MaxAlign, Skew);
}
// FIXME: Once this is working, then enable flag will change to a target
// check for whether the frame is large enough to want to use virtual
// frame index registers. Functions which don't want/need this optimization
// will continue to use the existing code path.
if (MFI.getUseLocalStackAllocationBlock()) {
Align Alignment = MFI.getLocalFrameMaxAlign();
// Adjust to alignment boundary.
Offset = alignTo(Offset, Alignment, Skew);
LLVM_DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n");
// Resolve offsets for objects in the local block.
for (unsigned i = 0, e = MFI.getLocalFrameObjectCount(); i != e; ++i) {
std::pair<int, int64_t> Entry = MFI.getLocalFrameObjectMap(i);
int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second;
LLVM_DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" << FIOffset
<< "]\n");
MFI.setObjectOffset(Entry.first, FIOffset);
}
// Allocate the local block
Offset += MFI.getLocalFrameSize();
MaxAlign = std::max(Alignment, MaxAlign);
}
// Retrieve the Exception Handler registration node.
int EHRegNodeFrameIndex = std::numeric_limits<int>::max();
if (const WinEHFuncInfo *FuncInfo = MF.getWinEHFuncInfo())
EHRegNodeFrameIndex = FuncInfo->EHRegNodeFrameIndex;
// Make sure that the stack protector comes before the local variables on the
// stack.
SmallSet<int, 16> ProtectedObjs;
if (MFI.hasStackProtectorIndex()) {
int StackProtectorFI = MFI.getStackProtectorIndex();
StackObjSet LargeArrayObjs;
StackObjSet SmallArrayObjs;
StackObjSet AddrOfObjs;
// If we need a stack protector, we need to make sure that
// LocalStackSlotPass didn't already allocate a slot for it.
// If we are told to use the LocalStackAllocationBlock, the stack protector
// is expected to be already pre-allocated.
if (MFI.getStackID(StackProtectorFI) != TargetStackID::Default) {
// If the stack protector isn't on the default stack then it's up to the
// target to set the stack offset.
assert(MFI.getObjectOffset(StackProtectorFI) != 0 &&
"Offset of stack protector on non-default stack expected to be "
"already set.");
assert(!MFI.isObjectPreAllocated(MFI.getStackProtectorIndex()) &&
"Stack protector on non-default stack expected to not be "
"pre-allocated by LocalStackSlotPass.");
} else if (!MFI.getUseLocalStackAllocationBlock()) {
AdjustStackOffset(MFI, StackProtectorFI, StackGrowsDown, Offset, MaxAlign,
Skew);
} else if (!MFI.isObjectPreAllocated(MFI.getStackProtectorIndex())) {
llvm_unreachable(
"Stack protector not pre-allocated by LocalStackSlotPass.");
}
// Assign large stack objects first.
for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
if (MFI.isObjectPreAllocated(i) && MFI.getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
if (MFI.isDeadObjectIndex(i))
continue;
if (StackProtectorFI == (int)i || EHRegNodeFrameIndex == (int)i)
continue;
// Only allocate objects on the default stack.
if (MFI.getStackID(i) != TargetStackID::Default)
continue;
switch (MFI.getObjectSSPLayout(i)) {
case MachineFrameInfo::SSPLK_None:
continue;
case MachineFrameInfo::SSPLK_SmallArray:
SmallArrayObjs.insert(i);
continue;
case MachineFrameInfo::SSPLK_AddrOf:
AddrOfObjs.insert(i);
continue;
case MachineFrameInfo::SSPLK_LargeArray:
LargeArrayObjs.insert(i);
continue;
}
llvm_unreachable("Unexpected SSPLayoutKind.");
}
// We expect **all** the protected stack objects to be pre-allocated by
// LocalStackSlotPass. If it turns out that PEI still has to allocate some
// of them, we may end up messing up the expected order of the objects.
if (MFI.getUseLocalStackAllocationBlock() &&
!(LargeArrayObjs.empty() && SmallArrayObjs.empty() &&
AddrOfObjs.empty()))
llvm_unreachable("Found protected stack objects not pre-allocated by "
"LocalStackSlotPass.");
AssignProtectedObjSet(LargeArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
AssignProtectedObjSet(SmallArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
AssignProtectedObjSet(AddrOfObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
}
SmallVector<int, 8> ObjectsToAllocate;
// Then prepare to assign frame offsets to stack objects that are not used to
// spill callee saved registers.
for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
if (MFI.isObjectPreAllocated(i) && MFI.getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
if (MFI.isDeadObjectIndex(i))
continue;
if (MFI.getStackProtectorIndex() == (int)i || EHRegNodeFrameIndex == (int)i)
continue;
if (ProtectedObjs.count(i))
continue;
// Only allocate objects on the default stack.
if (MFI.getStackID(i) != TargetStackID::Default)
continue;
// Add the objects that we need to allocate to our working set.
ObjectsToAllocate.push_back(i);
}
// Allocate the EH registration node first if one is present.
if (EHRegNodeFrameIndex != std::numeric_limits<int>::max())
AdjustStackOffset(MFI, EHRegNodeFrameIndex, StackGrowsDown, Offset,
MaxAlign, Skew);
// Give the targets a chance to order the objects the way they like it.
if (MF.getTarget().getOptLevel() != CodeGenOpt::None &&
MF.getTarget().Options.StackSymbolOrdering)
TFI.orderFrameObjects(MF, ObjectsToAllocate);
// Keep track of which bytes in the fixed and callee-save range are used so we
// can use the holes when allocating later stack objects. Only do this if
// stack protector isn't being used and the target requests it and we're
// optimizing.
BitVector StackBytesFree;
if (!ObjectsToAllocate.empty() &&
MF.getTarget().getOptLevel() != CodeGenOpt::None &&
MFI.getStackProtectorIndex() < 0 && TFI.enableStackSlotScavenging(MF))
computeFreeStackSlots(MFI, StackGrowsDown, MinCSFrameIndex, MaxCSFrameIndex,
FixedCSEnd, StackBytesFree);
// Now walk the objects and actually assign base offsets to them.
for (auto &Object : ObjectsToAllocate)
if (!scavengeStackSlot(MFI, Object, StackGrowsDown, MaxAlign,
StackBytesFree))
AdjustStackOffset(MFI, Object, StackGrowsDown, Offset, MaxAlign, Skew);
// Make sure the special register scavenging spill slot is closest to the
// stack pointer.
if (RS && !EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
for (int SFI : SFIs)
AdjustStackOffset(MFI, SFI, StackGrowsDown, Offset, MaxAlign, Skew);
}
if (!TFI.targetHandlesStackFrameRounding()) {
// If we have reserved argument space for call sites in the function
// immediately on entry to the current function, count it as part of the
// overall stack size.
if (MFI.adjustsStack() && TFI.hasReservedCallFrame(MF))
Offset += MFI.getMaxCallFrameSize();
// Round up the size to a multiple of the alignment. If the function has
// any calls or alloca's, align to the target's StackAlignment value to
// ensure that the callee's frame or the alloca data is suitably aligned;
// otherwise, for leaf functions, align to the TransientStackAlignment
// value.
Align StackAlign;
if (MFI.adjustsStack() || MFI.hasVarSizedObjects() ||
(RegInfo->hasStackRealignment(MF) && MFI.getObjectIndexEnd() != 0))
StackAlign = TFI.getStackAlign();
else
StackAlign = TFI.getTransientStackAlign();
// If the frame pointer is eliminated, all frame offsets will be relative to
// SP not FP. Align to MaxAlign so this works.
StackAlign = std::max(StackAlign, MaxAlign);
int64_t OffsetBeforeAlignment = Offset;
Offset = alignTo(Offset, StackAlign, Skew);
// If we have increased the offset to fulfill the alignment constrants,
// then the scavenging spill slots may become harder to reach from the
// stack pointer, float them so they stay close.
if (StackGrowsDown && OffsetBeforeAlignment != Offset && RS &&
!EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
LLVM_DEBUG(if (!SFIs.empty()) llvm::dbgs()
<< "Adjusting emergency spill slots!\n";);
int64_t Delta = Offset - OffsetBeforeAlignment;
for (int SFI : SFIs) {
LLVM_DEBUG(llvm::dbgs()
<< "Adjusting offset of emergency spill slot #" << SFI
<< " from " << MFI.getObjectOffset(SFI););
MFI.setObjectOffset(SFI, MFI.getObjectOffset(SFI) - Delta);
LLVM_DEBUG(llvm::dbgs() << " to " << MFI.getObjectOffset(SFI) << "\n";);
}
}
}
// Update frame info to pretend that this is part of the stack...
int64_t StackSize = Offset - LocalAreaOffset;
MFI.setStackSize(StackSize);
NumBytesStackSpace += StackSize;
}
/// insertPrologEpilogCode - Scan the function for modified callee saved
/// registers, insert spill code for these callee saved registers, then add
/// prolog and epilog code to the function.
void PEI::insertPrologEpilogCode(MachineFunction &MF) {
const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
// Add prologue to the function...
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.emitPrologue(MF, *SaveBlock);
// Add epilogue to restore the callee-save registers in each exiting block.
for (MachineBasicBlock *RestoreBlock : RestoreBlocks)
TFI.emitEpilogue(MF, *RestoreBlock);
// Zero call used registers before restoring callee-saved registers.
insertZeroCallUsedRegs(MF);
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.inlineStackProbe(MF, *SaveBlock);
// Emit additional code that is required to support segmented stacks, if
// we've been asked for it. This, when linked with a runtime with support
// for segmented stacks (libgcc is one), will result in allocating stack
// space in small chunks instead of one large contiguous block.
if (MF.shouldSplitStack()) {
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.adjustForSegmentedStacks(MF, *SaveBlock);
}
// Emit additional code that is required to explicitly handle the stack in
// HiPE native code (if needed) when loaded in the Erlang/OTP runtime. The
// approach is rather similar to that of Segmented Stacks, but it uses a
// different conditional check and another BIF for allocating more stack
// space.
if (MF.getFunction().getCallingConv() == CallingConv::HiPE)
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.adjustForHiPEPrologue(MF, *SaveBlock);
}
/// insertZeroCallUsedRegs - Zero out call used registers.
void PEI::insertZeroCallUsedRegs(MachineFunction &MF) {
const Function &F = MF.getFunction();
if (!F.hasFnAttribute("zero-call-used-regs"))
return;
using namespace ZeroCallUsedRegs;
ZeroCallUsedRegsKind ZeroRegsKind =
StringSwitch<ZeroCallUsedRegsKind>(
F.getFnAttribute("zero-call-used-regs").getValueAsString())
.Case("skip", ZeroCallUsedRegsKind::Skip)
.Case("used-gpr-arg", ZeroCallUsedRegsKind::UsedGPRArg)
.Case("used-gpr", ZeroCallUsedRegsKind::UsedGPR)
.Case("used-arg", ZeroCallUsedRegsKind::UsedArg)
.Case("used", ZeroCallUsedRegsKind::Used)
.Case("all-gpr-arg", ZeroCallUsedRegsKind::AllGPRArg)
.Case("all-gpr", ZeroCallUsedRegsKind::AllGPR)
.Case("all-arg", ZeroCallUsedRegsKind::AllArg)
.Case("all", ZeroCallUsedRegsKind::All);
if (ZeroRegsKind == ZeroCallUsedRegsKind::Skip)
return;
const bool OnlyGPR = static_cast<unsigned>(ZeroRegsKind) & ONLY_GPR;
const bool OnlyUsed = static_cast<unsigned>(ZeroRegsKind) & ONLY_USED;
const bool OnlyArg = static_cast<unsigned>(ZeroRegsKind) & ONLY_ARG;
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const BitVector AllocatableSet(TRI.getAllocatableSet(MF));
// Mark all used registers.
BitVector UsedRegs(TRI.getNumRegs());
if (OnlyUsed)
for (const MachineBasicBlock &MBB : MF)
for (const MachineInstr &MI : MBB) {
// skip debug instructions
if (MI.isDebugInstr())
continue;
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
MCRegister Reg = MO.getReg();
if (AllocatableSet[Reg] && !MO.isImplicit() &&
(MO.isDef() || MO.isUse()))
UsedRegs.set(Reg);
}
}
// Get a list of registers that are used.
BitVector LiveIns(TRI.getNumRegs());
for (const MachineBasicBlock::RegisterMaskPair &LI : MF.front().liveins())
LiveIns.set(LI.PhysReg);
BitVector RegsToZero(TRI.getNumRegs());
for (MCRegister Reg : AllocatableSet.set_bits()) {
// Skip over fixed registers.
if (TRI.isFixedRegister(MF, Reg))
continue;
// Want only general purpose registers.
if (OnlyGPR && !TRI.isGeneralPurposeRegister(MF, Reg))
continue;
// Want only used registers.
if (OnlyUsed && !UsedRegs[Reg])
continue;
// Want only registers used for arguments.
if (OnlyArg) {
if (OnlyUsed) {
if (!LiveIns[Reg])
continue;
} else if (!TRI.isArgumentRegister(MF, Reg)) {
continue;
}
}
RegsToZero.set(Reg);
}
// Don't clear registers that are live when leaving the function.
for (const MachineBasicBlock &MBB : MF)
for (const MachineInstr &MI : MBB.terminators()) {
if (!MI.isReturn())
continue;
for (const auto &MO : MI.operands()) {
if (!MO.isReg())
continue;
MCRegister Reg = MO.getReg();
// This picks up sibling registers (e.q. %al -> %ah).
for (MCRegUnitIterator Unit(Reg, &TRI); Unit.isValid(); ++Unit)
RegsToZero.reset(*Unit);
for (MCPhysReg SReg : TRI.sub_and_superregs_inclusive(Reg))
RegsToZero.reset(SReg);
}
}
// Don't need to clear registers that are used/clobbered by terminating
// instructions.
for (const MachineBasicBlock &MBB : MF) {
if (!MBB.isReturnBlock())
continue;
MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
for (MachineBasicBlock::const_iterator I = MBBI, E = MBB.end(); I != E;
++I) {
for (const MachineOperand &MO : I->operands()) {
if (!MO.isReg())
continue;
for (const MCPhysReg &Reg :
TRI.sub_and_superregs_inclusive(MO.getReg()))
RegsToZero.reset(Reg);
}
}
}
// Don't clear registers that must be preserved.
for (const MCPhysReg *CSRegs = TRI.getCalleeSavedRegs(&MF);
MCPhysReg CSReg = *CSRegs; ++CSRegs)
for (MCRegister Reg : TRI.sub_and_superregs_inclusive(CSReg))
RegsToZero.reset(Reg);
const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
for (MachineBasicBlock &MBB : MF)
if (MBB.isReturnBlock())
TFI.emitZeroCallUsedRegs(RegsToZero, MBB);
}
/// replaceFrameIndices - Replace all MO_FrameIndex operands with physical
/// register references and actual offsets.
void PEI::replaceFrameIndices(MachineFunction &MF) {
const auto &ST = MF.getSubtarget();
const TargetFrameLowering &TFI = *ST.getFrameLowering();
if (!TFI.needsFrameIndexResolution(MF))
return;
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
// Allow the target to determine this after knowing the frame size.
FrameIndexEliminationScavenging = (RS && !FrameIndexVirtualScavenging) ||
TRI->requiresFrameIndexReplacementScavenging(MF);
// Store SPAdj at exit of a basic block.
SmallVector<int, 8> SPState;
SPState.resize(MF.getNumBlockIDs());
df_iterator_default_set<MachineBasicBlock*> Reachable;
// Iterate over the reachable blocks in DFS order.
for (auto DFI = df_ext_begin(&MF, Reachable), DFE = df_ext_end(&MF, Reachable);
DFI != DFE; ++DFI) {
int SPAdj = 0;
// Check the exit state of the DFS stack predecessor.
if (DFI.getPathLength() >= 2) {
MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
assert(Reachable.count(StackPred) &&
"DFS stack predecessor is already visited.\n");
SPAdj = SPState[StackPred->getNumber()];
}
MachineBasicBlock *BB = *DFI;
replaceFrameIndices(BB, MF, SPAdj);
SPState[BB->getNumber()] = SPAdj;
}
// Handle the unreachable blocks.
for (auto &BB : MF) {
if (Reachable.count(&BB))
// Already handled in DFS traversal.
continue;
int SPAdj = 0;
replaceFrameIndices(&BB, MF, SPAdj);
}
}
bool PEI::replaceFrameIndexDebugInstr(MachineFunction &MF, MachineInstr &MI,
unsigned OpIdx, int SPAdj) {
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
if (MI.isDebugValue()) {
MachineOperand &Op = MI.getOperand(OpIdx);
assert(MI.isDebugOperand(&Op) &&
"Frame indices can only appear as a debug operand in a DBG_VALUE*"
" machine instruction");
Register Reg;
unsigned FrameIdx = Op.getIndex();
unsigned Size = MF.getFrameInfo().getObjectSize(FrameIdx);
StackOffset Offset = TFI->getFrameIndexReference(MF, FrameIdx, Reg);
Op.ChangeToRegister(Reg, false /*isDef*/);
const DIExpression *DIExpr = MI.getDebugExpression();
// If we have a direct DBG_VALUE, and its location expression isn't
// currently complex, then adding an offset will morph it into a
// complex location that is interpreted as being a memory address.
// This changes a pointer-valued variable to dereference that pointer,
// which is incorrect. Fix by adding DW_OP_stack_value.
if (MI.isNonListDebugValue()) {
unsigned PrependFlags = DIExpression::ApplyOffset;
if (!MI.isIndirectDebugValue() && !DIExpr->isComplex())
PrependFlags |= DIExpression::StackValue;
// If we have DBG_VALUE that is indirect and has a Implicit location
// expression need to insert a deref before prepending a Memory
// location expression. Also after doing this we change the DBG_VALUE
// to be direct.
if (MI.isIndirectDebugValue() && DIExpr->isImplicit()) {
SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size};
bool WithStackValue = true;
DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
// Make the DBG_VALUE direct.
MI.getDebugOffset().ChangeToRegister(0, false);
}
DIExpr = TRI.prependOffsetExpression(DIExpr, PrependFlags, Offset);
} else {
// The debug operand at DebugOpIndex was a frame index at offset
// `Offset`; now the operand has been replaced with the frame
// register, we must add Offset with `register x, plus Offset`.
unsigned DebugOpIndex = MI.getDebugOperandIndex(&Op);
SmallVector<uint64_t, 3> Ops;
TRI.getOffsetOpcodes(Offset, Ops);
DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, DebugOpIndex);
}
MI.getDebugExpressionOp().setMetadata(DIExpr);
return true;
}
if (MI.isDebugPHI()) {
// Allow stack ref to continue onwards.
return true;
}
// TODO: This code should be commoned with the code for
// PATCHPOINT. There's no good reason for the difference in
// implementation other than historical accident. The only
// remaining difference is the unconditional use of the stack
// pointer as the base register.
if (MI.getOpcode() == TargetOpcode::STATEPOINT) {
assert((!MI.isDebugValue() || OpIdx == 0) &&
"Frame indicies can only appear as the first operand of a "
"DBG_VALUE machine instruction");
Register Reg;
MachineOperand &Offset = MI.getOperand(OpIdx + 1);
StackOffset refOffset = TFI->getFrameIndexReferencePreferSP(
MF, MI.getOperand(OpIdx).getIndex(), Reg, /*IgnoreSPUpdates*/ false);
assert(!refOffset.getScalable() &&
"Frame offsets with a scalable component are not supported");
Offset.setImm(Offset.getImm() + refOffset.getFixed() + SPAdj);
MI.getOperand(OpIdx).ChangeToRegister(Reg, false /*isDef*/);
return true;
}
return false;
}
void PEI::replaceFrameIndicesBackward(MachineBasicBlock *BB,
MachineFunction &MF, int &SPAdj) {
assert(MF.getSubtarget().getRegisterInfo() &&
"getRegisterInfo() must be implemented!");
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
RS->enterBasicBlockEnd(*BB);
for (MachineInstr &MI : make_early_inc_range(reverse(*BB))) {
// Register scavenger backward step
MachineBasicBlock::iterator Step(MI);
for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
if (!MI.getOperand(i).isFI())
continue;
if (replaceFrameIndexDebugInstr(MF, MI, i, SPAdj))
continue;
// If this instruction has a FrameIndex operand, we need to
// use that target machine register info object to eliminate
// it.
// TRI.eliminateFrameIndex may lower the frame index to a sequence of
// instructions. It also can remove/change instructions passed by the
// iterator and invalidate the iterator. We have to take care of this. For
// that we support two iterators: *Step* - points to the position up to
// which the scavenger should scan by the next iteration to have liveness
// information up to date. *Curr* - keeps track of the correct RS->MBBI -
// the scan start point. It points to the currently processed instruction
// right before the frame lowering.
//
// ITERATORS WORK AS FOLLOWS:
// *Step* is shifted one step back right before the frame lowering and
// one step forward right after it. No matter how many instructions were
// inserted, *Step* will be right after the position which is going to be
// processed in the next iteration, thus, in the correct position for the
// scavenger to go up to.
// *Curr* is shifted one step forward right before calling
// TRI.eliminateFrameIndex and one step backward after. Thus, we make sure
// it points right to the position that is the correct starting point for
// the scavenger to scan.
MachineBasicBlock::iterator Curr = ++RS->getCurrentPosition();
// Shift back
--Step;
bool Removed = TRI.eliminateFrameIndex(MI, SPAdj, i, RS);
// Restore to unify logic with a shift back that happens in the end of
// the outer loop.
++Step;
RS->skipTo(--Curr);
if (Removed)
break;
}
// Shift it to make RS collect reg info up to the current instruction.
if (Step != BB->begin())
Step--;
// Update register states.
RS->backward(Step);
}
}
void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &MF,
int &SPAdj) {
assert(MF.getSubtarget().getRegisterInfo() &&
"getRegisterInfo() must be implemented!");
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (RS && TRI.supportsBackwardScavenger())
return replaceFrameIndicesBackward(BB, MF, SPAdj);
if (RS && FrameIndexEliminationScavenging)
RS->enterBasicBlock(*BB);
bool InsideCallSequence = false;
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
if (TII.isFrameInstr(*I)) {
InsideCallSequence = TII.isFrameSetup(*I);
SPAdj += TII.getSPAdjust(*I);
I = TFI->eliminateCallFramePseudoInstr(MF, *BB, I);
continue;
}
MachineInstr &MI = *I;
bool DoIncr = true;
bool DidFinishLoop = true;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
if (!MI.getOperand(i).isFI())
continue;
if (replaceFrameIndexDebugInstr(MF, MI, i, SPAdj))
continue;
// Some instructions (e.g. inline asm instructions) can have
// multiple frame indices and/or cause eliminateFrameIndex
// to insert more than one instruction. We need the register
// scavenger to go through all of these instructions so that
// it can update its register information. We keep the
// iterator at the point before insertion so that we can
// revisit them in full.
bool AtBeginning = (I == BB->begin());
if (!AtBeginning) --I;
// If this instruction has a FrameIndex operand, we need to
// use that target machine register info object to eliminate
// it.
TRI.eliminateFrameIndex(MI, SPAdj, i,
FrameIndexEliminationScavenging ? RS : nullptr);
// Reset the iterator if we were at the beginning of the BB.
if (AtBeginning) {
I = BB->begin();
DoIncr = false;
}
DidFinishLoop = false;
break;
}
// If we are looking at a call sequence, we need to keep track of
// the SP adjustment made by each instruction in the sequence.
// This includes both the frame setup/destroy pseudos (handled above),
// as well as other instructions that have side effects w.r.t the SP.
// Note that this must come after eliminateFrameIndex, because
// if I itself referred to a frame index, we shouldn't count its own
// adjustment.
if (DidFinishLoop && InsideCallSequence)
SPAdj += TII.getSPAdjust(MI);
if (DoIncr && I != BB->end()) ++I;
// Update register states.
if (RS && FrameIndexEliminationScavenging && DidFinishLoop)
RS->forward(MI);
}
}
|