aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/CodeGen/MachineInstr.cpp
blob: 8e0777f8438ac9d7c03e2b7ea2118877c80f8b81 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Methods common to all machine instructions.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/Operator.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <utility>

using namespace llvm;

static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
  if (const MachineBasicBlock *MBB = MI.getParent())
    if (const MachineFunction *MF = MBB->getParent())
      return MF;
  return nullptr;
}

// Try to crawl up to the machine function and get TRI and IntrinsicInfo from
// it.
static void tryToGetTargetInfo(const MachineInstr &MI,
                               const TargetRegisterInfo *&TRI,
                               const MachineRegisterInfo *&MRI,
                               const TargetIntrinsicInfo *&IntrinsicInfo,
                               const TargetInstrInfo *&TII) {

  if (const MachineFunction *MF = getMFIfAvailable(MI)) {
    TRI = MF->getSubtarget().getRegisterInfo();
    MRI = &MF->getRegInfo();
    IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
    TII = MF->getSubtarget().getInstrInfo();
  }
}

void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
  for (MCPhysReg ImpDef : MCID->implicit_defs())
    addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true));
  for (MCPhysReg ImpUse : MCID->implicit_uses())
    addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true));
}

/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
/// implicit operands. It reserves space for the number of operands specified by
/// the MCInstrDesc.
MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
                           DebugLoc DL, bool NoImp)
    : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) {
  assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");

  // Reserve space for the expected number of operands.
  if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() +
                        MCID->implicit_uses().size()) {
    CapOperands = OperandCapacity::get(NumOps);
    Operands = MF.allocateOperandArray(CapOperands);
  }

  if (!NoImp)
    addImplicitDefUseOperands(MF);
}

/// MachineInstr ctor - Copies MachineInstr arg exactly.
/// Does not copy the number from debug instruction numbering, to preserve
/// uniqueness.
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
    : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()),
      DebugInstrNum(0) {
  assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");

  CapOperands = OperandCapacity::get(MI.getNumOperands());
  Operands = MF.allocateOperandArray(CapOperands);

  // Copy operands.
  for (const MachineOperand &MO : MI.operands())
    addOperand(MF, MO);

  // Replicate ties between the operands, which addOperand was not
  // able to do reliably.
  for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
    MachineOperand &NewMO = getOperand(i);
    const MachineOperand &OrigMO = MI.getOperand(i);
    NewMO.TiedTo = OrigMO.TiedTo;
  }

  // Copy all the sensible flags.
  setFlags(MI.Flags);
}

void MachineInstr::moveBefore(MachineInstr *MovePos) {
  MovePos->getParent()->splice(MovePos, getParent(), getIterator());
}

/// getRegInfo - If this instruction is embedded into a MachineFunction,
/// return the MachineRegisterInfo object for the current function, otherwise
/// return null.
MachineRegisterInfo *MachineInstr::getRegInfo() {
  if (MachineBasicBlock *MBB = getParent())
    return &MBB->getParent()->getRegInfo();
  return nullptr;
}

void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
  for (MachineOperand &MO : operands())
    if (MO.isReg())
      MRI.removeRegOperandFromUseList(&MO);
}

void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
  for (MachineOperand &MO : operands())
    if (MO.isReg())
      MRI.addRegOperandToUseList(&MO);
}

void MachineInstr::addOperand(const MachineOperand &Op) {
  MachineBasicBlock *MBB = getParent();
  assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
  MachineFunction *MF = MBB->getParent();
  assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
  addOperand(*MF, Op);
}

/// Move NumOps MachineOperands from Src to Dst, with support for overlapping
/// ranges. If MRI is non-null also update use-def chains.
static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
                         unsigned NumOps, MachineRegisterInfo *MRI) {
  if (MRI)
    return MRI->moveOperands(Dst, Src, NumOps);
  // MachineOperand is a trivially copyable type so we can just use memmove.
  assert(Dst && Src && "Unknown operands");
  std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
}

/// addOperand - Add the specified operand to the instruction.  If it is an
/// implicit operand, it is added to the end of the operand list.  If it is
/// an explicit operand it is added at the end of the explicit operand list
/// (before the first implicit operand).
void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
  assert(MCID && "Cannot add operands before providing an instr descriptor");

  // Check if we're adding one of our existing operands.
  if (&Op >= Operands && &Op < Operands + NumOperands) {
    // This is unusual: MI->addOperand(MI->getOperand(i)).
    // If adding Op requires reallocating or moving existing operands around,
    // the Op reference could go stale. Support it by copying Op.
    MachineOperand CopyOp(Op);
    return addOperand(MF, CopyOp);
  }

  // Find the insert location for the new operand.  Implicit registers go at
  // the end, everything else goes before the implicit regs.
  //
  // FIXME: Allow mixed explicit and implicit operands on inline asm.
  // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
  // implicit-defs, but they must not be moved around.  See the FIXME in
  // InstrEmitter.cpp.
  unsigned OpNo = getNumOperands();
  bool isImpReg = Op.isReg() && Op.isImplicit();
  if (!isImpReg && !isInlineAsm()) {
    while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
      --OpNo;
      assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
    }
  }

  // OpNo now points as the desired insertion point.  Unless this is a variadic
  // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
  // RegMask operands go between the explicit and implicit operands.
  assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
          Op.isValidExcessOperand()) &&
         "Trying to add an operand to a machine instr that is already done!");

  MachineRegisterInfo *MRI = getRegInfo();

  // Determine if the Operands array needs to be reallocated.
  // Save the old capacity and operand array.
  OperandCapacity OldCap = CapOperands;
  MachineOperand *OldOperands = Operands;
  if (!OldOperands || OldCap.getSize() == getNumOperands()) {
    CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
    Operands = MF.allocateOperandArray(CapOperands);
    // Move the operands before the insertion point.
    if (OpNo)
      moveOperands(Operands, OldOperands, OpNo, MRI);
  }

  // Move the operands following the insertion point.
  if (OpNo != NumOperands)
    moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
                 MRI);
  ++NumOperands;

  // Deallocate the old operand array.
  if (OldOperands != Operands && OldOperands)
    MF.deallocateOperandArray(OldCap, OldOperands);

  // Copy Op into place. It still needs to be inserted into the MRI use lists.
  MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
  NewMO->ParentMI = this;

  // When adding a register operand, tell MRI about it.
  if (NewMO->isReg()) {
    // Ensure isOnRegUseList() returns false, regardless of Op's status.
    NewMO->Contents.Reg.Prev = nullptr;
    // Ignore existing ties. This is not a property that can be copied.
    NewMO->TiedTo = 0;
    // Add the new operand to MRI, but only for instructions in an MBB.
    if (MRI)
      MRI->addRegOperandToUseList(NewMO);
    // The MCID operand information isn't accurate until we start adding
    // explicit operands. The implicit operands are added first, then the
    // explicits are inserted before them.
    if (!isImpReg) {
      // Tie uses to defs as indicated in MCInstrDesc.
      if (NewMO->isUse()) {
        int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
        if (DefIdx != -1)
          tieOperands(DefIdx, OpNo);
      }
      // If the register operand is flagged as early, mark the operand as such.
      if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
        NewMO->setIsEarlyClobber(true);
    }
    // Ensure debug instructions set debug flag on register uses.
    if (NewMO->isUse() && isDebugInstr())
      NewMO->setIsDebug();
  }
}

void MachineInstr::removeOperand(unsigned OpNo) {
  assert(OpNo < getNumOperands() && "Invalid operand number");
  untieRegOperand(OpNo);

#ifndef NDEBUG
  // Moving tied operands would break the ties.
  for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
    if (Operands[i].isReg())
      assert(!Operands[i].isTied() && "Cannot move tied operands");
#endif

  MachineRegisterInfo *MRI = getRegInfo();
  if (MRI && Operands[OpNo].isReg())
    MRI->removeRegOperandFromUseList(Operands + OpNo);

  // Don't call the MachineOperand destructor. A lot of this code depends on
  // MachineOperand having a trivial destructor anyway, and adding a call here
  // wouldn't make it 'destructor-correct'.

  if (unsigned N = NumOperands - 1 - OpNo)
    moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
  --NumOperands;
}

void MachineInstr::setExtraInfo(MachineFunction &MF,
                                ArrayRef<MachineMemOperand *> MMOs,
                                MCSymbol *PreInstrSymbol,
                                MCSymbol *PostInstrSymbol,
                                MDNode *HeapAllocMarker, MDNode *PCSections,
                                uint32_t CFIType) {
  bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
  bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
  bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
  bool HasPCSections = PCSections != nullptr;
  bool HasCFIType = CFIType != 0;
  int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
                    HasHeapAllocMarker + HasPCSections + HasCFIType;

  // Drop all extra info if there is none.
  if (NumPointers <= 0) {
    Info.clear();
    return;
  }

  // If more than one pointer, then store out of line. Store heap alloc markers
  // out of line because PointerSumType cannot hold more than 4 tag types with
  // 32-bit pointers.
  // FIXME: Maybe we should make the symbols in the extra info mutable?
  else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections ||
           HasCFIType) {
    Info.set<EIIK_OutOfLine>(
        MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
                             HeapAllocMarker, PCSections, CFIType));
    return;
  }

  // Otherwise store the single pointer inline.
  if (HasPreInstrSymbol)
    Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
  else if (HasPostInstrSymbol)
    Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
  else
    Info.set<EIIK_MMO>(MMOs[0]);
}

void MachineInstr::dropMemRefs(MachineFunction &MF) {
  if (memoperands_empty())
    return;

  setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
               getHeapAllocMarker(), getPCSections(), getCFIType());
}

void MachineInstr::setMemRefs(MachineFunction &MF,
                              ArrayRef<MachineMemOperand *> MMOs) {
  if (MMOs.empty()) {
    dropMemRefs(MF);
    return;
  }

  setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
               getHeapAllocMarker(), getPCSections(), getCFIType());
}

void MachineInstr::addMemOperand(MachineFunction &MF,
                                 MachineMemOperand *MO) {
  SmallVector<MachineMemOperand *, 2> MMOs;
  MMOs.append(memoperands_begin(), memoperands_end());
  MMOs.push_back(MO);
  setMemRefs(MF, MMOs);
}

void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
  if (this == &MI)
    // Nothing to do for a self-clone!
    return;

  assert(&MF == MI.getMF() &&
         "Invalid machine functions when cloning memory refrences!");
  // See if we can just steal the extra info already allocated for the
  // instruction. We can do this whenever the pre- and post-instruction symbols
  // are the same (including null).
  if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
      getPostInstrSymbol() == MI.getPostInstrSymbol() &&
      getHeapAllocMarker() == MI.getHeapAllocMarker() &&
      getPCSections() == MI.getPCSections()) {
    Info = MI.Info;
    return;
  }

  // Otherwise, fall back on a copy-based clone.
  setMemRefs(MF, MI.memoperands());
}

/// Check to see if the MMOs pointed to by the two MemRefs arrays are
/// identical.
static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
                             ArrayRef<MachineMemOperand *> RHS) {
  if (LHS.size() != RHS.size())
    return false;

  auto LHSPointees = make_pointee_range(LHS);
  auto RHSPointees = make_pointee_range(RHS);
  return std::equal(LHSPointees.begin(), LHSPointees.end(),
                    RHSPointees.begin());
}

void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
                                      ArrayRef<const MachineInstr *> MIs) {
  // Try handling easy numbers of MIs with simpler mechanisms.
  if (MIs.empty()) {
    dropMemRefs(MF);
    return;
  }
  if (MIs.size() == 1) {
    cloneMemRefs(MF, *MIs[0]);
    return;
  }
  // Because an empty memoperands list provides *no* information and must be
  // handled conservatively (assuming the instruction can do anything), the only
  // way to merge with it is to drop all other memoperands.
  if (MIs[0]->memoperands_empty()) {
    dropMemRefs(MF);
    return;
  }

  // Handle the general case.
  SmallVector<MachineMemOperand *, 2> MergedMMOs;
  // Start with the first instruction.
  assert(&MF == MIs[0]->getMF() &&
         "Invalid machine functions when cloning memory references!");
  MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
  // Now walk all the other instructions and accumulate any different MMOs.
  for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
    assert(&MF == MI.getMF() &&
           "Invalid machine functions when cloning memory references!");

    // Skip MIs with identical operands to the first. This is a somewhat
    // arbitrary hack but will catch common cases without being quadratic.
    // TODO: We could fully implement merge semantics here if needed.
    if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
      continue;

    // Because an empty memoperands list provides *no* information and must be
    // handled conservatively (assuming the instruction can do anything), the
    // only way to merge with it is to drop all other memoperands.
    if (MI.memoperands_empty()) {
      dropMemRefs(MF);
      return;
    }

    // Otherwise accumulate these into our temporary buffer of the merged state.
    MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
  }

  setMemRefs(MF, MergedMMOs);
}

void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
  // Do nothing if old and new symbols are the same.
  if (Symbol == getPreInstrSymbol())
    return;

  // If there was only one symbol and we're removing it, just clear info.
  if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
    Info.clear();
    return;
  }

  setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
               getHeapAllocMarker(), getPCSections(), getCFIType());
}

void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
  // Do nothing if old and new symbols are the same.
  if (Symbol == getPostInstrSymbol())
    return;

  // If there was only one symbol and we're removing it, just clear info.
  if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
    Info.clear();
    return;
  }

  setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
               getHeapAllocMarker(), getPCSections(), getCFIType());
}

void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
  // Do nothing if old and new symbols are the same.
  if (Marker == getHeapAllocMarker())
    return;

  setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
               Marker, getPCSections(), getCFIType());
}

void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
  // Do nothing if old and new symbols are the same.
  if (PCSections == getPCSections())
    return;

  setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
               getHeapAllocMarker(), PCSections, getCFIType());
}

void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
  // Do nothing if old and new types are the same.
  if (Type == getCFIType())
    return;

  setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
               getHeapAllocMarker(), getPCSections(), Type);
}

void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
                                     const MachineInstr &MI) {
  if (this == &MI)
    // Nothing to do for a self-clone!
    return;

  assert(&MF == MI.getMF() &&
         "Invalid machine functions when cloning instruction symbols!");

  setPreInstrSymbol(MF, MI.getPreInstrSymbol());
  setPostInstrSymbol(MF, MI.getPostInstrSymbol());
  setHeapAllocMarker(MF, MI.getHeapAllocMarker());
  setPCSections(MF, MI.getPCSections());
}

uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
  // For now, the just return the union of the flags. If the flags get more
  // complicated over time, we might need more logic here.
  return getFlags() | Other.getFlags();
}

uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
  uint16_t MIFlags = 0;
  // Copy the wrapping flags.
  if (const OverflowingBinaryOperator *OB =
          dyn_cast<OverflowingBinaryOperator>(&I)) {
    if (OB->hasNoSignedWrap())
      MIFlags |= MachineInstr::MIFlag::NoSWrap;
    if (OB->hasNoUnsignedWrap())
      MIFlags |= MachineInstr::MIFlag::NoUWrap;
  }

  // Copy the exact flag.
  if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
    if (PE->isExact())
      MIFlags |= MachineInstr::MIFlag::IsExact;

  // Copy the fast-math flags.
  if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
    const FastMathFlags Flags = FP->getFastMathFlags();
    if (Flags.noNaNs())
      MIFlags |= MachineInstr::MIFlag::FmNoNans;
    if (Flags.noInfs())
      MIFlags |= MachineInstr::MIFlag::FmNoInfs;
    if (Flags.noSignedZeros())
      MIFlags |= MachineInstr::MIFlag::FmNsz;
    if (Flags.allowReciprocal())
      MIFlags |= MachineInstr::MIFlag::FmArcp;
    if (Flags.allowContract())
      MIFlags |= MachineInstr::MIFlag::FmContract;
    if (Flags.approxFunc())
      MIFlags |= MachineInstr::MIFlag::FmAfn;
    if (Flags.allowReassoc())
      MIFlags |= MachineInstr::MIFlag::FmReassoc;
  }

  return MIFlags;
}

void MachineInstr::copyIRFlags(const Instruction &I) {
  Flags = copyFlagsFromInstruction(I);
}

bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
  assert(!isBundledWithPred() && "Must be called on bundle header");
  for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
    if (MII->getDesc().getFlags() & Mask) {
      if (Type == AnyInBundle)
        return true;
    } else {
      if (Type == AllInBundle && !MII->isBundle())
        return false;
    }
    // This was the last instruction in the bundle.
    if (!MII->isBundledWithSucc())
      return Type == AllInBundle;
  }
}

bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
                                 MICheckType Check) const {
  // If opcodes or number of operands are not the same then the two
  // instructions are obviously not identical.
  if (Other.getOpcode() != getOpcode() ||
      Other.getNumOperands() != getNumOperands())
    return false;

  if (isBundle()) {
    // We have passed the test above that both instructions have the same
    // opcode, so we know that both instructions are bundles here. Let's compare
    // MIs inside the bundle.
    assert(Other.isBundle() && "Expected that both instructions are bundles.");
    MachineBasicBlock::const_instr_iterator I1 = getIterator();
    MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
    // Loop until we analysed the last intruction inside at least one of the
    // bundles.
    while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
      ++I1;
      ++I2;
      if (!I1->isIdenticalTo(*I2, Check))
        return false;
    }
    // If we've reached the end of just one of the two bundles, but not both,
    // the instructions are not identical.
    if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
      return false;
  }

  // Check operands to make sure they match.
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    const MachineOperand &OMO = Other.getOperand(i);
    if (!MO.isReg()) {
      if (!MO.isIdenticalTo(OMO))
        return false;
      continue;
    }

    // Clients may or may not want to ignore defs when testing for equality.
    // For example, machine CSE pass only cares about finding common
    // subexpressions, so it's safe to ignore virtual register defs.
    if (MO.isDef()) {
      if (Check == IgnoreDefs)
        continue;
      else if (Check == IgnoreVRegDefs) {
        if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual())
          if (!MO.isIdenticalTo(OMO))
            return false;
      } else {
        if (!MO.isIdenticalTo(OMO))
          return false;
        if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
          return false;
      }
    } else {
      if (!MO.isIdenticalTo(OMO))
        return false;
      if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
        return false;
    }
  }
  // If DebugLoc does not match then two debug instructions are not identical.
  if (isDebugInstr())
    if (getDebugLoc() && Other.getDebugLoc() &&
        getDebugLoc() != Other.getDebugLoc())
      return false;
  // If pre- or post-instruction symbols do not match then the two instructions
  // are not identical.
  if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
      getPostInstrSymbol() != Other.getPostInstrSymbol())
    return false;
  // Call instructions with different CFI types are not identical.
  if (isCall() && getCFIType() != Other.getCFIType())
    return false;

  return true;
}

bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
  if (!isDebugValueLike() || !Other.isDebugValueLike())
    return false;
  if (getDebugLoc() != Other.getDebugLoc())
    return false;
  if (getDebugVariable() != Other.getDebugVariable())
    return false;
  if (getNumDebugOperands() != Other.getNumDebugOperands())
    return false;
  for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
    if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx)))
      return false;
  if (!DIExpression::isEqualExpression(
          getDebugExpression(), isIndirectDebugValue(),
          Other.getDebugExpression(), Other.isIndirectDebugValue()))
    return false;
  return true;
}

const MachineFunction *MachineInstr::getMF() const {
  return getParent()->getParent();
}

MachineInstr *MachineInstr::removeFromParent() {
  assert(getParent() && "Not embedded in a basic block!");
  return getParent()->remove(this);
}

MachineInstr *MachineInstr::removeFromBundle() {
  assert(getParent() && "Not embedded in a basic block!");
  return getParent()->remove_instr(this);
}

void MachineInstr::eraseFromParent() {
  assert(getParent() && "Not embedded in a basic block!");
  getParent()->erase(this);
}

void MachineInstr::eraseFromBundle() {
  assert(getParent() && "Not embedded in a basic block!");
  getParent()->erase_instr(this);
}

bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
  if (!isCall(Type))
    return false;
  switch (getOpcode()) {
  case TargetOpcode::PATCHPOINT:
  case TargetOpcode::STACKMAP:
  case TargetOpcode::STATEPOINT:
  case TargetOpcode::FENTRY_CALL:
    return false;
  }
  return true;
}

bool MachineInstr::shouldUpdateCallSiteInfo() const {
  if (isBundle())
    return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
  return isCandidateForCallSiteEntry();
}

unsigned MachineInstr::getNumExplicitOperands() const {
  unsigned NumOperands = MCID->getNumOperands();
  if (!MCID->isVariadic())
    return NumOperands;

  for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = getOperand(I);
    // The operands must always be in the following order:
    // - explicit reg defs,
    // - other explicit operands (reg uses, immediates, etc.),
    // - implicit reg defs
    // - implicit reg uses
    if (MO.isReg() && MO.isImplicit())
      break;
    ++NumOperands;
  }
  return NumOperands;
}

unsigned MachineInstr::getNumExplicitDefs() const {
  unsigned NumDefs = MCID->getNumDefs();
  if (!MCID->isVariadic())
    return NumDefs;

  for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = getOperand(I);
    if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
      break;
    ++NumDefs;
  }
  return NumDefs;
}

void MachineInstr::bundleWithPred() {
  assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
  setFlag(BundledPred);
  MachineBasicBlock::instr_iterator Pred = getIterator();
  --Pred;
  assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
  Pred->setFlag(BundledSucc);
}

void MachineInstr::bundleWithSucc() {
  assert(!isBundledWithSucc() && "MI is already bundled with its successor");
  setFlag(BundledSucc);
  MachineBasicBlock::instr_iterator Succ = getIterator();
  ++Succ;
  assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
  Succ->setFlag(BundledPred);
}

void MachineInstr::unbundleFromPred() {
  assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
  clearFlag(BundledPred);
  MachineBasicBlock::instr_iterator Pred = getIterator();
  --Pred;
  assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
  Pred->clearFlag(BundledSucc);
}

void MachineInstr::unbundleFromSucc() {
  assert(isBundledWithSucc() && "MI isn't bundled with its successor");
  clearFlag(BundledSucc);
  MachineBasicBlock::instr_iterator Succ = getIterator();
  ++Succ;
  assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
  Succ->clearFlag(BundledPred);
}

bool MachineInstr::isStackAligningInlineAsm() const {
  if (isInlineAsm()) {
    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
      return true;
  }
  return false;
}

InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
  assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
  unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
  return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
}

int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
                                       unsigned *GroupNo) const {
  assert(isInlineAsm() && "Expected an inline asm instruction");
  assert(OpIdx < getNumOperands() && "OpIdx out of range");

  // Ignore queries about the initial operands.
  if (OpIdx < InlineAsm::MIOp_FirstOperand)
    return -1;

  unsigned Group = 0;
  unsigned NumOps;
  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
       i += NumOps) {
    const MachineOperand &FlagMO = getOperand(i);
    // If we reach the implicit register operands, stop looking.
    if (!FlagMO.isImm())
      return -1;
    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
    if (i + NumOps > OpIdx) {
      if (GroupNo)
        *GroupNo = Group;
      return i;
    }
    ++Group;
  }
  return -1;
}

const DILabel *MachineInstr::getDebugLabel() const {
  assert(isDebugLabel() && "not a DBG_LABEL");
  return cast<DILabel>(getOperand(0).getMetadata());
}

const MachineOperand &MachineInstr::getDebugVariableOp() const {
  assert((isDebugValueLike()) && "not a DBG_VALUE*");
  unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
  return getOperand(VariableOp);
}

MachineOperand &MachineInstr::getDebugVariableOp() {
  assert((isDebugValueLike()) && "not a DBG_VALUE*");
  unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
  return getOperand(VariableOp);
}

const DILocalVariable *MachineInstr::getDebugVariable() const {
  return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
}

const MachineOperand &MachineInstr::getDebugExpressionOp() const {
  assert((isDebugValueLike()) && "not a DBG_VALUE*");
  unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
  return getOperand(ExpressionOp);
}

MachineOperand &MachineInstr::getDebugExpressionOp() {
  assert((isDebugValueLike()) && "not a DBG_VALUE*");
  unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
  return getOperand(ExpressionOp);
}

const DIExpression *MachineInstr::getDebugExpression() const {
  return cast<DIExpression>(getDebugExpressionOp().getMetadata());
}

bool MachineInstr::isDebugEntryValue() const {
  return isDebugValue() && getDebugExpression()->isEntryValue();
}

const TargetRegisterClass*
MachineInstr::getRegClassConstraint(unsigned OpIdx,
                                    const TargetInstrInfo *TII,
                                    const TargetRegisterInfo *TRI) const {
  assert(getParent() && "Can't have an MBB reference here!");
  assert(getMF() && "Can't have an MF reference here!");
  const MachineFunction &MF = *getMF();

  // Most opcodes have fixed constraints in their MCInstrDesc.
  if (!isInlineAsm())
    return TII->getRegClass(getDesc(), OpIdx, TRI, MF);

  if (!getOperand(OpIdx).isReg())
    return nullptr;

  // For tied uses on inline asm, get the constraint from the def.
  unsigned DefIdx;
  if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
    OpIdx = DefIdx;

  // Inline asm stores register class constraints in the flag word.
  int FlagIdx = findInlineAsmFlagIdx(OpIdx);
  if (FlagIdx < 0)
    return nullptr;

  unsigned Flag = getOperand(FlagIdx).getImm();
  unsigned RCID;
  if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
       InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
       InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
      InlineAsm::hasRegClassConstraint(Flag, RCID))
    return TRI->getRegClass(RCID);

  // Assume that all registers in a memory operand are pointers.
  if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
    return TRI->getPointerRegClass(MF);

  return nullptr;
}

const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
    Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
    const TargetRegisterInfo *TRI, bool ExploreBundle) const {
  // Check every operands inside the bundle if we have
  // been asked to.
  if (ExploreBundle)
    for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
         ++OpndIt)
      CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
          OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
  else
    // Otherwise, just check the current operands.
    for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
      CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
  return CurRC;
}

const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
    unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
  assert(CurRC && "Invalid initial register class");
  // Check if Reg is constrained by some of its use/def from MI.
  const MachineOperand &MO = getOperand(OpIdx);
  if (!MO.isReg() || MO.getReg() != Reg)
    return CurRC;
  // If yes, accumulate the constraints through the operand.
  return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
}

const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
    unsigned OpIdx, const TargetRegisterClass *CurRC,
    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
  const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
  const MachineOperand &MO = getOperand(OpIdx);
  assert(MO.isReg() &&
         "Cannot get register constraints for non-register operand");
  assert(CurRC && "Invalid initial register class");
  if (unsigned SubIdx = MO.getSubReg()) {
    if (OpRC)
      CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
    else
      CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
  } else if (OpRC)
    CurRC = TRI->getCommonSubClass(CurRC, OpRC);
  return CurRC;
}

/// Return the number of instructions inside the MI bundle, not counting the
/// header instruction.
unsigned MachineInstr::getBundleSize() const {
  MachineBasicBlock::const_instr_iterator I = getIterator();
  unsigned Size = 0;
  while (I->isBundledWithSucc()) {
    ++Size;
    ++I;
  }
  return Size;
}

/// Returns true if the MachineInstr has an implicit-use operand of exactly
/// the given register (not considering sub/super-registers).
bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
      return true;
  }
  return false;
}

/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
/// the specific register or -1 if it is not found. It further tightens
/// the search criteria to a use that kills the register if isKill is true.
int MachineInstr::findRegisterUseOperandIdx(
    Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || !MO.isUse())
      continue;
    Register MOReg = MO.getReg();
    if (!MOReg)
      continue;
    if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
      if (!isKill || MO.isKill())
        return i;
  }
  return -1;
}

/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
/// indicating if this instruction reads or writes Reg. This also considers
/// partial defines.
std::pair<bool,bool>
MachineInstr::readsWritesVirtualRegister(Register Reg,
                                         SmallVectorImpl<unsigned> *Ops) const {
  bool PartDef = false; // Partial redefine.
  bool FullDef = false; // Full define.
  bool Use = false;

  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || MO.getReg() != Reg)
      continue;
    if (Ops)
      Ops->push_back(i);
    if (MO.isUse())
      Use |= !MO.isUndef();
    else if (MO.getSubReg() && !MO.isUndef())
      // A partial def undef doesn't count as reading the register.
      PartDef = true;
    else
      FullDef = true;
  }
  // A partial redefine uses Reg unless there is also a full define.
  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
}

/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
/// the specified register or -1 if it is not found. If isDead is true, defs
/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
/// also checks if there is a def of a super-register.
int
MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
                                        const TargetRegisterInfo *TRI) const {
  bool isPhys = Reg.isPhysical();
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    // Accept regmask operands when Overlap is set.
    // Ignore them when looking for a specific def operand (Overlap == false).
    if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
      return i;
    if (!MO.isReg() || !MO.isDef())
      continue;
    Register MOReg = MO.getReg();
    bool Found = (MOReg == Reg);
    if (!Found && TRI && isPhys && MOReg.isPhysical()) {
      if (Overlap)
        Found = TRI->regsOverlap(MOReg, Reg);
      else
        Found = TRI->isSubRegister(MOReg, Reg);
    }
    if (Found && (!isDead || MO.isDead()))
      return i;
  }
  return -1;
}

/// findFirstPredOperandIdx() - Find the index of the first operand in the
/// operand list that is used to represent the predicate. It returns -1 if
/// none is found.
int MachineInstr::findFirstPredOperandIdx() const {
  // Don't call MCID.findFirstPredOperandIdx() because this variant
  // is sometimes called on an instruction that's not yet complete, and
  // so the number of operands is less than the MCID indicates. In
  // particular, the PTX target does this.
  const MCInstrDesc &MCID = getDesc();
  if (MCID.isPredicable()) {
    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
      if (MCID.operands()[i].isPredicate())
        return i;
  }

  return -1;
}

// MachineOperand::TiedTo is 4 bits wide.
const unsigned TiedMax = 15;

/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
///
/// Use and def operands can be tied together, indicated by a non-zero TiedTo
/// field. TiedTo can have these values:
///
/// 0:              Operand is not tied to anything.
/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
/// TiedMax:        Tied to an operand >= TiedMax-1.
///
/// The tied def must be one of the first TiedMax operands on a normal
/// instruction. INLINEASM instructions allow more tied defs.
///
void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
  MachineOperand &DefMO = getOperand(DefIdx);
  MachineOperand &UseMO = getOperand(UseIdx);
  assert(DefMO.isDef() && "DefIdx must be a def operand");
  assert(UseMO.isUse() && "UseIdx must be a use operand");
  assert(!DefMO.isTied() && "Def is already tied to another use");
  assert(!UseMO.isTied() && "Use is already tied to another def");

  if (DefIdx < TiedMax)
    UseMO.TiedTo = DefIdx + 1;
  else {
    // Inline asm can use the group descriptors to find tied operands,
    // statepoint tied operands are trivial to match (1-1 reg def with reg use),
    // but on normal instruction, the tied def must be within the first TiedMax
    // operands.
    assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
           "DefIdx out of range");
    UseMO.TiedTo = TiedMax;
  }

  // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
  DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
}

/// Given the index of a tied register operand, find the operand it is tied to.
/// Defs are tied to uses and vice versa. Returns the index of the tied operand
/// which must exist.
unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
  const MachineOperand &MO = getOperand(OpIdx);
  assert(MO.isTied() && "Operand isn't tied");

  // Normally TiedTo is in range.
  if (MO.TiedTo < TiedMax)
    return MO.TiedTo - 1;

  // Uses on normal instructions can be out of range.
  if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
    // Normal tied defs must be in the 0..TiedMax-1 range.
    if (MO.isUse())
      return TiedMax - 1;
    // MO is a def. Search for the tied use.
    for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
      const MachineOperand &UseMO = getOperand(i);
      if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
        return i;
    }
    llvm_unreachable("Can't find tied use");
  }

  if (getOpcode() == TargetOpcode::STATEPOINT) {
    // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
    // on registers.
    StatepointOpers SO(this);
    unsigned CurUseIdx = SO.getFirstGCPtrIdx();
    assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
    unsigned NumDefs = getNumDefs();
    for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
      while (!getOperand(CurUseIdx).isReg())
        CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
      if (OpIdx == CurDefIdx)
        return CurUseIdx;
      if (OpIdx == CurUseIdx)
        return CurDefIdx;
      CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
    }
    llvm_unreachable("Can't find tied use");
  }

  // Now deal with inline asm by parsing the operand group descriptor flags.
  // Find the beginning of each operand group.
  SmallVector<unsigned, 8> GroupIdx;
  unsigned OpIdxGroup = ~0u;
  unsigned NumOps;
  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
       i += NumOps) {
    const MachineOperand &FlagMO = getOperand(i);
    assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
    unsigned CurGroup = GroupIdx.size();
    GroupIdx.push_back(i);
    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
    // OpIdx belongs to this operand group.
    if (OpIdx > i && OpIdx < i + NumOps)
      OpIdxGroup = CurGroup;
    unsigned TiedGroup;
    if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
      continue;
    // Operands in this group are tied to operands in TiedGroup which must be
    // earlier. Find the number of operands between the two groups.
    unsigned Delta = i - GroupIdx[TiedGroup];

    // OpIdx is a use tied to TiedGroup.
    if (OpIdxGroup == CurGroup)
      return OpIdx - Delta;

    // OpIdx is a def tied to this use group.
    if (OpIdxGroup == TiedGroup)
      return OpIdx + Delta;
  }
  llvm_unreachable("Invalid tied operand on inline asm");
}

/// clearKillInfo - Clears kill flags on all operands.
///
void MachineInstr::clearKillInfo() {
  for (MachineOperand &MO : operands()) {
    if (MO.isReg() && MO.isUse())
      MO.setIsKill(false);
  }
}

void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
                                      unsigned SubIdx,
                                      const TargetRegisterInfo &RegInfo) {
  if (ToReg.isPhysical()) {
    if (SubIdx)
      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
    for (MachineOperand &MO : operands()) {
      if (!MO.isReg() || MO.getReg() != FromReg)
        continue;
      MO.substPhysReg(ToReg, RegInfo);
    }
  } else {
    for (MachineOperand &MO : operands()) {
      if (!MO.isReg() || MO.getReg() != FromReg)
        continue;
      MO.substVirtReg(ToReg, SubIdx, RegInfo);
    }
  }
}

/// isSafeToMove - Return true if it is safe to move this instruction. If
/// SawStore is set to true, it means that there is a store (or call) between
/// the instruction's location and its intended destination.
bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
  // Ignore stuff that we obviously can't move.
  //
  // Treat volatile loads as stores. This is not strictly necessary for
  // volatiles, but it is required for atomic loads. It is not allowed to move
  // a load across an atomic load with Ordering > Monotonic.
  if (mayStore() || isCall() || isPHI() ||
      (mayLoad() && hasOrderedMemoryRef())) {
    SawStore = true;
    return false;
  }

  if (isPosition() || isDebugInstr() || isTerminator() ||
      mayRaiseFPException() || hasUnmodeledSideEffects())
    return false;

  // See if this instruction does a load.  If so, we have to guarantee that the
  // loaded value doesn't change between the load and the its intended
  // destination. The check for isInvariantLoad gives the target the chance to
  // classify the load as always returning a constant, e.g. a constant pool
  // load.
  if (mayLoad() && !isDereferenceableInvariantLoad())
    // Otherwise, this is a real load.  If there is a store between the load and
    // end of block, we can't move it.
    return !SawStore;

  return true;
}

static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
                                 bool UseTBAA, const MachineMemOperand *MMOa,
                                 const MachineMemOperand *MMOb) {
  // The following interface to AA is fashioned after DAGCombiner::isAlias and
  // operates with MachineMemOperand offset with some important assumptions:
  //   - LLVM fundamentally assumes flat address spaces.
  //   - MachineOperand offset can *only* result from legalization and cannot
  //     affect queries other than the trivial case of overlap checking.
  //   - These offsets never wrap and never step outside of allocated objects.
  //   - There should never be any negative offsets here.
  //
  // FIXME: Modify API to hide this math from "user"
  // Even before we go to AA we can reason locally about some memory objects. It
  // can save compile time, and possibly catch some corner cases not currently
  // covered.

  int64_t OffsetA = MMOa->getOffset();
  int64_t OffsetB = MMOb->getOffset();
  int64_t MinOffset = std::min(OffsetA, OffsetB);

  uint64_t WidthA = MMOa->getSize();
  uint64_t WidthB = MMOb->getSize();
  bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
  bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;

  const Value *ValA = MMOa->getValue();
  const Value *ValB = MMOb->getValue();
  bool SameVal = (ValA && ValB && (ValA == ValB));
  if (!SameVal) {
    const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
    const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
    if (PSVa && ValB && !PSVa->mayAlias(&MFI))
      return false;
    if (PSVb && ValA && !PSVb->mayAlias(&MFI))
      return false;
    if (PSVa && PSVb && (PSVa == PSVb))
      SameVal = true;
  }

  if (SameVal) {
    if (!KnownWidthA || !KnownWidthB)
      return true;
    int64_t MaxOffset = std::max(OffsetA, OffsetB);
    int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
    return (MinOffset + LowWidth > MaxOffset);
  }

  if (!AA)
    return true;

  if (!ValA || !ValB)
    return true;

  assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
  assert((OffsetB >= 0) && "Negative MachineMemOperand offset");

  int64_t OverlapA =
      KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
  int64_t OverlapB =
      KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;

  return !AA->isNoAlias(
      MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
      MemoryLocation(ValB, OverlapB,
                     UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
}

bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
                            bool UseTBAA) const {
  const MachineFunction *MF = getMF();
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
  const MachineFrameInfo &MFI = MF->getFrameInfo();

  // Exclude call instruction which may alter the memory but can not be handled
  // by this function.
  if (isCall() || Other.isCall())
    return true;

  // If neither instruction stores to memory, they can't alias in any
  // meaningful way, even if they read from the same address.
  if (!mayStore() && !Other.mayStore())
    return false;

  // Both instructions must be memory operations to be able to alias.
  if (!mayLoadOrStore() || !Other.mayLoadOrStore())
    return false;

  // Let the target decide if memory accesses cannot possibly overlap.
  if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
    return false;

  // Memory operations without memory operands may access anything. Be
  // conservative and assume `MayAlias`.
  if (memoperands_empty() || Other.memoperands_empty())
    return true;

  // Skip if there are too many memory operands.
  auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
  if (NumChecks > TII->getMemOperandAACheckLimit())
    return true;

  // Check each pair of memory operands from both instructions, which can't
  // alias only if all pairs won't alias.
  for (auto *MMOa : memoperands())
    for (auto *MMOb : Other.memoperands())
      if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
        return true;

  return false;
}

/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
/// or volatile memory reference, or if the information describing the memory
/// reference is not available. Return false if it is known to have no ordered
/// memory references.
bool MachineInstr::hasOrderedMemoryRef() const {
  // An instruction known never to access memory won't have a volatile access.
  if (!mayStore() &&
      !mayLoad() &&
      !isCall() &&
      !hasUnmodeledSideEffects())
    return false;

  // Otherwise, if the instruction has no memory reference information,
  // conservatively assume it wasn't preserved.
  if (memoperands_empty())
    return true;

  // Check if any of our memory operands are ordered.
  return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
    return !MMO->isUnordered();
  });
}

/// isDereferenceableInvariantLoad - Return true if this instruction will never
/// trap and is loading from a location whose value is invariant across a run of
/// this function.
bool MachineInstr::isDereferenceableInvariantLoad() const {
  // If the instruction doesn't load at all, it isn't an invariant load.
  if (!mayLoad())
    return false;

  // If the instruction has lost its memoperands, conservatively assume that
  // it may not be an invariant load.
  if (memoperands_empty())
    return false;

  const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();

  for (MachineMemOperand *MMO : memoperands()) {
    if (!MMO->isUnordered())
      // If the memory operand has ordering side effects, we can't move the
      // instruction.  Such an instruction is technically an invariant load,
      // but the caller code would need updated to expect that.
      return false;
    if (MMO->isStore()) return false;
    if (MMO->isInvariant() && MMO->isDereferenceable())
      continue;

    // A load from a constant PseudoSourceValue is invariant.
    if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
      if (PSV->isConstant(&MFI))
        continue;
    }

    // Otherwise assume conservatively.
    return false;
  }

  // Everything checks out.
  return true;
}

/// isConstantValuePHI - If the specified instruction is a PHI that always
/// merges together the same virtual register, return the register, otherwise
/// return 0.
unsigned MachineInstr::isConstantValuePHI() const {
  if (!isPHI())
    return 0;
  assert(getNumOperands() >= 3 &&
         "It's illegal to have a PHI without source operands");

  Register Reg = getOperand(1).getReg();
  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
    if (getOperand(i).getReg() != Reg)
      return 0;
  return Reg;
}

bool MachineInstr::hasUnmodeledSideEffects() const {
  if (hasProperty(MCID::UnmodeledSideEffects))
    return true;
  if (isInlineAsm()) {
    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
      return true;
  }

  return false;
}

bool MachineInstr::isLoadFoldBarrier() const {
  return mayStore() || isCall() ||
         (hasUnmodeledSideEffects() && !isPseudoProbe());
}

/// allDefsAreDead - Return true if all the defs of this instruction are dead.
///
bool MachineInstr::allDefsAreDead() const {
  for (const MachineOperand &MO : operands()) {
    if (!MO.isReg() || MO.isUse())
      continue;
    if (!MO.isDead())
      return false;
  }
  return true;
}

/// copyImplicitOps - Copy implicit register operands from specified
/// instruction to this instruction.
void MachineInstr::copyImplicitOps(MachineFunction &MF,
                                   const MachineInstr &MI) {
  for (const MachineOperand &MO :
       llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
    if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
      addOperand(MF, MO);
}

bool MachineInstr::hasComplexRegisterTies() const {
  const MCInstrDesc &MCID = getDesc();
  if (MCID.Opcode == TargetOpcode::STATEPOINT)
    return true;
  for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
    const auto &Operand = getOperand(I);
    if (!Operand.isReg() || Operand.isDef())
      // Ignore the defined registers as MCID marks only the uses as tied.
      continue;
    int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
    int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
    if (ExpectedTiedIdx != TiedIdx)
      return true;
  }
  return false;
}

LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
                                 const MachineRegisterInfo &MRI) const {
  const MachineOperand &Op = getOperand(OpIdx);
  if (!Op.isReg())
    return LLT{};

  if (isVariadic() || OpIdx >= getNumExplicitOperands())
    return MRI.getType(Op.getReg());

  auto &OpInfo = getDesc().operands()[OpIdx];
  if (!OpInfo.isGenericType())
    return MRI.getType(Op.getReg());

  if (PrintedTypes[OpInfo.getGenericTypeIndex()])
    return LLT{};

  LLT TypeToPrint = MRI.getType(Op.getReg());
  // Don't mark the type index printed if it wasn't actually printed: maybe
  // another operand with the same type index has an actual type attached:
  if (TypeToPrint.isValid())
    PrintedTypes.set(OpInfo.getGenericTypeIndex());
  return TypeToPrint;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineInstr::dump() const {
  dbgs() << "  ";
  print(dbgs());
}

LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
    const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
    SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
  if (Depth >= MaxDepth)
    return;
  if (!AlreadySeenInstrs.insert(this).second)
    return;
  // PadToColumn always inserts at least one space.
  // Don't mess up the alignment if we don't want any space.
  if (Depth)
    fdbgs().PadToColumn(Depth * 2);
  print(fdbgs());
  for (const MachineOperand &MO : operands()) {
    if (!MO.isReg() || MO.isDef())
      continue;
    Register Reg = MO.getReg();
    if (Reg.isPhysical())
      continue;
    const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
    if (NewMI == nullptr)
      continue;
    NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
  }
}

LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
                                          unsigned MaxDepth) const {
  SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
  dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
}
#endif

void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
                         bool SkipDebugLoc, bool AddNewLine,
                         const TargetInstrInfo *TII) const {
  const Module *M = nullptr;
  const Function *F = nullptr;
  if (const MachineFunction *MF = getMFIfAvailable(*this)) {
    F = &MF->getFunction();
    M = F->getParent();
    if (!TII)
      TII = MF->getSubtarget().getInstrInfo();
  }

  ModuleSlotTracker MST(M);
  if (F)
    MST.incorporateFunction(*F);
  print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
}

void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
                         bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
                         bool AddNewLine, const TargetInstrInfo *TII) const {
  // We can be a bit tidier if we know the MachineFunction.
  const TargetRegisterInfo *TRI = nullptr;
  const MachineRegisterInfo *MRI = nullptr;
  const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
  tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);

  if (isCFIInstruction())
    assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");

  SmallBitVector PrintedTypes(8);
  bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
  auto getTiedOperandIdx = [&](unsigned OpIdx) {
    if (!ShouldPrintRegisterTies)
      return 0U;
    const MachineOperand &MO = getOperand(OpIdx);
    if (MO.isReg() && MO.isTied() && !MO.isDef())
      return findTiedOperandIdx(OpIdx);
    return 0U;
  };
  unsigned StartOp = 0;
  unsigned e = getNumOperands();

  // Print explicitly defined operands on the left of an assignment syntax.
  while (StartOp < e) {
    const MachineOperand &MO = getOperand(StartOp);
    if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
      break;

    if (StartOp != 0)
      OS << ", ";

    LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
    unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
    MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
             ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
    ++StartOp;
  }

  if (StartOp != 0)
    OS << " = ";

  if (getFlag(MachineInstr::FrameSetup))
    OS << "frame-setup ";
  if (getFlag(MachineInstr::FrameDestroy))
    OS << "frame-destroy ";
  if (getFlag(MachineInstr::FmNoNans))
    OS << "nnan ";
  if (getFlag(MachineInstr::FmNoInfs))
    OS << "ninf ";
  if (getFlag(MachineInstr::FmNsz))
    OS << "nsz ";
  if (getFlag(MachineInstr::FmArcp))
    OS << "arcp ";
  if (getFlag(MachineInstr::FmContract))
    OS << "contract ";
  if (getFlag(MachineInstr::FmAfn))
    OS << "afn ";
  if (getFlag(MachineInstr::FmReassoc))
    OS << "reassoc ";
  if (getFlag(MachineInstr::NoUWrap))
    OS << "nuw ";
  if (getFlag(MachineInstr::NoSWrap))
    OS << "nsw ";
  if (getFlag(MachineInstr::IsExact))
    OS << "exact ";
  if (getFlag(MachineInstr::NoFPExcept))
    OS << "nofpexcept ";
  if (getFlag(MachineInstr::NoMerge))
    OS << "nomerge ";

  // Print the opcode name.
  if (TII)
    OS << TII->getName(getOpcode());
  else
    OS << "UNKNOWN";

  if (SkipOpers)
    return;

  // Print the rest of the operands.
  bool FirstOp = true;
  unsigned AsmDescOp = ~0u;
  unsigned AsmOpCount = 0;

  if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
    // Print asm string.
    OS << " ";
    const unsigned OpIdx = InlineAsm::MIOp_AsmString;
    LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
    unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
    getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
                            ShouldPrintRegisterTies, TiedOperandIdx, TRI,
                            IntrinsicInfo);

    // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
      OS << " [sideeffect]";
    if (ExtraInfo & InlineAsm::Extra_MayLoad)
      OS << " [mayload]";
    if (ExtraInfo & InlineAsm::Extra_MayStore)
      OS << " [maystore]";
    if (ExtraInfo & InlineAsm::Extra_IsConvergent)
      OS << " [isconvergent]";
    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
      OS << " [alignstack]";
    if (getInlineAsmDialect() == InlineAsm::AD_ATT)
      OS << " [attdialect]";
    if (getInlineAsmDialect() == InlineAsm::AD_Intel)
      OS << " [inteldialect]";

    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
    FirstOp = false;
  }

  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);

    if (FirstOp) FirstOp = false; else OS << ",";
    OS << " ";

    if (isDebugValue() && MO.isMetadata()) {
      // Pretty print DBG_VALUE* instructions.
      auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
      if (DIV && !DIV->getName().empty())
        OS << "!\"" << DIV->getName() << '\"';
      else {
        LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
        unsigned TiedOperandIdx = getTiedOperandIdx(i);
        MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
      }
    } else if (isDebugLabel() && MO.isMetadata()) {
      // Pretty print DBG_LABEL instructions.
      auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
      if (DIL && !DIL->getName().empty())
        OS << "\"" << DIL->getName() << '\"';
      else {
        LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
        unsigned TiedOperandIdx = getTiedOperandIdx(i);
        MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
      }
    } else if (i == AsmDescOp && MO.isImm()) {
      // Pretty print the inline asm operand descriptor.
      OS << '$' << AsmOpCount++;
      unsigned Flag = MO.getImm();
      OS << ":[";
      OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));

      unsigned RCID = 0;
      if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
          InlineAsm::hasRegClassConstraint(Flag, RCID)) {
        if (TRI) {
          OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
        } else
          OS << ":RC" << RCID;
      }

      if (InlineAsm::isMemKind(Flag)) {
        unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
        OS << ":" << InlineAsm::getMemConstraintName(MCID);
      }

      unsigned TiedTo = 0;
      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
        OS << " tiedto:$" << TiedTo;

      OS << ']';

      // Compute the index of the next operand descriptor.
      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
    } else {
      LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
      unsigned TiedOperandIdx = getTiedOperandIdx(i);
      if (MO.isImm() && isOperandSubregIdx(i))
        MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
      else
        MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
    }
  }

  // Print any optional symbols attached to this instruction as-if they were
  // operands.
  if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
    if (!FirstOp) {
      FirstOp = false;
      OS << ',';
    }
    OS << " pre-instr-symbol ";
    MachineOperand::printSymbol(OS, *PreInstrSymbol);
  }
  if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
    if (!FirstOp) {
      FirstOp = false;
      OS << ',';
    }
    OS << " post-instr-symbol ";
    MachineOperand::printSymbol(OS, *PostInstrSymbol);
  }
  if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
    if (!FirstOp) {
      FirstOp = false;
      OS << ',';
    }
    OS << " heap-alloc-marker ";
    HeapAllocMarker->printAsOperand(OS, MST);
  }
  if (MDNode *PCSections = getPCSections()) {
    if (!FirstOp) {
      FirstOp = false;
      OS << ',';
    }
    OS << " pcsections ";
    PCSections->printAsOperand(OS, MST);
  }
  if (uint32_t CFIType = getCFIType()) {
    if (!FirstOp)
      OS << ',';
    OS << " cfi-type " << CFIType;
  }

  if (DebugInstrNum) {
    if (!FirstOp)
      OS << ",";
    OS << " debug-instr-number " << DebugInstrNum;
  }

  if (!SkipDebugLoc) {
    if (const DebugLoc &DL = getDebugLoc()) {
      if (!FirstOp)
        OS << ',';
      OS << " debug-location ";
      DL->printAsOperand(OS, MST);
    }
  }

  if (!memoperands_empty()) {
    SmallVector<StringRef, 0> SSNs;
    const LLVMContext *Context = nullptr;
    std::unique_ptr<LLVMContext> CtxPtr;
    const MachineFrameInfo *MFI = nullptr;
    if (const MachineFunction *MF = getMFIfAvailable(*this)) {
      MFI = &MF->getFrameInfo();
      Context = &MF->getFunction().getContext();
    } else {
      CtxPtr = std::make_unique<LLVMContext>();
      Context = CtxPtr.get();
    }

    OS << " :: ";
    bool NeedComma = false;
    for (const MachineMemOperand *Op : memoperands()) {
      if (NeedComma)
        OS << ", ";
      Op->print(OS, MST, SSNs, *Context, MFI, TII);
      NeedComma = true;
    }
  }

  if (SkipDebugLoc)
    return;

  bool HaveSemi = false;

  // Print debug location information.
  if (const DebugLoc &DL = getDebugLoc()) {
    if (!HaveSemi) {
      OS << ';';
      HaveSemi = true;
    }
    OS << ' ';
    DL.print(OS);
  }

  // Print extra comments for DEBUG_VALUE.
  if (isDebugValue() && getDebugVariableOp().isMetadata()) {
    if (!HaveSemi) {
      OS << ";";
      HaveSemi = true;
    }
    auto *DV = getDebugVariable();
    OS << " line no:" <<  DV->getLine();
    if (isIndirectDebugValue())
      OS << " indirect";
  }
  // TODO: DBG_LABEL

  if (AddNewLine)
    OS << '\n';
}

bool MachineInstr::addRegisterKilled(Register IncomingReg,
                                     const TargetRegisterInfo *RegInfo,
                                     bool AddIfNotFound) {
  bool isPhysReg = IncomingReg.isPhysical();
  bool hasAliases = isPhysReg &&
    MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
  bool Found = false;
  SmallVector<unsigned,4> DeadOps;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
      continue;

    // DEBUG_VALUE nodes do not contribute to code generation and should
    // always be ignored. Failure to do so may result in trying to modify
    // KILL flags on DEBUG_VALUE nodes.
    if (MO.isDebug())
      continue;

    Register Reg = MO.getReg();
    if (!Reg)
      continue;

    if (Reg == IncomingReg) {
      if (!Found) {
        if (MO.isKill())
          // The register is already marked kill.
          return true;
        if (isPhysReg && isRegTiedToDefOperand(i))
          // Two-address uses of physregs must not be marked kill.
          return true;
        MO.setIsKill();
        Found = true;
      }
    } else if (hasAliases && MO.isKill() && Reg.isPhysical()) {
      // A super-register kill already exists.
      if (RegInfo->isSuperRegister(IncomingReg, Reg))
        return true;
      if (RegInfo->isSubRegister(IncomingReg, Reg))
        DeadOps.push_back(i);
    }
  }

  // Trim unneeded kill operands.
  while (!DeadOps.empty()) {
    unsigned OpIdx = DeadOps.back();
    if (getOperand(OpIdx).isImplicit() &&
        (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
      removeOperand(OpIdx);
    else
      getOperand(OpIdx).setIsKill(false);
    DeadOps.pop_back();
  }

  // If not found, this means an alias of one of the operands is killed. Add a
  // new implicit operand if required.
  if (!Found && AddIfNotFound) {
    addOperand(MachineOperand::CreateReg(IncomingReg,
                                         false /*IsDef*/,
                                         true  /*IsImp*/,
                                         true  /*IsKill*/));
    return true;
  }
  return Found;
}

void MachineInstr::clearRegisterKills(Register Reg,
                                      const TargetRegisterInfo *RegInfo) {
  if (!Reg.isPhysical())
    RegInfo = nullptr;
  for (MachineOperand &MO : operands()) {
    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
      continue;
    Register OpReg = MO.getReg();
    if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
      MO.setIsKill(false);
  }
}

bool MachineInstr::addRegisterDead(Register Reg,
                                   const TargetRegisterInfo *RegInfo,
                                   bool AddIfNotFound) {
  bool isPhysReg = Reg.isPhysical();
  bool hasAliases = isPhysReg &&
    MCRegAliasIterator(Reg, RegInfo, false).isValid();
  bool Found = false;
  SmallVector<unsigned,4> DeadOps;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;
    Register MOReg = MO.getReg();
    if (!MOReg)
      continue;

    if (MOReg == Reg) {
      MO.setIsDead();
      Found = true;
    } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) {
      // There exists a super-register that's marked dead.
      if (RegInfo->isSuperRegister(Reg, MOReg))
        return true;
      if (RegInfo->isSubRegister(Reg, MOReg))
        DeadOps.push_back(i);
    }
  }

  // Trim unneeded dead operands.
  while (!DeadOps.empty()) {
    unsigned OpIdx = DeadOps.back();
    if (getOperand(OpIdx).isImplicit() &&
        (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
      removeOperand(OpIdx);
    else
      getOperand(OpIdx).setIsDead(false);
    DeadOps.pop_back();
  }

  // If not found, this means an alias of one of the operands is dead. Add a
  // new implicit operand if required.
  if (Found || !AddIfNotFound)
    return Found;

  addOperand(MachineOperand::CreateReg(Reg,
                                       true  /*IsDef*/,
                                       true  /*IsImp*/,
                                       false /*IsKill*/,
                                       true  /*IsDead*/));
  return true;
}

void MachineInstr::clearRegisterDeads(Register Reg) {
  for (MachineOperand &MO : operands()) {
    if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
      continue;
    MO.setIsDead(false);
  }
}

void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
  for (MachineOperand &MO : operands()) {
    if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
      continue;
    MO.setIsUndef(IsUndef);
  }
}

void MachineInstr::addRegisterDefined(Register Reg,
                                      const TargetRegisterInfo *RegInfo) {
  if (Reg.isPhysical()) {
    MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
    if (MO)
      return;
  } else {
    for (const MachineOperand &MO : operands()) {
      if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
          MO.getSubReg() == 0)
        return;
    }
  }
  addOperand(MachineOperand::CreateReg(Reg,
                                       true  /*IsDef*/,
                                       true  /*IsImp*/));
}

void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
                                         const TargetRegisterInfo &TRI) {
  bool HasRegMask = false;
  for (MachineOperand &MO : operands()) {
    if (MO.isRegMask()) {
      HasRegMask = true;
      continue;
    }
    if (!MO.isReg() || !MO.isDef()) continue;
    Register Reg = MO.getReg();
    if (!Reg.isPhysical())
      continue;
    // If there are no uses, including partial uses, the def is dead.
    if (llvm::none_of(UsedRegs,
                      [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
      MO.setIsDead();
  }

  // This is a call with a register mask operand.
  // Mask clobbers are always dead, so add defs for the non-dead defines.
  if (HasRegMask)
    for (const Register &UsedReg : UsedRegs)
      addRegisterDefined(UsedReg, &TRI);
}

unsigned
MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
  // Build up a buffer of hash code components.
  SmallVector<size_t, 16> HashComponents;
  HashComponents.reserve(MI->getNumOperands() + 1);
  HashComponents.push_back(MI->getOpcode());
  for (const MachineOperand &MO : MI->operands()) {
    if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
      continue;  // Skip virtual register defs.

    HashComponents.push_back(hash_value(MO));
  }
  return hash_combine_range(HashComponents.begin(), HashComponents.end());
}

void MachineInstr::emitError(StringRef Msg) const {
  // Find the source location cookie.
  uint64_t LocCookie = 0;
  const MDNode *LocMD = nullptr;
  for (unsigned i = getNumOperands(); i != 0; --i) {
    if (getOperand(i-1).isMetadata() &&
        (LocMD = getOperand(i-1).getMetadata()) &&
        LocMD->getNumOperands() != 0) {
      if (const ConstantInt *CI =
              mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
        LocCookie = CI->getZExtValue();
        break;
      }
    }
  }

  if (const MachineBasicBlock *MBB = getParent())
    if (const MachineFunction *MF = MBB->getParent())
      return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
  report_fatal_error(Msg);
}

MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
                                  const MCInstrDesc &MCID, bool IsIndirect,
                                  Register Reg, const MDNode *Variable,
                                  const MDNode *Expr) {
  assert(isa<DILocalVariable>(Variable) && "not a variable");
  assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
  assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
         "Expected inlined-at fields to agree");
  auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
  if (IsIndirect)
    MIB.addImm(0U);
  else
    MIB.addReg(0U);
  return MIB.addMetadata(Variable).addMetadata(Expr);
}

MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
                                  const MCInstrDesc &MCID, bool IsIndirect,
                                  ArrayRef<MachineOperand> DebugOps,
                                  const MDNode *Variable, const MDNode *Expr) {
  assert(isa<DILocalVariable>(Variable) && "not a variable");
  assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
  assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
         "Expected inlined-at fields to agree");
  if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
    assert(DebugOps.size() == 1 &&
           "DBG_VALUE must contain exactly one debug operand");
    MachineOperand DebugOp = DebugOps[0];
    if (DebugOp.isReg())
      return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable,
                     Expr);

    auto MIB = BuildMI(MF, DL, MCID).add(DebugOp);
    if (IsIndirect)
      MIB.addImm(0U);
    else
      MIB.addReg(0U);
    return MIB.addMetadata(Variable).addMetadata(Expr);
  }

  auto MIB = BuildMI(MF, DL, MCID);
  MIB.addMetadata(Variable).addMetadata(Expr);
  for (const MachineOperand &DebugOp : DebugOps)
    if (DebugOp.isReg())
      MIB.addReg(DebugOp.getReg());
    else
      MIB.add(DebugOp);
  return MIB;
}

MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
                                  MachineBasicBlock::iterator I,
                                  const DebugLoc &DL, const MCInstrDesc &MCID,
                                  bool IsIndirect, Register Reg,
                                  const MDNode *Variable, const MDNode *Expr) {
  MachineFunction &MF = *BB.getParent();
  MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
  BB.insert(I, MI);
  return MachineInstrBuilder(MF, MI);
}

MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
                                  MachineBasicBlock::iterator I,
                                  const DebugLoc &DL, const MCInstrDesc &MCID,
                                  bool IsIndirect,
                                  ArrayRef<MachineOperand> DebugOps,
                                  const MDNode *Variable, const MDNode *Expr) {
  MachineFunction &MF = *BB.getParent();
  MachineInstr *MI =
      BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
  BB.insert(I, MI);
  return MachineInstrBuilder(MF, *MI);
}

/// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
/// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
static const DIExpression *
computeExprForSpill(const MachineInstr &MI,
                    SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
  assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
         "Expected inlined-at fields to agree");

  const DIExpression *Expr = MI.getDebugExpression();
  if (MI.isIndirectDebugValue()) {
    assert(MI.getDebugOffset().getImm() == 0 &&
           "DBG_VALUE with nonzero offset");
    Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
  } else if (MI.isDebugValueList()) {
    // We will replace the spilled register with a frame index, so
    // immediately deref all references to the spilled register.
    std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
    for (const MachineOperand *Op : SpilledOperands) {
      unsigned OpIdx = MI.getDebugOperandIndex(Op);
      Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
    }
  }
  return Expr;
}
static const DIExpression *computeExprForSpill(const MachineInstr &MI,
                                               Register SpillReg) {
  assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
  SmallVector<const MachineOperand *> SpillOperands;
  for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
    SpillOperands.push_back(&Op);
  return computeExprForSpill(MI, SpillOperands);
}

MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
                                          MachineBasicBlock::iterator I,
                                          const MachineInstr &Orig,
                                          int FrameIndex, Register SpillReg) {
  assert(!Orig.isDebugRef() &&
         "DBG_INSTR_REF should not reference a virtual register.");
  const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
  MachineInstrBuilder NewMI =
      BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
  // Non-Variadic Operands: Location, Offset, Variable, Expression
  // Variadic Operands:     Variable, Expression, Locations...
  if (Orig.isNonListDebugValue())
    NewMI.addFrameIndex(FrameIndex).addImm(0U);
  NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
  if (Orig.isDebugValueList()) {
    for (const MachineOperand &Op : Orig.debug_operands())
      if (Op.isReg() && Op.getReg() == SpillReg)
        NewMI.addFrameIndex(FrameIndex);
      else
        NewMI.add(MachineOperand(Op));
  }
  return NewMI;
}
MachineInstr *llvm::buildDbgValueForSpill(
    MachineBasicBlock &BB, MachineBasicBlock::iterator I,
    const MachineInstr &Orig, int FrameIndex,
    SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
  const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
  MachineInstrBuilder NewMI =
      BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
  // Non-Variadic Operands: Location, Offset, Variable, Expression
  // Variadic Operands:     Variable, Expression, Locations...
  if (Orig.isNonListDebugValue())
    NewMI.addFrameIndex(FrameIndex).addImm(0U);
  NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
  if (Orig.isDebugValueList()) {
    for (const MachineOperand &Op : Orig.debug_operands())
      if (is_contained(SpilledOperands, &Op))
        NewMI.addFrameIndex(FrameIndex);
      else
        NewMI.add(MachineOperand(Op));
  }
  return NewMI;
}

void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
                                  Register Reg) {
  const DIExpression *Expr = computeExprForSpill(Orig, Reg);
  if (Orig.isNonListDebugValue())
    Orig.getDebugOffset().ChangeToImmediate(0U);
  for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
    Op.ChangeToFrameIndex(FrameIndex);
  Orig.getDebugExpressionOp().setMetadata(Expr);
}

void MachineInstr::collectDebugValues(
                                SmallVectorImpl<MachineInstr *> &DbgValues) {
  MachineInstr &MI = *this;
  if (!MI.getOperand(0).isReg())
    return;

  MachineBasicBlock::iterator DI = MI; ++DI;
  for (MachineBasicBlock::iterator DE = MI.getParent()->end();
       DI != DE; ++DI) {
    if (!DI->isDebugValue())
      return;
    if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
      DbgValues.push_back(&*DI);
  }
}

void MachineInstr::changeDebugValuesDefReg(Register Reg) {
  // Collect matching debug values.
  SmallVector<MachineInstr *, 2> DbgValues;

  if (!getOperand(0).isReg())
    return;

  Register DefReg = getOperand(0).getReg();
  auto *MRI = getRegInfo();
  for (auto &MO : MRI->use_operands(DefReg)) {
    auto *DI = MO.getParent();
    if (!DI->isDebugValue())
      continue;
    if (DI->hasDebugOperandForReg(DefReg)) {
      DbgValues.push_back(DI);
    }
  }

  // Propagate Reg to debug value instructions.
  for (auto *DBI : DbgValues)
    for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
      Op.setReg(Reg);
}

using MMOList = SmallVector<const MachineMemOperand *, 2>;

static unsigned getSpillSlotSize(const MMOList &Accesses,
                                 const MachineFrameInfo &MFI) {
  unsigned Size = 0;
  for (const auto *A : Accesses)
    if (MFI.isSpillSlotObjectIndex(
            cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
                ->getFrameIndex()))
      Size += A->getSize();
  return Size;
}

std::optional<unsigned>
MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
  int FI;
  if (TII->isStoreToStackSlotPostFE(*this, FI)) {
    const MachineFrameInfo &MFI = getMF()->getFrameInfo();
    if (MFI.isSpillSlotObjectIndex(FI))
      return (*memoperands_begin())->getSize();
  }
  return std::nullopt;
}

std::optional<unsigned>
MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
  MMOList Accesses;
  if (TII->hasStoreToStackSlot(*this, Accesses))
    return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
  return std::nullopt;
}

std::optional<unsigned>
MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
  int FI;
  if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
    const MachineFrameInfo &MFI = getMF()->getFrameInfo();
    if (MFI.isSpillSlotObjectIndex(FI))
      return (*memoperands_begin())->getSize();
  }
  return std::nullopt;
}

std::optional<unsigned>
MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
  MMOList Accesses;
  if (TII->hasLoadFromStackSlot(*this, Accesses))
    return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
  return std::nullopt;
}

unsigned MachineInstr::getDebugInstrNum() {
  if (DebugInstrNum == 0)
    DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
  return DebugInstrNum;
}

unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
  if (DebugInstrNum == 0)
    DebugInstrNum = MF.getNewDebugInstrNum();
  return DebugInstrNum;
}