1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
//===- MLRegAllocPriorityAdvisor.cpp - ML priority advisor-----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the ML priority advisor and reward injection pass
//
//===----------------------------------------------------------------------===//
#include "AllocationOrder.h"
#include "RegAllocGreedy.h"
#include "RegAllocPriorityAdvisor.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/Analysis/ReleaseModeModelRunner.h"
#include "llvm/Analysis/TensorSpec.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveRegMatrix.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/CommandLine.h"
#if defined(LLVM_HAVE_TFLITE)
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
#include "llvm/Analysis/NoInferenceModelRunner.h"
#include "llvm/Analysis/Utils/TrainingLogger.h"
#endif
using namespace llvm;
// Options that only make sense in development mode
#ifdef LLVM_HAVE_TFLITE
#include "RegAllocScore.h"
#include "llvm/Analysis/Utils/TFUtils.h"
static cl::opt<std::string> TrainingLog(
"regalloc-priority-training-log", cl::Hidden,
cl::desc("Training log for the register allocator priority model"));
static cl::opt<std::string> ModelUnderTraining(
"regalloc-priority-model", cl::Hidden,
cl::desc("The model being trained for register allocation priority"));
#endif // #ifdef LLVM_HAVE_TFLITE
namespace llvm {
static const std::vector<int64_t> PerLiveRangeShape{1};
#define RA_PRIORITY_FEATURES_LIST(M) \
M(int64_t, li_size, PerLiveRangeShape, "size") \
M(int64_t, stage, PerLiveRangeShape, "stage") \
M(float, weight, PerLiveRangeShape, "weight")
#define DecisionName "priority"
// Named features index.
enum FeatureIDs {
#define _FEATURE_IDX(_, name, __, ___) name,
RA_PRIORITY_FEATURES_LIST(_FEATURE_IDX)
#undef _FEATURE_IDX
FeatureCount
};
class MLPriorityAdvisor : public RegAllocPriorityAdvisor {
public:
MLPriorityAdvisor(const MachineFunction &MF, const RAGreedy &RA,
SlotIndexes *const Indexes, MLModelRunner *Runner);
protected:
const RegAllocPriorityAdvisor &getDefaultAdvisor() const {
return static_cast<const RegAllocPriorityAdvisor &>(DefaultAdvisor);
}
// The assumption is that if the Runner could not be constructed, we emit-ed
// error, and we shouldn't be asking for it here.
const MLModelRunner &getRunner() const { return *Runner; }
float getPriorityImpl(const LiveInterval &LI) const;
unsigned getPriority(const LiveInterval &LI) const override;
private:
const DefaultPriorityAdvisor DefaultAdvisor;
MLModelRunner *const Runner;
};
#define _DECL_FEATURES(type, name, shape, _) \
TensorSpec::createSpec<type>(#name, shape),
static const std::vector<TensorSpec> InputFeatures{
{RA_PRIORITY_FEATURES_LIST(_DECL_FEATURES)},
};
#undef _DECL_FEATURES
// ===================================
// Release (AOT) - specifics
// ===================================
class ReleaseModePriorityAdvisorAnalysis final
: public RegAllocPriorityAdvisorAnalysis {
public:
ReleaseModePriorityAdvisorAnalysis()
: RegAllocPriorityAdvisorAnalysis(AdvisorMode::Release) {}
// support for isa<> and dyn_cast.
static bool classof(const RegAllocPriorityAdvisorAnalysis *R) {
return R->getAdvisorMode() == AdvisorMode::Release;
}
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<SlotIndexes>();
RegAllocPriorityAdvisorAnalysis::getAnalysisUsage(AU);
}
std::unique_ptr<RegAllocPriorityAdvisor>
getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
if (!Runner)
Runner = std::make_unique<ReleaseModeModelRunner<NoopSavedModelImpl>>(
MF.getFunction().getContext(), InputFeatures, DecisionName);
return std::make_unique<MLPriorityAdvisor>(
MF, RA, &getAnalysis<SlotIndexes>(), Runner.get());
}
std::unique_ptr<ReleaseModeModelRunner<NoopSavedModelImpl>> Runner;
};
// ===================================
// Development mode-specifics
// ===================================
//
// Features we log
#ifdef LLVM_HAVE_TFLITE
static const TensorSpec Output =
TensorSpec::createSpec<float>(DecisionName, {1});
static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
#define _DECL_TRAIN_FEATURES(type, name, shape, _) \
TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
static const std::vector<TensorSpec> TrainingInputFeatures{
{RA_PRIORITY_FEATURES_LIST(_DECL_TRAIN_FEATURES)
TensorSpec::createSpec<float>("action_discount", {1}),
TensorSpec::createSpec<int32_t>("action_step_type", {1}),
TensorSpec::createSpec<float>("action_reward", {1})}};
#undef _DECL_TRAIN_FEATURES
class DevelopmentModePriorityAdvisor : public MLPriorityAdvisor {
public:
DevelopmentModePriorityAdvisor(const MachineFunction &MF, const RAGreedy &RA,
SlotIndexes *const Indexes,
MLModelRunner *Runner, Logger *Log)
: MLPriorityAdvisor(MF, RA, Indexes, Runner), Log(Log) {}
private:
unsigned getPriority(const LiveInterval &LI) const override;
Logger *const Log;
};
class DevelopmentModePriorityAdvisorAnalysis final
: public RegAllocPriorityAdvisorAnalysis {
public:
DevelopmentModePriorityAdvisorAnalysis()
: RegAllocPriorityAdvisorAnalysis(AdvisorMode::Development) {}
// support for isa<> and dyn_cast.
static bool classof(const RegAllocPriorityAdvisorAnalysis *R) {
return R->getAdvisorMode() == AdvisorMode::Development;
}
void logRewardIfNeeded(const MachineFunction &MF,
llvm::function_ref<float()> GetReward) override {
if (!Log)
return;
// The function pass manager would run all the function passes for a
// function, so we assume the last context belongs to this function. If
// this invariant ever changes, we can implement at that time switching
// contexts. At this point, it'd be an error
if (Log->currentContext() != MF.getName()) {
MF.getFunction().getContext().emitError(
"The training log context shouldn't have had changed.");
}
if (Log->hasObservationInProgress())
Log->logReward<float>(GetReward());
}
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<SlotIndexes>();
RegAllocPriorityAdvisorAnalysis::getAnalysisUsage(AU);
}
// Save all the logs (when requested).
bool doInitialization(Module &M) override {
LLVMContext &Ctx = M.getContext();
if (ModelUnderTraining.empty() && TrainingLog.empty()) {
Ctx.emitError("Regalloc development mode should be requested with at "
"least logging enabled and/or a training model");
return false;
}
if (ModelUnderTraining.empty())
Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
else
Runner = ModelUnderTrainingRunner::createAndEnsureValid(
Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
if (!Runner) {
Ctx.emitError("Regalloc: could not set up the model runner");
return false;
}
if (TrainingLog.empty())
return false;
std::error_code EC;
auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
if (EC) {
M.getContext().emitError(EC.message() + ":" + TrainingLog);
return false;
}
std::vector<TensorSpec> LFS = InputFeatures;
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
append_range(LFS, MUTR->extraOutputsForLoggingSpecs());
// We always log the output; in particular, if we're not evaluating, we
// don't have an output spec json file. That's why we handle the
// 'normal' output separately.
LFS.push_back(Output);
Log = std::make_unique<Logger>(std::move(OS), LFS, Reward,
/*IncludeReward*/ true);
return false;
}
std::unique_ptr<RegAllocPriorityAdvisor>
getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
if (!Runner)
return nullptr;
if (Log) {
Log->switchContext(MF.getName());
}
return std::make_unique<DevelopmentModePriorityAdvisor>(
MF, RA, &getAnalysis<SlotIndexes>(), Runner.get(), Log.get());
}
std::unique_ptr<MLModelRunner> Runner;
std::unique_ptr<Logger> Log;
};
#endif //#ifdef LLVM_HAVE_TFLITE
} // namespace llvm
RegAllocPriorityAdvisorAnalysis *llvm::createReleaseModePriorityAdvisor() {
return new ReleaseModePriorityAdvisorAnalysis();
}
MLPriorityAdvisor::MLPriorityAdvisor(const MachineFunction &MF,
const RAGreedy &RA,
SlotIndexes *const Indexes,
MLModelRunner *Runner)
: RegAllocPriorityAdvisor(MF, RA, Indexes), DefaultAdvisor(MF, RA, Indexes),
Runner(std::move(Runner)) {
assert(this->Runner);
}
float MLPriorityAdvisor::getPriorityImpl(const LiveInterval &LI) const {
const unsigned Size = LI.getSize();
LiveRangeStage Stage = RA.getExtraInfo().getStage(LI);
*Runner->getTensor<int64_t>(0) = static_cast<int64_t>(Size);
*Runner->getTensor<int64_t>(1) = static_cast<int64_t>(Stage);
*Runner->getTensor<float>(2) = static_cast<float>(LI.weight());
return Runner->evaluate<float>();
}
unsigned MLPriorityAdvisor::getPriority(const LiveInterval &LI) const {
return static_cast<unsigned>(getPriorityImpl(LI));
}
#ifdef LLVM_HAVE_TFLITE
RegAllocPriorityAdvisorAnalysis *llvm::createDevelopmentModePriorityAdvisor() {
return new DevelopmentModePriorityAdvisorAnalysis();
}
unsigned
DevelopmentModePriorityAdvisor::getPriority(const LiveInterval &LI) const {
double Prio = 0;
if (isa<ModelUnderTrainingRunner>(getRunner())) {
Prio = MLPriorityAdvisor::getPriorityImpl(LI);
} else {
Prio = getDefaultAdvisor().getPriority(LI);
}
if (TrainingLog.empty())
return Prio;
// TODO(mtrofin): when we support optional rewards, this can go away. In the
// meantime, we log the "pretend" reward (0) for the previous observation
// before starting a new one.
if (Log->hasObservationInProgress())
Log->logReward<float>(0.0);
Log->startObservation();
size_t CurrentFeature = 0;
for (; CurrentFeature < InputFeatures.size(); ++CurrentFeature) {
Log->logTensorValue(CurrentFeature,
reinterpret_cast<const char *>(
getRunner().getTensorUntyped(CurrentFeature)));
}
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) {
for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size();
++I, ++CurrentFeature)
Log->logTensorValue(
CurrentFeature,
reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I)));
}
float Ret = static_cast<float>(Prio);
Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret));
Log->endObservation();
return static_cast<unsigned>(Prio);
}
#endif // #ifdef LLVM_HAVE_TFLITE
|