1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
//===-- CodeGenCommonISel.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines common utilies that are shared between SelectionDAG and
// GlobalISel frameworks.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CodeGenCommonISel.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/DebugInfoMetadata.h"
#define DEBUG_TYPE "codegen-common"
using namespace llvm;
/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
/// is 0.
MachineBasicBlock *
StackProtectorDescriptor::addSuccessorMBB(
const BasicBlock *BB, MachineBasicBlock *ParentMBB, bool IsLikely,
MachineBasicBlock *SuccMBB) {
// If SuccBB has not been created yet, create it.
if (!SuccMBB) {
MachineFunction *MF = ParentMBB->getParent();
MachineFunction::iterator BBI(ParentMBB);
SuccMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(++BBI, SuccMBB);
}
// Add it as a successor of ParentMBB.
ParentMBB->addSuccessor(
SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
return SuccMBB;
}
/// Given that the input MI is before a partial terminator sequence TSeq, return
/// true if M + TSeq also a partial terminator sequence.
///
/// A Terminator sequence is a sequence of MachineInstrs which at this point in
/// lowering copy vregs into physical registers, which are then passed into
/// terminator instructors so we can satisfy ABI constraints. A partial
/// terminator sequence is an improper subset of a terminator sequence (i.e. it
/// may be the whole terminator sequence).
static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
// If we do not have a copy or an implicit def, we return true if and only if
// MI is a debug value.
if (!MI.isCopy() && !MI.isImplicitDef()) {
// Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
// physical registers if there is debug info associated with the terminator
// of our mbb. We want to include said debug info in our terminator
// sequence, so we return true in that case.
if (MI.isDebugInstr())
return true;
// For GlobalISel, we may have extension instructions for arguments within
// copy sequences. Allow these.
switch (MI.getOpcode()) {
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_MERGE_VALUES:
case TargetOpcode::G_UNMERGE_VALUES:
case TargetOpcode::G_CONCAT_VECTORS:
case TargetOpcode::G_BUILD_VECTOR:
case TargetOpcode::G_EXTRACT:
return true;
default:
return false;
}
}
// We have left the terminator sequence if we are not doing one of the
// following:
//
// 1. Copying a vreg into a physical register.
// 2. Copying a vreg into a vreg.
// 3. Defining a register via an implicit def.
// OPI should always be a register definition...
MachineInstr::const_mop_iterator OPI = MI.operands_begin();
if (!OPI->isReg() || !OPI->isDef())
return false;
// Defining any register via an implicit def is always ok.
if (MI.isImplicitDef())
return true;
// Grab the copy source...
MachineInstr::const_mop_iterator OPI2 = OPI;
++OPI2;
assert(OPI2 != MI.operands_end()
&& "Should have a copy implying we should have 2 arguments.");
// Make sure that the copy dest is not a vreg when the copy source is a
// physical register.
if (!OPI2->isReg() ||
(!OPI->getReg().isPhysical() && OPI2->getReg().isPhysical()))
return false;
return true;
}
/// Find the split point at which to splice the end of BB into its success stack
/// protector check machine basic block.
///
/// On many platforms, due to ABI constraints, terminators, even before register
/// allocation, use physical registers. This creates an issue for us since
/// physical registers at this point can not travel across basic
/// blocks. Luckily, selectiondag always moves physical registers into vregs
/// when they enter functions and moves them through a sequence of copies back
/// into the physical registers right before the terminator creating a
/// ``Terminator Sequence''. This function is searching for the beginning of the
/// terminator sequence so that we can ensure that we splice off not just the
/// terminator, but additionally the copies that move the vregs into the
/// physical registers.
MachineBasicBlock::iterator
llvm::findSplitPointForStackProtector(MachineBasicBlock *BB,
const TargetInstrInfo &TII) {
MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
if (SplitPoint == BB->begin())
return SplitPoint;
MachineBasicBlock::iterator Start = BB->begin();
MachineBasicBlock::iterator Previous = SplitPoint;
do {
--Previous;
} while (Previous != Start && Previous->isDebugInstr());
if (TII.isTailCall(*SplitPoint) &&
Previous->getOpcode() == TII.getCallFrameDestroyOpcode()) {
// Call frames cannot be nested, so if this frame is describing the tail
// call itself, then we must insert before the sequence even starts. For
// example:
// <split point>
// ADJCALLSTACKDOWN ...
// <Moves>
// ADJCALLSTACKUP ...
// TAILJMP somewhere
// On the other hand, it could be an unrelated call in which case this tail
// call has no register moves of its own and should be the split point. For
// example:
// ADJCALLSTACKDOWN
// CALL something_else
// ADJCALLSTACKUP
// <split point>
// TAILJMP somewhere
do {
--Previous;
if (Previous->isCall())
return SplitPoint;
} while(Previous->getOpcode() != TII.getCallFrameSetupOpcode());
return Previous;
}
while (MIIsInTerminatorSequence(*Previous)) {
SplitPoint = Previous;
if (Previous == Start)
break;
--Previous;
}
return SplitPoint;
}
unsigned llvm::getInvertedFPClassTest(unsigned Test) {
unsigned InvertedTest = ~Test & fcAllFlags;
switch (InvertedTest) {
default:
break;
case fcNan:
case fcSNan:
case fcQNan:
case fcInf:
case fcPosInf:
case fcNegInf:
case fcNormal:
case fcPosNormal:
case fcNegNormal:
case fcSubnormal:
case fcPosSubnormal:
case fcNegSubnormal:
case fcZero:
case fcPosZero:
case fcNegZero:
case fcFinite:
case fcPosFinite:
case fcNegFinite:
return InvertedTest;
}
return 0;
}
static MachineOperand *getSalvageOpsForCopy(const MachineRegisterInfo &MRI,
MachineInstr &Copy) {
assert(Copy.getOpcode() == TargetOpcode::COPY && "Must be a COPY");
return &Copy.getOperand(1);
}
static MachineOperand *getSalvageOpsForTrunc(const MachineRegisterInfo &MRI,
MachineInstr &Trunc,
SmallVectorImpl<uint64_t> &Ops) {
assert(Trunc.getOpcode() == TargetOpcode::G_TRUNC && "Must be a G_TRUNC");
const auto FromLLT = MRI.getType(Trunc.getOperand(1).getReg());
const auto ToLLT = MRI.getType(Trunc.defs().begin()->getReg());
// TODO: Support non-scalar types.
if (!FromLLT.isScalar()) {
return nullptr;
}
auto ExtOps = DIExpression::getExtOps(FromLLT.getSizeInBits(),
ToLLT.getSizeInBits(), false);
Ops.append(ExtOps.begin(), ExtOps.end());
return &Trunc.getOperand(1);
}
static MachineOperand *salvageDebugInfoImpl(const MachineRegisterInfo &MRI,
MachineInstr &MI,
SmallVectorImpl<uint64_t> &Ops) {
switch (MI.getOpcode()) {
case TargetOpcode::G_TRUNC:
return getSalvageOpsForTrunc(MRI, MI, Ops);
case TargetOpcode::COPY:
return getSalvageOpsForCopy(MRI, MI);
default:
return nullptr;
}
}
void llvm::salvageDebugInfoForDbgValue(const MachineRegisterInfo &MRI,
MachineInstr &MI,
ArrayRef<MachineOperand *> DbgUsers) {
// These are arbitrary chosen limits on the maximum number of values and the
// maximum size of a debug expression we can salvage up to, used for
// performance reasons.
const unsigned MaxExpressionSize = 128;
for (auto *DefMO : DbgUsers) {
MachineInstr *DbgMI = DefMO->getParent();
if (DbgMI->isIndirectDebugValue()) {
continue;
}
int UseMOIdx = DbgMI->findRegisterUseOperandIdx(DefMO->getReg());
assert(UseMOIdx != -1 && DbgMI->hasDebugOperandForReg(DefMO->getReg()) &&
"Must use salvaged instruction as its location");
// TODO: Support DBG_VALUE_LIST.
if (DbgMI->getOpcode() != TargetOpcode::DBG_VALUE) {
assert(DbgMI->getOpcode() == TargetOpcode::DBG_VALUE_LIST &&
"Must be either DBG_VALUE or DBG_VALUE_LIST");
continue;
}
const DIExpression *SalvagedExpr = DbgMI->getDebugExpression();
SmallVector<uint64_t, 16> Ops;
auto Op0 = salvageDebugInfoImpl(MRI, MI, Ops);
if (!Op0)
continue;
SalvagedExpr = DIExpression::appendOpsToArg(SalvagedExpr, Ops, 0, true);
bool IsValidSalvageExpr =
SalvagedExpr->getNumElements() <= MaxExpressionSize;
if (IsValidSalvageExpr) {
auto &UseMO = DbgMI->getOperand(UseMOIdx);
UseMO.setReg(Op0->getReg());
UseMO.setSubReg(Op0->getSubReg());
DbgMI->getDebugExpressionOp().setMetadata(SalvagedExpr);
LLVM_DEBUG(dbgs() << "SALVAGE: " << *DbgMI << '\n');
}
}
}
|