aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/CodeGen/CalcSpillWeights.cpp
blob: 615687abad81896aaad160607daa6a3b17580545 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
//===- CalcSpillWeights.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <tuple>

using namespace llvm;

#define DEBUG_TYPE "calcspillweights"

void VirtRegAuxInfo::calculateSpillWeightsAndHints() {
  LLVM_DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
                    << "********** Function: " << MF.getName() << '\n');

  MachineRegisterInfo &MRI = MF.getRegInfo();
  for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
    Register Reg = Register::index2VirtReg(I);
    if (MRI.reg_nodbg_empty(Reg))
      continue;
    calculateSpillWeightAndHint(LIS.getInterval(Reg));
  }
}

// Return the preferred allocation register for reg, given a COPY instruction.
Register VirtRegAuxInfo::copyHint(const MachineInstr *MI, unsigned Reg,
                                  const TargetRegisterInfo &TRI,
                                  const MachineRegisterInfo &MRI) {
  unsigned Sub, HSub;
  Register HReg;
  if (MI->getOperand(0).getReg() == Reg) {
    Sub = MI->getOperand(0).getSubReg();
    HReg = MI->getOperand(1).getReg();
    HSub = MI->getOperand(1).getSubReg();
  } else {
    Sub = MI->getOperand(1).getSubReg();
    HReg = MI->getOperand(0).getReg();
    HSub = MI->getOperand(0).getSubReg();
  }

  if (!HReg)
    return 0;

  if (HReg.isVirtual())
    return Sub == HSub ? HReg : Register();

  const TargetRegisterClass *RC = MRI.getRegClass(Reg);
  MCRegister CopiedPReg = HSub ? TRI.getSubReg(HReg, HSub) : HReg.asMCReg();
  if (RC->contains(CopiedPReg))
    return CopiedPReg;

  // Check if reg:sub matches so that a super register could be hinted.
  if (Sub)
    return TRI.getMatchingSuperReg(CopiedPReg, Sub, RC);

  return 0;
}

// Check if all values in LI are rematerializable
bool VirtRegAuxInfo::isRematerializable(const LiveInterval &LI,
                                        const LiveIntervals &LIS,
                                        const VirtRegMap &VRM,
                                        const TargetInstrInfo &TII) {
  Register Reg = LI.reg();
  Register Original = VRM.getOriginal(Reg);
  for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
       I != E; ++I) {
    const VNInfo *VNI = *I;
    if (VNI->isUnused())
      continue;
    if (VNI->isPHIDef())
      return false;

    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    assert(MI && "Dead valno in interval");

    // Trace copies introduced by live range splitting.  The inline
    // spiller can rematerialize through these copies, so the spill
    // weight must reflect this.
    while (MI->isFullCopy()) {
      // The copy destination must match the interval register.
      if (MI->getOperand(0).getReg() != Reg)
        return false;

      // Get the source register.
      Reg = MI->getOperand(1).getReg();

      // If the original (pre-splitting) registers match this
      // copy came from a split.
      if (!Reg.isVirtual() || VRM.getOriginal(Reg) != Original)
        return false;

      // Follow the copy live-in value.
      const LiveInterval &SrcLI = LIS.getInterval(Reg);
      LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
      VNI = SrcQ.valueIn();
      assert(VNI && "Copy from non-existing value");
      if (VNI->isPHIDef())
        return false;
      MI = LIS.getInstructionFromIndex(VNI->def);
      assert(MI && "Dead valno in interval");
    }

    if (!TII.isTriviallyReMaterializable(*MI))
      return false;
  }
  return true;
}

bool VirtRegAuxInfo::isLiveAtStatepointVarArg(LiveInterval &LI) {
  return any_of(VRM.getRegInfo().reg_operands(LI.reg()),
                [](MachineOperand &MO) {
    MachineInstr *MI = MO.getParent();
    if (MI->getOpcode() != TargetOpcode::STATEPOINT)
      return false;
    return StatepointOpers(MI).getVarIdx() <= MI->getOperandNo(&MO);
  });
}

void VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &LI) {
  float Weight = weightCalcHelper(LI);
  // Check if unspillable.
  if (Weight < 0)
    return;
  LI.setWeight(Weight);
}

float VirtRegAuxInfo::weightCalcHelper(LiveInterval &LI, SlotIndex *Start,
                                       SlotIndex *End) {
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  MachineBasicBlock *MBB = nullptr;
  MachineLoop *Loop = nullptr;
  bool IsExiting = false;
  float TotalWeight = 0;
  unsigned NumInstr = 0; // Number of instructions using LI
  SmallPtrSet<MachineInstr *, 8> Visited;

  std::pair<Register, Register> TargetHint = MRI.getRegAllocationHint(LI.reg());

  if (LI.isSpillable()) {
    Register Reg = LI.reg();
    Register Original = VRM.getOriginal(Reg);
    const LiveInterval &OrigInt = LIS.getInterval(Original);
    // li comes from a split of OrigInt. If OrigInt was marked
    // as not spillable, make sure the new interval is marked
    // as not spillable as well.
    if (!OrigInt.isSpillable())
      LI.markNotSpillable();
  }

  // Don't recompute spill weight for an unspillable register.
  bool IsSpillable = LI.isSpillable();

  bool IsLocalSplitArtifact = Start && End;

  // Do not update future local split artifacts.
  bool ShouldUpdateLI = !IsLocalSplitArtifact;

  if (IsLocalSplitArtifact) {
    MachineBasicBlock *LocalMBB = LIS.getMBBFromIndex(*End);
    assert(LocalMBB == LIS.getMBBFromIndex(*Start) &&
           "start and end are expected to be in the same basic block");

    // Local split artifact will have 2 additional copy instructions and they
    // will be in the same BB.
    // localLI = COPY other
    // ...
    // other   = COPY localLI
    TotalWeight += LiveIntervals::getSpillWeight(true, false, &MBFI, LocalMBB);
    TotalWeight += LiveIntervals::getSpillWeight(false, true, &MBFI, LocalMBB);

    NumInstr += 2;
  }

  // CopyHint is a sortable hint derived from a COPY instruction.
  struct CopyHint {
    const Register Reg;
    const float Weight;
    CopyHint(Register R, float W) : Reg(R), Weight(W) {}
    bool operator<(const CopyHint &Rhs) const {
      // Always prefer any physreg hint.
      if (Reg.isPhysical() != Rhs.Reg.isPhysical())
        return Reg.isPhysical();
      if (Weight != Rhs.Weight)
        return (Weight > Rhs.Weight);
      return Reg.id() < Rhs.Reg.id(); // Tie-breaker.
    }
  };

  std::set<CopyHint> CopyHints;
  DenseMap<unsigned, float> Hint;
  for (MachineRegisterInfo::reg_instr_nodbg_iterator
           I = MRI.reg_instr_nodbg_begin(LI.reg()),
           E = MRI.reg_instr_nodbg_end();
       I != E;) {
    MachineInstr *MI = &*(I++);

    // For local split artifacts, we are interested only in instructions between
    // the expected start and end of the range.
    SlotIndex SI = LIS.getInstructionIndex(*MI);
    if (IsLocalSplitArtifact && ((SI < *Start) || (SI > *End)))
      continue;

    NumInstr++;
    if (MI->isIdentityCopy() || MI->isImplicitDef())
      continue;
    if (!Visited.insert(MI).second)
      continue;

    // For terminators that produce values, ask the backend if the register is
    // not spillable.
    if (TII.isUnspillableTerminator(MI) && MI->definesRegister(LI.reg())) {
      LI.markNotSpillable();
      return -1.0f;
    }

    float Weight = 1.0f;
    if (IsSpillable) {
      // Get loop info for mi.
      if (MI->getParent() != MBB) {
        MBB = MI->getParent();
        Loop = Loops.getLoopFor(MBB);
        IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
      }

      // Calculate instr weight.
      bool Reads, Writes;
      std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
      Weight = LiveIntervals::getSpillWeight(Writes, Reads, &MBFI, *MI);

      // Give extra weight to what looks like a loop induction variable update.
      if (Writes && IsExiting && LIS.isLiveOutOfMBB(LI, MBB))
        Weight *= 3;

      TotalWeight += Weight;
    }

    // Get allocation hints from copies.
    if (!MI->isCopy())
      continue;
    Register HintReg = copyHint(MI, LI.reg(), TRI, MRI);
    if (!HintReg)
      continue;
    // Force hweight onto the stack so that x86 doesn't add hidden precision,
    // making the comparison incorrectly pass (i.e., 1 > 1 == true??).
    //
    // FIXME: we probably shouldn't use floats at all.
    volatile float HWeight = Hint[HintReg] += Weight;
    if (HintReg.isVirtual() || MRI.isAllocatable(HintReg))
      CopyHints.insert(CopyHint(HintReg, HWeight));
  }

  // Pass all the sorted copy hints to mri.
  if (ShouldUpdateLI && CopyHints.size()) {
    // Remove a generic hint if previously added by target.
    if (TargetHint.first == 0 && TargetHint.second)
      MRI.clearSimpleHint(LI.reg());

    SmallSet<Register, 4> HintedRegs;
    for (const auto &Hint : CopyHints) {
      if (!HintedRegs.insert(Hint.Reg).second ||
          (TargetHint.first != 0 && Hint.Reg == TargetHint.second))
        // Don't add the same reg twice or the target-type hint again.
        continue;
      MRI.addRegAllocationHint(LI.reg(), Hint.Reg);
    }

    // Weakly boost the spill weight of hinted registers.
    TotalWeight *= 1.01F;
  }

  // If the live interval was already unspillable, leave it that way.
  if (!IsSpillable)
    return -1.0;

  // Mark li as unspillable if all live ranges are tiny and the interval
  // is not live at any reg mask.  If the interval is live at a reg mask
  // spilling may be required. If li is live as use in statepoint instruction
  // spilling may be required due to if we mark interval with use in statepoint
  // as not spillable we are risky to end up with no register to allocate.
  // At the same time STATEPOINT instruction is perfectly fine to have this
  // operand on stack, so spilling such interval and folding its load from stack
  // into instruction itself makes perfect sense.
  if (ShouldUpdateLI && LI.isZeroLength(LIS.getSlotIndexes()) &&
      !LI.isLiveAtIndexes(LIS.getRegMaskSlots()) &&
      !isLiveAtStatepointVarArg(LI)) {
    LI.markNotSpillable();
    return -1.0;
  }

  // If all of the definitions of the interval are re-materializable,
  // it is a preferred candidate for spilling.
  // FIXME: this gets much more complicated once we support non-trivial
  // re-materialization.
  if (isRematerializable(LI, LIS, VRM, *MF.getSubtarget().getInstrInfo()))
    TotalWeight *= 0.5F;

  if (IsLocalSplitArtifact)
    return normalize(TotalWeight, Start->distance(*End), NumInstr);
  return normalize(TotalWeight, LI.getSize(), NumInstr);
}