aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/CodeGen/CFIFixup.cpp
blob: 837dbd77d07361a205270ae4e0d22353d9a1e92d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
//===------ CFIFixup.cpp - Insert CFI remember/restore instructions -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//

// This pass inserts the necessary  instructions to adjust for the inconsistency
// of the call-frame information caused by final machine basic block layout.
// The pass relies in constraints LLVM imposes on the placement of
// save/restore points (cf. ShrinkWrap):
// * there is a single basic block, containing the function prologue
// * possibly multiple epilogue blocks, where each epilogue block is
//   complete and self-contained, i.e. CSR restore instructions (and the
//   corresponding CFI instructions are not split across two or more blocks.
// * prologue and epilogue blocks are outside of any loops
// Thus, during execution, at the beginning and at the end of each basic block
// the function can be in one of two states:
//  - "has a call frame", if the function has executed the prologue, and
//    has not executed any epilogue
//  - "does not have a call frame", if the function has not executed the
//    prologue, or has executed an epilogue
// which can be computed by a single RPO traversal.

// In order to accommodate backends which do not generate unwind info in
// epilogues we compute an additional property "strong no call frame on entry",
// which is set for the entry point of the function and for every block
// reachable from the entry along a path that does not execute the prologue. If
// this property holds, it takes precedence over the "has a call frame"
// property.

// From the point of view of the unwind tables, the "has/does not have call
// frame" state at beginning of each block is determined by the state at the end
// of the previous block, in layout order. Where these states differ, we insert
// compensating CFI instructions, which come in two flavours:

//   - CFI instructions, which reset the unwind table state to the initial one.
//     This is done by a target specific hook and is expected to be trivial
//     to implement, for example it could be:
//       .cfi_def_cfa <sp>, 0
//       .cfi_same_value <rN>
//       .cfi_same_value <rN-1>
//       ...
//     where <rN> are the callee-saved registers.
//   - CFI instructions, which reset the unwind table state to the one
//     created by the function prologue. These are
//       .cfi_restore_state
//       .cfi_remember_state
//     In this case we also insert a `.cfi_remember_state` after the last CFI
//     instruction in the function prologue.
//
// Known limitations:
//  * the pass cannot handle an epilogue preceding the prologue in the basic
//    block layout
//  * the pass does not handle functions where SP is used as a frame pointer and
//    SP adjustments up and down are done in different basic blocks (TODO)
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/CFIFixup.h"

#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Target/TargetMachine.h"

using namespace llvm;

#define DEBUG_TYPE "cfi-fixup"

char CFIFixup::ID = 0;

INITIALIZE_PASS(CFIFixup, "cfi-fixup",
                "Insert CFI remember/restore state instructions", false, false)
FunctionPass *llvm::createCFIFixup() { return new CFIFixup(); }

static bool isPrologueCFIInstruction(const MachineInstr &MI) {
  return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
         MI.getFlag(MachineInstr::FrameSetup);
}

static bool containsPrologue(const MachineBasicBlock &MBB) {
  return llvm::any_of(MBB.instrs(), isPrologueCFIInstruction);
}

static bool containsEpilogue(const MachineBasicBlock &MBB) {
  return llvm::any_of(llvm::reverse(MBB), [](const auto &MI) {
    return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
           MI.getFlag(MachineInstr::FrameDestroy);
  });
}

bool CFIFixup::runOnMachineFunction(MachineFunction &MF) {
  const TargetFrameLowering &TFL = *MF.getSubtarget().getFrameLowering();
  if (!TFL.enableCFIFixup(MF))
    return false;

  const unsigned NumBlocks = MF.getNumBlockIDs();
  if (NumBlocks < 2)
    return false;

  struct BlockFlags {
    bool Reachable : 1;
    bool StrongNoFrameOnEntry : 1;
    bool HasFrameOnEntry : 1;
    bool HasFrameOnExit : 1;
  };
  SmallVector<BlockFlags, 32> BlockInfo(NumBlocks, {false, false, false, false});
  BlockInfo[0].Reachable = true;
  BlockInfo[0].StrongNoFrameOnEntry = true;

  // Compute the presence/absence of frame at each basic block.
  MachineBasicBlock *PrologueBlock = nullptr;
  ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
  for (MachineBasicBlock *MBB : RPOT) {
    BlockFlags &Info = BlockInfo[MBB->getNumber()];

    // Set to true if the current block contains the prologue or the epilogue,
    // respectively.
    bool HasPrologue = false;
    bool HasEpilogue = false;

    if (!PrologueBlock && !Info.HasFrameOnEntry && containsPrologue(*MBB)) {
      PrologueBlock = MBB;
      HasPrologue = true;
    }

    if (Info.HasFrameOnEntry || HasPrologue)
      HasEpilogue = containsEpilogue(*MBB);

    // If the function has a call frame at the entry of the current block or the
    // current block contains the prologue, then the function has a call frame
    // at the exit of the block, unless the block contains the epilogue.
    Info.HasFrameOnExit = (Info.HasFrameOnEntry || HasPrologue) && !HasEpilogue;

    // Set the successors' state on entry.
    for (MachineBasicBlock *Succ : MBB->successors()) {
      BlockFlags &SuccInfo = BlockInfo[Succ->getNumber()];
      SuccInfo.Reachable = true;
      SuccInfo.StrongNoFrameOnEntry |=
          Info.StrongNoFrameOnEntry && !HasPrologue;
      SuccInfo.HasFrameOnEntry = Info.HasFrameOnExit;
    }
  }

  if (!PrologueBlock)
    return false;

  // Walk the blocks of the function in "physical" order.
  // Every block inherits the frame state (as recorded in the unwind tables)
  // of the previous block. If the intended frame state is different, insert
  // compensating CFI instructions.
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  bool Change = false;
  // `InsertPt` always points to the point in a preceding block where we have to
  // insert a `.cfi_remember_state`, in the case that the current block needs a
  // `.cfi_restore_state`.
  MachineBasicBlock *InsertMBB = PrologueBlock;
  MachineBasicBlock::iterator InsertPt = PrologueBlock->begin();
  for (MachineInstr &MI : *PrologueBlock)
    if (isPrologueCFIInstruction(MI))
      InsertPt = std::next(MI.getIterator());

  assert(InsertPt != PrologueBlock->begin() &&
         "Inconsistent notion of \"prologue block\"");

  // No point starting before the prologue block.
  // TODO: the unwind tables will still be incorrect if an epilogue physically
  // preceeds the prologue.
  MachineFunction::iterator CurrBB = std::next(PrologueBlock->getIterator());
  bool HasFrame = BlockInfo[PrologueBlock->getNumber()].HasFrameOnExit;
  while (CurrBB != MF.end()) {
    const BlockFlags &Info = BlockInfo[CurrBB->getNumber()];
    if (!Info.Reachable) {
      ++CurrBB;
      continue;
    }

#ifndef NDEBUG
    if (!Info.StrongNoFrameOnEntry) {
      for (auto *Pred : CurrBB->predecessors()) {
        BlockFlags &PredInfo = BlockInfo[Pred->getNumber()];
        assert((!PredInfo.Reachable ||
                Info.HasFrameOnEntry == PredInfo.HasFrameOnExit) &&
               "Inconsistent call frame state");
      }
    }
#endif
    if (!Info.StrongNoFrameOnEntry && Info.HasFrameOnEntry && !HasFrame) {
      // Reset to the "after prologue" state.

      // Insert a `.cfi_remember_state` into the last block known to have a
      // stack frame.
      unsigned CFIIndex =
          MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
      BuildMI(*InsertMBB, InsertPt, DebugLoc(),
              TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
      // Insert a `.cfi_restore_state` at the beginning of the current block.
      CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
      InsertPt = BuildMI(*CurrBB, CurrBB->begin(), DebugLoc(),
                         TII.get(TargetOpcode::CFI_INSTRUCTION))
                     .addCFIIndex(CFIIndex);
      ++InsertPt;
      InsertMBB = &*CurrBB;
      Change = true;
    } else if ((Info.StrongNoFrameOnEntry || !Info.HasFrameOnEntry) &&
               HasFrame) {
      // Reset to the state upon function entry.
      TFL.resetCFIToInitialState(*CurrBB);
      Change = true;
    }

    HasFrame = Info.HasFrameOnExit;
    ++CurrBB;
  }

  return Change;
}