aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Analysis/ModelUnderTrainingRunner.cpp
blob: 3892b09e5b63d983af8cdf02b66d82e3ee56df46 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
//===- ModelUnderTrainingRunner.cpp - 'development' mode runner -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of a MLModelRunner for 'development' mode, i.e. evaluation
// happens off a model that's provided from the command line and is interpreted.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TFLITE)
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include <optional>

using namespace llvm;
namespace {
struct LoggedFeatureSpec {
  TensorSpec Spec;
  std::optional<std::string> LoggingName;
};

std::optional<std::vector<LoggedFeatureSpec>>
loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName,
                StringRef ModelPath, StringRef SpecFileOverride) {
  SmallVector<char, 128> OutputSpecsPath;
  StringRef FileName = SpecFileOverride;
  if (FileName.empty()) {
    llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json");
    FileName = {OutputSpecsPath.data(), OutputSpecsPath.size()};
  }

  auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName);
  if (!BufferOrError) {
    Ctx.emitError("Error opening output specs file: " + FileName + " : " +
                  BufferOrError.getError().message());
    return std::nullopt;
  }
  auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer());
  if (!ParsedJSONValues) {
    Ctx.emitError("Could not parse specs file: " + FileName);
    return std::nullopt;
  }
  auto ValuesArray = ParsedJSONValues->getAsArray();
  if (!ValuesArray) {
    Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, "
                  "logging_name:<name>} dictionaries");
    return std::nullopt;
  }
  std::vector<LoggedFeatureSpec> Ret;
  for (const auto &Value : *ValuesArray)
    if (const auto *Obj = Value.getAsObject())
      if (const auto *SpecPart = Obj->get("tensor_spec"))
        if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart))
          if (auto LoggingName = Obj->getString("logging_name")) {
            if (!TensorSpec->isElementType<int64_t>() &&
                !TensorSpec->isElementType<int32_t>() &&
                !TensorSpec->isElementType<float>()) {
              Ctx.emitError(
                  "Only int64, int32, and float tensors are supported. "
                  "Found unsupported type for tensor named " +
                  TensorSpec->name());
              return std::nullopt;
            }
            Ret.push_back({*TensorSpec, LoggingName->str()});
          }

  if (ValuesArray->size() != Ret.size()) {
    Ctx.emitError(
        "Unable to parse output spec. It should be a json file containing an "
        "array of dictionaries. Each dictionary must have a 'tensor_spec' key, "
        "with a json object describing a TensorSpec; and a 'logging_name' key, "
        "which is a string to use as name when logging this tensor in the "
        "training log.");
    return std::nullopt;
  }
  if (Ret.empty() || *Ret[0].LoggingName != ExpectedDecisionName) {
    Ctx.emitError("The first output spec must describe the decision tensor, "
                  "and must have the logging_name " +
                  StringRef(ExpectedDecisionName));
    return std::nullopt;
  }
  return Ret;
}
} // namespace

ModelUnderTrainingRunner::ModelUnderTrainingRunner(
    LLVMContext &Ctx, const std::string &ModelPath,
    const std::vector<TensorSpec> &InputSpecs,
    const std::vector<TensorSpec> &OutputSpecs,
    const std::vector<TensorSpec> &ExtraOutputsForLogging)
    : MLModelRunner(Ctx, MLModelRunner::Kind::Development, InputSpecs.size()),
      OutputSpecs(OutputSpecs), ExtraOutputsForLogging(ExtraOutputsForLogging) {
  Evaluator =
      std::make_unique<TFModelEvaluator>(ModelPath, InputSpecs, OutputSpecs);
  if (!Evaluator || !Evaluator->isValid()) {
    Ctx.emitError("Failed to create saved model evaluator");
    Evaluator.reset();
    return;
  }

  for (size_t I = 0, E = InputSpecs.size(); I < E; ++I) {
    setUpBufferForTensor(I, InputSpecs[I], Evaluator->getUntypedInput(I));
  }
}

void *ModelUnderTrainingRunner::evaluateUntyped() {
  LastEvaluationResult = Evaluator->evaluate();
  if (!LastEvaluationResult.has_value()) {
    Ctx.emitError("Error evaluating model.");
    return nullptr;
  }
  return LastEvaluationResult->getUntypedTensorValue(0);
}

std::unique_ptr<ModelUnderTrainingRunner>
ModelUnderTrainingRunner::createAndEnsureValid(
    LLVMContext &Ctx, const std::string &ModelPath, StringRef DecisionName,
    const std::vector<TensorSpec> &InputSpecs,
    StringRef OutputSpecsPathOverride) {
  if (auto MaybeOutputSpecs = loadOutputSpecs(Ctx, DecisionName, ModelPath,
                                              OutputSpecsPathOverride)) {
    std::unique_ptr<ModelUnderTrainingRunner> MUTR;
    std::vector<TensorSpec> OutputSpecs;
    std::vector<TensorSpec> ExtraOutputsForLogging;
    append_range(OutputSpecs,
                 map_range(*MaybeOutputSpecs, [](const LoggedFeatureSpec &LFS) {
                   return LFS.Spec;
                 }));
    append_range(ExtraOutputsForLogging,
                 map_range(drop_begin(*MaybeOutputSpecs),
                           [](const LoggedFeatureSpec &LFS) {
                             return TensorSpec(LFS.LoggingName
                                                   ? *LFS.LoggingName
                                                   : LFS.Spec.name(),
                                               LFS.Spec);
                           }));

    MUTR.reset(new ModelUnderTrainingRunner(
        Ctx, ModelPath, InputSpecs, OutputSpecs, ExtraOutputsForLogging));
    if (MUTR && MUTR->isValid())
      return MUTR;

    Ctx.emitError("Could not load or create model evaluator.");
    return nullptr;
  }
  Ctx.emitError("Could not load the policy model from the provided path");
  return nullptr;
}

#endif // defined(LLVM_HAVE_TFLITE)