aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/include/llvm/Transforms/Scalar/NaryReassociate.h
blob: bfa9a425fd757e0e72f6810cc913048e53e3dc1f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- NaryReassociate.h - Reassociate n-ary expressions --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates n-ary add expressions and eliminates the redundancy
// exposed by the reassociation.
//
// A motivating example:
//
//   void foo(int a, int b) {
//     bar(a + b);
//     bar((a + 2) + b);
//   }
//
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
// the above code to
//
//   int t = a + b;
//   bar(t);
//   bar(t + 2);
//
// However, the Reassociate pass is unable to do that because it processes each
// instruction individually and believes (a + 2) + b is the best form according
// to its rank system.
//
// To address this limitation, NaryReassociate reassociates an expression in a
// form that reuses existing instructions. As a result, NaryReassociate can
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
// (a + b) is computed before.
//
// NaryReassociate works as follows. For every instruction in the form of (a +
// b) + c, it checks whether a + c or b + c is already computed by a dominating
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
// c) + a and removes the redundancy accordingly. To efficiently look up whether
// an expression is computed before, we store each instruction seen and its SCEV
// into an SCEV-to-instruction map.
//
// Although the algorithm pattern-matches only ternary additions, it
// automatically handles many >3-ary expressions by walking through the function
// in the depth-first order. For example, given
//
//   (a + c) + d
//   ((a + b) + c) + d
//
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
// ((a + c) + b) + d into ((a + c) + d) + b.
//
// Finally, the above dominator-based algorithm may need to be run multiple
// iterations before emitting optimal code. One source of this need is that we
// only split an operand when it is used only once. The above algorithm can
// eliminate an instruction and decrease the usage count of its operands. As a
// result, an instruction that previously had multiple uses may become a
// single-use instruction and thus eligible for split consideration. For
// example,
//
//   ac = a + c
//   ab = a + b
//   abc = ab + c
//   ab2 = ab + b
//   ab2c = ab2 + c
//
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
// result, ab2 becomes dead and ab will be used only once in the second
// iteration.
//
// Limitations and TODO items:
//
// 1) We only considers n-ary adds and muls for now. This should be extended
// and generalized.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
#define LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueHandle.h"

namespace llvm {

class AssumptionCache;
class BinaryOperator;
class DataLayout;
class DominatorTree;
class Function;
class GetElementPtrInst;
class Instruction;
class ScalarEvolution;
class SCEV;
class TargetLibraryInfo;
class TargetTransformInfo;
class Type;
class Value;

class NaryReassociatePass : public PassInfoMixin<NaryReassociatePass> {
public:
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);

  // Glue for old PM.
  bool runImpl(Function &F, AssumptionCache *AC_, DominatorTree *DT_,
               ScalarEvolution *SE_, TargetLibraryInfo *TLI_,
               TargetTransformInfo *TTI_);

private:
  // Runs only one iteration of the dominator-based algorithm. See the header
  // comments for why we need multiple iterations.
  bool doOneIteration(Function &F);

  // Reassociates I for better CSE.
  Instruction *tryReassociate(Instruction *I, const SCEV *&OrigSCEV);

  // Reassociate GEP for better CSE.
  Instruction *tryReassociateGEP(GetElementPtrInst *GEP);

  // Try splitting GEP at the I-th index and see whether either part can be
  // CSE'ed. This is a helper function for tryReassociateGEP.
  //
  // \p IndexedType The element type indexed by GEP's I-th index. This is
  //                equivalent to
  //                  GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
  //                                      ..., i-th index).
  GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
                                              unsigned I, Type *IndexedType);

  // Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
  // &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
  GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
                                              unsigned I, Value *LHS,
                                              Value *RHS, Type *IndexedType);

  // Reassociate binary operators for better CSE.
  Instruction *tryReassociateBinaryOp(BinaryOperator *I);

  // A helper function for tryReassociateBinaryOp. LHS and RHS are explicitly
  // passed.
  Instruction *tryReassociateBinaryOp(Value *LHS, Value *RHS,
                                      BinaryOperator *I);
  // Rewrites I to (LHS op RHS) if LHS is computed already.
  Instruction *tryReassociatedBinaryOp(const SCEV *LHS, Value *RHS,
                                       BinaryOperator *I);

  // Tries to match Op1 and Op2 by using V.
  bool matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1, Value *&Op2);

  // Gets SCEV for (LHS op RHS).
  const SCEV *getBinarySCEV(BinaryOperator *I, const SCEV *LHS,
                            const SCEV *RHS);

  // Returns the closest dominator of \c Dominatee that computes
  // \c CandidateExpr. Returns null if not found.
  Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
                                            Instruction *Dominatee);

  // Try to match \p I as signed/unsigned Min/Max and reassociate it. \p
  // OrigSCEV is set if \I matches Min/Max regardless whether resassociation is
  // done or not. If reassociation was successful newly generated instruction is
  // returned, otherwise nullptr.
  template <typename PredT>
  Instruction *matchAndReassociateMinOrMax(Instruction *I,
                                           const SCEV *&OrigSCEV);

  // Reassociate Min/Max.
  template <typename MaxMinT>
  Value *tryReassociateMinOrMax(Instruction *I, MaxMinT MaxMinMatch, Value *LHS,
                                Value *RHS);

  // GetElementPtrInst implicitly sign-extends an index if the index is shorter
  // than the pointer size. This function returns whether Index is shorter than
  // GEP's pointer size, i.e., whether Index needs to be sign-extended in order
  // to be an index of GEP.
  bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);

  AssumptionCache *AC;
  const DataLayout *DL;
  DominatorTree *DT;
  ScalarEvolution *SE;
  TargetLibraryInfo *TLI;
  TargetTransformInfo *TTI;

  // A lookup table quickly telling which instructions compute the given SCEV.
  // Note that there can be multiple instructions at different locations
  // computing to the same SCEV, so we map a SCEV to an instruction list.  For
  // example,
  //
  //   if (p1)
  //     foo(a + b);
  //   if (p2)
  //     bar(a + b);
  DenseMap<const SCEV *, SmallVector<WeakTrackingVH, 2>> SeenExprs;
};

} // end namespace llvm

#endif // LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif