aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/include/llvm/Target/TargetMachine.h
blob: a787e2186ca1e8a047f974eecbc2f14841ed222e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the TargetMachine and LLVMTargetMachine classes.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_TARGETMACHINE_H
#define LLVM_TARGET_TARGETMACHINE_H

#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/PGOOptions.h"
#include "llvm/Target/CGPassBuilderOption.h"
#include "llvm/Target/TargetOptions.h"
#include <optional>
#include <string>
#include <utility>

namespace llvm {

class AAManager;
using ModulePassManager = PassManager<Module>;

class Function;
class GlobalValue;
class MachineFunctionPassManager;
class MachineFunctionAnalysisManager;
class MachineModuleInfoWrapperPass;
class Mangler;
class MCAsmInfo;
class MCContext;
class MCInstrInfo;
class MCRegisterInfo;
class MCStreamer;
class MCSubtargetInfo;
class MCSymbol;
class raw_pwrite_stream;
class PassBuilder;
struct PerFunctionMIParsingState;
class SMDiagnostic;
class SMRange;
class Target;
class TargetIntrinsicInfo;
class TargetIRAnalysis;
class TargetTransformInfo;
class TargetLoweringObjectFile;
class TargetPassConfig;
class TargetSubtargetInfo;

// The old pass manager infrastructure is hidden in a legacy namespace now.
namespace legacy {
class PassManagerBase;
}
using legacy::PassManagerBase;

struct MachineFunctionInfo;
namespace yaml {
struct MachineFunctionInfo;
}

//===----------------------------------------------------------------------===//
///
/// Primary interface to the complete machine description for the target
/// machine.  All target-specific information should be accessible through this
/// interface.
///
class TargetMachine {
protected: // Can only create subclasses.
  TargetMachine(const Target &T, StringRef DataLayoutString,
                const Triple &TargetTriple, StringRef CPU, StringRef FS,
                const TargetOptions &Options);

  /// The Target that this machine was created for.
  const Target &TheTarget;

  /// DataLayout for the target: keep ABI type size and alignment.
  ///
  /// The DataLayout is created based on the string representation provided
  /// during construction. It is kept here only to avoid reparsing the string
  /// but should not really be used during compilation, because it has an
  /// internal cache that is context specific.
  const DataLayout DL;

  /// Triple string, CPU name, and target feature strings the TargetMachine
  /// instance is created with.
  Triple TargetTriple;
  std::string TargetCPU;
  std::string TargetFS;

  Reloc::Model RM = Reloc::Static;
  CodeModel::Model CMModel = CodeModel::Small;
  CodeGenOpt::Level OptLevel = CodeGenOpt::Default;

  /// Contains target specific asm information.
  std::unique_ptr<const MCAsmInfo> AsmInfo;
  std::unique_ptr<const MCRegisterInfo> MRI;
  std::unique_ptr<const MCInstrInfo> MII;
  std::unique_ptr<const MCSubtargetInfo> STI;

  unsigned RequireStructuredCFG : 1;
  unsigned O0WantsFastISel : 1;

  // PGO related tunables.
  std::optional<PGOOptions> PGOOption;

public:
  const TargetOptions DefaultOptions;
  mutable TargetOptions Options;

  TargetMachine(const TargetMachine &) = delete;
  void operator=(const TargetMachine &) = delete;
  virtual ~TargetMachine();

  const Target &getTarget() const { return TheTarget; }

  const Triple &getTargetTriple() const { return TargetTriple; }
  StringRef getTargetCPU() const { return TargetCPU; }
  StringRef getTargetFeatureString() const { return TargetFS; }
  void setTargetFeatureString(StringRef FS) { TargetFS = std::string(FS); }

  /// Virtual method implemented by subclasses that returns a reference to that
  /// target's TargetSubtargetInfo-derived member variable.
  virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
    return nullptr;
  }
  virtual TargetLoweringObjectFile *getObjFileLowering() const {
    return nullptr;
  }

  /// Create the target's instance of MachineFunctionInfo
  virtual MachineFunctionInfo *
  createMachineFunctionInfo(BumpPtrAllocator &Allocator, const Function &F,
                            const TargetSubtargetInfo *STI) const {
    return nullptr;
  }

  /// Allocate and return a default initialized instance of the YAML
  /// representation for the MachineFunctionInfo.
  virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
    return nullptr;
  }

  /// Allocate and initialize an instance of the YAML representation of the
  /// MachineFunctionInfo.
  virtual yaml::MachineFunctionInfo *
  convertFuncInfoToYAML(const MachineFunction &MF) const {
    return nullptr;
  }

  /// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
  virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
                                        PerFunctionMIParsingState &PFS,
                                        SMDiagnostic &Error,
                                        SMRange &SourceRange) const {
    return false;
  }

  /// This method returns a pointer to the specified type of
  /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
  /// returned is of the correct type.
  template <typename STC> const STC &getSubtarget(const Function &F) const {
    return *static_cast<const STC*>(getSubtargetImpl(F));
  }

  /// Create a DataLayout.
  const DataLayout createDataLayout() const { return DL; }

  /// Test if a DataLayout if compatible with the CodeGen for this target.
  ///
  /// The LLVM Module owns a DataLayout that is used for the target independent
  /// optimizations and code generation. This hook provides a target specific
  /// check on the validity of this DataLayout.
  bool isCompatibleDataLayout(const DataLayout &Candidate) const {
    return DL == Candidate;
  }

  /// Get the pointer size for this target.
  ///
  /// This is the only time the DataLayout in the TargetMachine is used.
  unsigned getPointerSize(unsigned AS) const {
    return DL.getPointerSize(AS);
  }

  unsigned getPointerSizeInBits(unsigned AS) const {
    return DL.getPointerSizeInBits(AS);
  }

  unsigned getProgramPointerSize() const {
    return DL.getPointerSize(DL.getProgramAddressSpace());
  }

  unsigned getAllocaPointerSize() const {
    return DL.getPointerSize(DL.getAllocaAddrSpace());
  }

  /// Reset the target options based on the function's attributes.
  // FIXME: Remove TargetOptions that affect per-function code generation
  // from TargetMachine.
  void resetTargetOptions(const Function &F) const;

  /// Return target specific asm information.
  const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }

  const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
  const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
  const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }

  /// If intrinsic information is available, return it.  If not, return null.
  virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
    return nullptr;
  }

  bool requiresStructuredCFG() const { return RequireStructuredCFG; }
  void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }

  /// Returns the code generation relocation model. The choices are static, PIC,
  /// and dynamic-no-pic, and target default.
  Reloc::Model getRelocationModel() const;

  /// Returns the code model. The choices are small, kernel, medium, large, and
  /// target default.
  CodeModel::Model getCodeModel() const { return CMModel; }

  /// Set the code model.
  void setCodeModel(CodeModel::Model CM) { CMModel = CM; }

  bool isPositionIndependent() const;

  bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const;

  /// Returns true if this target uses emulated TLS.
  bool useEmulatedTLS() const;

  /// Returns the TLS model which should be used for the given global variable.
  TLSModel::Model getTLSModel(const GlobalValue *GV) const;

  /// Returns the optimization level: None, Less, Default, or Aggressive.
  CodeGenOpt::Level getOptLevel() const;

  /// Overrides the optimization level.
  void setOptLevel(CodeGenOpt::Level Level);

  void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
  bool getO0WantsFastISel() { return O0WantsFastISel; }
  void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
  void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
  void setGlobalISelAbort(GlobalISelAbortMode Mode) {
    Options.GlobalISelAbort = Mode;
  }
  void setMachineOutliner(bool Enable) {
    Options.EnableMachineOutliner = Enable;
  }
  void setSupportsDefaultOutlining(bool Enable) {
    Options.SupportsDefaultOutlining = Enable;
  }
  void setSupportsDebugEntryValues(bool Enable) {
    Options.SupportsDebugEntryValues = Enable;
  }

  void setCFIFixup(bool Enable) { Options.EnableCFIFixup = Enable; }

  bool getAIXExtendedAltivecABI() const {
    return Options.EnableAIXExtendedAltivecABI;
  }

  bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }

  /// Return true if unique basic block section names must be generated.
  bool getUniqueBasicBlockSectionNames() const {
    return Options.UniqueBasicBlockSectionNames;
  }

  /// Return true if data objects should be emitted into their own section,
  /// corresponds to -fdata-sections.
  bool getDataSections() const {
    return Options.DataSections;
  }

  /// Return true if functions should be emitted into their own section,
  /// corresponding to -ffunction-sections.
  bool getFunctionSections() const {
    return Options.FunctionSections;
  }

  /// Return true if visibility attribute should not be emitted in XCOFF,
  /// corresponding to -mignore-xcoff-visibility.
  bool getIgnoreXCOFFVisibility() const {
    return Options.IgnoreXCOFFVisibility;
  }

  /// Return true if XCOFF traceback table should be emitted,
  /// corresponding to -xcoff-traceback-table.
  bool getXCOFFTracebackTable() const { return Options.XCOFFTracebackTable; }

  /// If basic blocks should be emitted into their own section,
  /// corresponding to -fbasic-block-sections.
  llvm::BasicBlockSection getBBSectionsType() const {
    return Options.BBSections;
  }

  /// Get the list of functions and basic block ids that need unique sections.
  const MemoryBuffer *getBBSectionsFuncListBuf() const {
    return Options.BBSectionsFuncListBuf.get();
  }

  /// Returns true if a cast between SrcAS and DestAS is a noop.
  virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
    return false;
  }

  void setPGOOption(std::optional<PGOOptions> PGOOpt) { PGOOption = PGOOpt; }
  const std::optional<PGOOptions> &getPGOOption() const { return PGOOption; }

  /// If the specified generic pointer could be assumed as a pointer to a
  /// specific address space, return that address space.
  ///
  /// Under offloading programming, the offloading target may be passed with
  /// values only prepared on the host side and could assume certain
  /// properties.
  virtual unsigned getAssumedAddrSpace(const Value *V) const { return -1; }

  /// If the specified predicate checks whether a generic pointer falls within
  /// a specified address space, return that generic pointer and the address
  /// space being queried.
  ///
  /// Such predicates could be specified in @llvm.assume intrinsics for the
  /// optimizer to assume that the given generic pointer always falls within
  /// the address space based on that predicate.
  virtual std::pair<const Value *, unsigned>
  getPredicatedAddrSpace(const Value *V) const {
    return std::make_pair(nullptr, -1);
  }

  /// Get a \c TargetIRAnalysis appropriate for the target.
  ///
  /// This is used to construct the new pass manager's target IR analysis pass,
  /// set up appropriately for this target machine. Even the old pass manager
  /// uses this to answer queries about the IR.
  TargetIRAnalysis getTargetIRAnalysis() const;

  /// Return a TargetTransformInfo for a given function.
  ///
  /// The returned TargetTransformInfo is specialized to the subtarget
  /// corresponding to \p F.
  virtual TargetTransformInfo getTargetTransformInfo(const Function &F) const;

  /// Allow the target to modify the pass pipeline.
  virtual void registerPassBuilderCallbacks(PassBuilder &) {}

  /// Allow the target to register alias analyses with the AAManager for use
  /// with the new pass manager. Only affects the "default" AAManager.
  virtual void registerDefaultAliasAnalyses(AAManager &) {}

  /// Add passes to the specified pass manager to get the specified file
  /// emitted.  Typically this will involve several steps of code generation.
  /// This method should return true if emission of this file type is not
  /// supported, or false on success.
  /// \p MMIWP is an optional parameter that, if set to non-nullptr,
  /// will be used to set the MachineModuloInfo for this PM.
  virtual bool
  addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
                      raw_pwrite_stream *, CodeGenFileType,
                      bool /*DisableVerify*/ = true,
                      MachineModuleInfoWrapperPass *MMIWP = nullptr) {
    return true;
  }

  /// Add passes to the specified pass manager to get machine code emitted with
  /// the MCJIT. This method returns true if machine code is not supported. It
  /// fills the MCContext Ctx pointer which can be used to build custom
  /// MCStreamer.
  ///
  virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
                                 raw_pwrite_stream &,
                                 bool /*DisableVerify*/ = true) {
    return true;
  }

  /// True if subtarget inserts the final scheduling pass on its own.
  ///
  /// Branch relaxation, which must happen after block placement, can
  /// on some targets (e.g. SystemZ) expose additional post-RA
  /// scheduling opportunities.
  virtual bool targetSchedulesPostRAScheduling() const { return false; };

  void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
                         Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
  MCSymbol *getSymbol(const GlobalValue *GV) const;

  /// The integer bit size to use for SjLj based exception handling.
  static constexpr unsigned DefaultSjLjDataSize = 32;
  virtual unsigned getSjLjDataSize() const { return DefaultSjLjDataSize; }

  static std::pair<int, int> parseBinutilsVersion(StringRef Version);

  /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
  /// (e.g. stack) the target returns the corresponding address space.
  virtual unsigned getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
    return 0;
  }
};

/// This class describes a target machine that is implemented with the LLVM
/// target-independent code generator.
///
class LLVMTargetMachine : public TargetMachine {
protected: // Can only create subclasses.
  LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
                    const Triple &TT, StringRef CPU, StringRef FS,
                    const TargetOptions &Options, Reloc::Model RM,
                    CodeModel::Model CM, CodeGenOpt::Level OL);

  void initAsmInfo();

public:
  /// Get a TargetTransformInfo implementation for the target.
  ///
  /// The TTI returned uses the common code generator to answer queries about
  /// the IR.
  TargetTransformInfo getTargetTransformInfo(const Function &F) const override;

  /// Create a pass configuration object to be used by addPassToEmitX methods
  /// for generating a pipeline of CodeGen passes.
  virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);

  /// Add passes to the specified pass manager to get the specified file
  /// emitted.  Typically this will involve several steps of code generation.
  /// \p MMIWP is an optional parameter that, if set to non-nullptr,
  /// will be used to set the MachineModuloInfo for this PM.
  bool
  addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
                      raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
                      bool DisableVerify = true,
                      MachineModuleInfoWrapperPass *MMIWP = nullptr) override;

  virtual Error buildCodeGenPipeline(ModulePassManager &,
                                     MachineFunctionPassManager &,
                                     MachineFunctionAnalysisManager &,
                                     raw_pwrite_stream &, raw_pwrite_stream *,
                                     CodeGenFileType, CGPassBuilderOption,
                                     PassInstrumentationCallbacks *) {
    return make_error<StringError>("buildCodeGenPipeline is not overridden",
                                   inconvertibleErrorCode());
  }

  virtual std::pair<StringRef, bool> getPassNameFromLegacyName(StringRef) {
    llvm_unreachable(
        "getPassNameFromLegacyName parseMIRPipeline is not overridden");
  }

  /// Add passes to the specified pass manager to get machine code emitted with
  /// the MCJIT. This method returns true if machine code is not supported. It
  /// fills the MCContext Ctx pointer which can be used to build custom
  /// MCStreamer.
  bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
                         raw_pwrite_stream &Out,
                         bool DisableVerify = true) override;

  /// Returns true if the target is expected to pass all machine verifier
  /// checks. This is a stopgap measure to fix targets one by one. We will
  /// remove this at some point and always enable the verifier when
  /// EXPENSIVE_CHECKS is enabled.
  virtual bool isMachineVerifierClean() const { return true; }

  /// Adds an AsmPrinter pass to the pipeline that prints assembly or
  /// machine code from the MI representation.
  bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
                     raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
                     MCContext &Context);

  Expected<std::unique_ptr<MCStreamer>>
  createMCStreamer(raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut,
                   CodeGenFileType FileType, MCContext &Ctx);

  /// True if the target uses physical regs (as nearly all targets do). False
  /// for stack machines such as WebAssembly and other virtual-register
  /// machines. If true, all vregs must be allocated before PEI. If false, then
  /// callee-save register spilling and scavenging are not needed or used. If
  /// false, implicitly defined registers will still be assumed to be physical
  /// registers, except that variadic defs will be allocated vregs.
  virtual bool usesPhysRegsForValues() const { return true; }

  /// True if the target wants to use interprocedural register allocation by
  /// default. The -enable-ipra flag can be used to override this.
  virtual bool useIPRA() const {
    return false;
  }

  /// The default variant to use in unqualified `asm` instructions.
  /// If this returns 0, `asm "$(foo$|bar$)"` will evaluate to `asm "foo"`.
  virtual int unqualifiedInlineAsmVariant() const { return 0; }
};

/// Helper method for getting the code model, returning Default if
/// CM does not have a value. The tiny and kernel models will produce
/// an error, so targets that support them or require more complex codemodel
/// selection logic should implement and call their own getEffectiveCodeModel.
inline CodeModel::Model
getEffectiveCodeModel(std::optional<CodeModel::Model> CM,
                      CodeModel::Model Default) {
  if (CM) {
    // By default, targets do not support the tiny and kernel models.
    if (*CM == CodeModel::Tiny)
      report_fatal_error("Target does not support the tiny CodeModel", false);
    if (*CM == CodeModel::Kernel)
      report_fatal_error("Target does not support the kernel CodeModel", false);
    return *CM;
  }
  return Default;
}

} // end namespace llvm

#endif // LLVM_TARGET_TARGETMACHINE_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif