aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/include/llvm/Target/Target.td
blob: 181c8eb17511ba0559d60e3788b9de8fa8a014c2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the target-independent interfaces which should be
// implemented by each target which is using a TableGen based code generator.
//
//===----------------------------------------------------------------------===//

// Include all information about LLVM intrinsics.
include "llvm/IR/Intrinsics.td"

//===----------------------------------------------------------------------===//
// Register file description - These classes are used to fill in the target
// description classes.

class HwMode<string FS> {
  // A string representing subtarget features that turn on this HW mode.
  // For example, "+feat1,-feat2" will indicate that the mode is active
  // when "feat1" is enabled and "feat2" is disabled at the same time.
  // Any other features are not checked.
  // When multiple modes are used, they should be mutually exclusive,
  // otherwise the results are unpredictable.
  string Features = FS;
}

// A special mode recognized by tablegen. This mode is considered active
// when no other mode is active. For targets that do not use specific hw
// modes, this is the only mode.
def DefaultMode : HwMode<"">;

// A class used to associate objects with HW modes. It is only intended to
// be used as a base class, where the derived class should contain a member
// "Objects", which is a list of the same length as the list of modes.
// The n-th element on the Objects list will be associated with the n-th
// element on the Modes list.
class HwModeSelect<list<HwMode> Ms> {
  list<HwMode> Modes = Ms;
}

// A common class that implements a counterpart of ValueType, which is
// dependent on a HW mode. This class inherits from ValueType itself,
// which makes it possible to use objects of this class where ValueType
// objects could be used. This is specifically applicable to selection
// patterns.
class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
    : HwModeSelect<Ms>, ValueType<0, 0> {
  // The length of this list must be the same as the length of Ms.
  list<ValueType> Objects = Ts;
}

// A class representing the register size, spill size and spill alignment
// in bits of a register.
class RegInfo<int RS, int SS, int SA> {
  int RegSize = RS;         // Register size in bits.
  int SpillSize = SS;       // Spill slot size in bits.
  int SpillAlignment = SA;  // Spill slot alignment in bits.
}

// The register size/alignment information, parameterized by a HW mode.
class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
    : HwModeSelect<Ms> {
  // The length of this list must be the same as the length of Ms.
  list<RegInfo> Objects = Ts;
}

// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
class SubRegIndex<int size, int offset = 0> {
  string Namespace = "";

  // Size - Size (in bits) of the sub-registers represented by this index.
  int Size = size;

  // Offset - Offset of the first bit that is part of this sub-register index.
  // Set it to -1 if the same index is used to represent sub-registers that can
  // be at different offsets (for example when using an index to access an
  // element in a register tuple).
  int Offset = offset;

  // ComposedOf - A list of two SubRegIndex instances, [A, B].
  // This indicates that this SubRegIndex is the result of composing A and B.
  // See ComposedSubRegIndex.
  list<SubRegIndex> ComposedOf = [];

  // CoveringSubRegIndices - A list of two or more sub-register indexes that
  // cover this sub-register.
  //
  // This field should normally be left blank as TableGen can infer it.
  //
  // TableGen automatically detects sub-registers that straddle the registers
  // in the SubRegs field of a Register definition. For example:
  //
  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
  //
  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
  // CoveringSubRegIndices = [dsub_1, dsub_2].
  list<SubRegIndex> CoveringSubRegIndices = [];
}

// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
  : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1,
                              !eq(B.Offset, -1): -1,
                              true:              !add(A.Offset, B.Offset))> {
  // See SubRegIndex.
  let ComposedOf = [A, B];
}

// RegAltNameIndex - The alternate name set to use for register operands of
// this register class when printing.
class RegAltNameIndex {
  string Namespace = "";

  // A set to be used if the name for a register is not defined in this set.
  // This allows creating name sets with only a few alternative names.
  RegAltNameIndex FallbackRegAltNameIndex = ?;
}
def NoRegAltName : RegAltNameIndex;

// Register - You should define one instance of this class for each register
// in the target machine.  String n will become the "name" of the register.
class Register<string n, list<string> altNames = []> {
  string Namespace = "";
  string AsmName = n;
  list<string> AltNames = altNames;

  // Aliases - A list of registers that this register overlaps with.  A read or
  // modification of this register can potentially read or modify the aliased
  // registers.
  list<Register> Aliases = [];

  // SubRegs - A list of registers that are parts of this register. Note these
  // are "immediate" sub-registers and the registers within the list do not
  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
  // not [AX, AH, AL].
  list<Register> SubRegs = [];

  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
  // to address it. Sub-sub-register indices are automatically inherited from
  // SubRegs.
  list<SubRegIndex> SubRegIndices = [];

  // RegAltNameIndices - The alternate name indices which are valid for this
  // register.
  list<RegAltNameIndex> RegAltNameIndices = [];

  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
  // These values can be determined by locating the <target>.h file in the
  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
  // order of these names correspond to the enumeration used by gcc.  A value of
  // -1 indicates that the gcc number is undefined and -2 that register number
  // is invalid for this mode/flavour.
  list<int> DwarfNumbers = [];

  // CostPerUse - Additional cost of instructions using this register compared
  // to other registers in its class. The register allocator will try to
  // minimize the number of instructions using a register with a CostPerUse.
  // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where
  // some registers require larger instruction encodings, by the RISC-V target,
  // where some registers preclude using some C instructions. By making it a
  // list, targets can have multiple cost models associated with each register
  // and can choose one specific cost model per Machine Function by overriding
  // TargetRegisterInfo::getRegisterCostTableIndex. Every target register will
  // finally have an equal number of cost values which is the max of costPerUse
  // values specified. Any mismatch in the cost values for a register will be
  // filled with zeros. Restricted the cost type to uint8_t in the
  // generated table. It will considerably reduce the table size.
  list<int> CostPerUse = [0];

  // CoveredBySubRegs - When this bit is set, the value of this register is
  // completely determined by the value of its sub-registers.  For example, the
  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
  // covered by its sub-register AX.
  bit CoveredBySubRegs = false;

  // HWEncoding - The target specific hardware encoding for this register.
  bits<16> HWEncoding = 0;

  bit isArtificial = false;

  // isConstant - This register always holds a constant value (e.g. the zero
  // register in architectures such as MIPS)
  bit isConstant = false;
}

// RegisterWithSubRegs - This can be used to define instances of Register which
// need to specify sub-registers.
// List "subregs" specifies which registers are sub-registers to this one. This
// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
// This allows the code generator to be careful not to put two values with
// overlapping live ranges into registers which alias.
class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
  let SubRegs = subregs;
}

// DAGOperand - An empty base class that unifies RegisterClass's and other forms
// of Operand's that are legal as type qualifiers in DAG patterns.  This should
// only ever be used for defining multiclasses that are polymorphic over both
// RegisterClass's and other Operand's.
class DAGOperand {
  string OperandNamespace = "MCOI";
  string DecoderMethod = "";
}

// RegisterClass - Now that all of the registers are defined, and aliases
// between registers are defined, specify which registers belong to which
// register classes.  This also defines the default allocation order of
// registers by register allocators.
//
class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
                    dag regList, RegAltNameIndex idx = NoRegAltName>
  : DAGOperand {
  string Namespace = namespace;

  // The register size/alignment information, parameterized by a HW mode.
  RegInfoByHwMode RegInfos;

  // RegType - Specify the list ValueType of the registers in this register
  // class.  Note that all registers in a register class must have the same
  // ValueTypes.  This is a list because some targets permit storing different
  // types in same register, for example vector values with 128-bit total size,
  // but different count/size of items, like SSE on x86.
  //
  list<ValueType> RegTypes = regTypes;

  // Size - Specify the spill size in bits of the registers.  A default value of
  // zero lets tablegen pick an appropriate size.
  int Size = 0;

  // Alignment - Specify the alignment required of the registers when they are
  // stored or loaded to memory.
  //
  int Alignment = alignment;

  // CopyCost - This value is used to specify the cost of copying a value
  // between two registers in this register class. The default value is one
  // meaning it takes a single instruction to perform the copying. A negative
  // value means copying is extremely expensive or impossible.
  int CopyCost = 1;

  // MemberList - Specify which registers are in this class.  If the
  // allocation_order_* method are not specified, this also defines the order of
  // allocation used by the register allocator.
  //
  dag MemberList = regList;

  // AltNameIndex - The alternate register name to use when printing operands
  // of this register class. Every register in the register class must have
  // a valid alternate name for the given index.
  RegAltNameIndex altNameIndex = idx;

  // isAllocatable - Specify that the register class can be used for virtual
  // registers and register allocation.  Some register classes are only used to
  // model instruction operand constraints, and should have isAllocatable = 0.
  bit isAllocatable = true;

  // AltOrders - List of alternative allocation orders. The default order is
  // MemberList itself, and that is good enough for most targets since the
  // register allocators automatically remove reserved registers and move
  // callee-saved registers to the end.
  list<dag> AltOrders = [];

  // AltOrderSelect - The body of a function that selects the allocation order
  // to use in a given machine function. The code will be inserted in a
  // function like this:
  //
  //   static inline unsigned f(const MachineFunction &MF) { ... }
  //
  // The function should return 0 to select the default order defined by
  // MemberList, 1 to select the first AltOrders entry and so on.
  code AltOrderSelect = [{}];

  // Specify allocation priority for register allocators using a greedy
  // heuristic. Classes with higher priority values are assigned first. This is
  // useful as it is sometimes beneficial to assign registers to highly
  // constrained classes first. The value has to be in the range [0,31].
  int AllocationPriority = 0;

  // Force register class to use greedy's global heuristic for all
  // registers in this class. This should more aggressively try to
  // avoid spilling in pathological cases.
  bit GlobalPriority = false;

  // Generate register pressure set for this register class and any class
  // synthesized from it. Set to 0 to inhibit unneeded pressure sets.
  bit GeneratePressureSet = true;

  // Weight override for register pressure calculation. This is the value
  // TargetRegisterClass::getRegClassWeight() will return. The weight is in
  // units of pressure for this register class. If unset tablegen will
  // calculate a weight based on a number of register units in this register
  // class registers. The weight is per register.
  int Weight = ?;

  // The diagnostic type to present when referencing this operand in a match
  // failure error message. If this is empty, the default Match_InvalidOperand
  // diagnostic type will be used. If this is "<name>", a Match_<name> enum
  // value will be generated and used for this operand type. The target
  // assembly parser is responsible for converting this into a user-facing
  // diagnostic message.
  string DiagnosticType = "";

  // A diagnostic message to emit when an invalid value is provided for this
  // register class when it is being used an an assembly operand. If this is
  // non-empty, an anonymous diagnostic type enum value will be generated, and
  // the assembly matcher will provide a function to map from diagnostic types
  // to message strings.
  string DiagnosticString = "";

  // Target-specific flags. This becomes the TSFlags field in TargetRegisterClass.
  bits<8> TSFlags = 0;

  // If set then consider this register class to be the base class for registers in
  // its MemberList.  The base class for registers present in multiple base register
  // classes will be resolved in the order defined by this value, with lower values
  // taking precedence over higher ones.  Ties are resolved by enumeration order.
  int BaseClassOrder = ?;
}

// The memberList in a RegisterClass is a dag of set operations. TableGen
// evaluates these set operations and expand them into register lists. These
// are the most common operation, see test/TableGen/SetTheory.td for more
// examples of what is possible:
//
// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
// register class, or a sub-expression. This is also the way to simply list
// registers.
//
// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
//
// (and GPR, CSR) - Set intersection. All registers from the first set that are
// also in the second set.
//
// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
// numbered registers.  Takes an optional 4th operand which is a stride to use
// when generating the sequence.
//
// (shl GPR, 4) - Remove the first N elements.
//
// (trunc GPR, 4) - Truncate after the first N elements.
//
// (rotl GPR, 1) - Rotate N places to the left.
//
// (rotr GPR, 1) - Rotate N places to the right.
//
// (decimate GPR, 2) - Pick every N'th element, starting with the first.
//
// (interleave A, B, ...) - Interleave the elements from each argument list.
//
// All of these operators work on ordered sets, not lists. That means
// duplicates are removed from sub-expressions.

// Set operators. The rest is defined in TargetSelectionDAG.td.
def sequence;
def decimate;
def interleave;

// RegisterTuples - Automatically generate super-registers by forming tuples of
// sub-registers. This is useful for modeling register sequence constraints
// with pseudo-registers that are larger than the architectural registers.
//
// The sub-register lists are zipped together:
//
//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
//
// Generates the same registers as:
//
//   let SubRegIndices = [sube, subo] in {
//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
//   }
//
// The generated pseudo-registers inherit super-classes and fields from their
// first sub-register. Most fields from the Register class are inferred, and
// the AsmName and Dwarf numbers are cleared.
//
// RegisterTuples instances can be used in other set operations to form
// register classes and so on. This is the only way of using the generated
// registers.
//
// RegNames may be specified to supply asm names for the generated tuples.
// If used must have the same size as the list of produced registers.
class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
                     list<string> RegNames = []> {
  // SubRegs - N lists of registers to be zipped up. Super-registers are
  // synthesized from the first element of each SubRegs list, the second
  // element and so on.
  list<dag> SubRegs = Regs;

  // SubRegIndices - N SubRegIndex instances. This provides the names of the
  // sub-registers in the synthesized super-registers.
  list<SubRegIndex> SubRegIndices = Indices;

  // List of asm names for the generated tuple registers.
  list<string> RegAsmNames = RegNames;
}

// RegisterCategory - This class is a list of RegisterClasses that belong to a
// general cateogry --- e.g. "general purpose" or "fixed" registers. This is
// useful for identifying registers in a generic way instead of having
// information about a specific target's registers.
class RegisterCategory<list<RegisterClass> classes> {
  // Classes - A list of register classes that fall within the category.
  list<RegisterClass> Classes = classes;
}

//===----------------------------------------------------------------------===//
// DwarfRegNum - This class provides a mapping of the llvm register enumeration
// to the register numbering used by gcc and gdb.  These values are used by a
// debug information writer to describe where values may be located during
// execution.
class DwarfRegNum<list<int> Numbers> {
  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
  // These values can be determined by locating the <target>.h file in the
  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
  // order of these names correspond to the enumeration used by gcc.  A value of
  // -1 indicates that the gcc number is undefined and -2 that register number
  // is invalid for this mode/flavour.
  list<int> DwarfNumbers = Numbers;
}

// DwarfRegAlias - This class declares that a given register uses the same dwarf
// numbers as another one. This is useful for making it clear that the two
// registers do have the same number. It also lets us build a mapping
// from dwarf register number to llvm register.
class DwarfRegAlias<Register reg> {
      Register DwarfAlias = reg;
}

//===----------------------------------------------------------------------===//
// Pull in the common support for MCPredicate (portable scheduling predicates).
//
include "llvm/Target/TargetInstrPredicate.td"

//===----------------------------------------------------------------------===//
// Pull in the common support for scheduling
//
include "llvm/Target/TargetSchedule.td"

class Predicate; // Forward def

class InstructionEncoding {
  // Size of encoded instruction.
  int Size;

  // The "namespace" in which this instruction exists, on targets like ARM
  // which multiple ISA namespaces exist.
  string DecoderNamespace = "";

  // List of predicates which will be turned into isel matching code.
  list<Predicate> Predicates = [];

  string DecoderMethod = "";

  // Is the instruction decoder method able to completely determine if the
  // given instruction is valid or not. If the TableGen definition of the
  // instruction specifies bitpattern A??B where A and B are static bits, the
  // hasCompleteDecoder flag says whether the decoder method fully handles the
  // ?? space, i.e. if it is a final arbiter for the instruction validity.
  // If not then the decoder attempts to continue decoding when the decoder
  // method fails.
  //
  // This allows to handle situations where the encoding is not fully
  // orthogonal. Example:
  // * InstA with bitpattern 0b0000????,
  // * InstB with bitpattern 0b000000?? but the associated decoder method
  //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
  //
  // The decoder tries to decode a bitpattern that matches both InstA and
  // InstB bitpatterns first as InstB (because it is the most specific
  // encoding). In the default case (hasCompleteDecoder = 1), when
  // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
  // hasCompleteDecoder = 0 in InstB, the decoder is informed that
  // DecodeInstB() is not able to determine if all possible values of ?? are
  // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
  // decode the bitpattern as InstA too.
  bit hasCompleteDecoder = true;
}

// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
// to encode and decode based on HwMode.
class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
    : HwModeSelect<Ms> {
  // The length of this list must be the same as the length of Ms.
  list<InstructionEncoding> Objects = Ts;
}

//===----------------------------------------------------------------------===//
// Instruction set description - These classes correspond to the C++ classes in
// the Target/TargetInstrInfo.h file.
//
class Instruction : InstructionEncoding {
  string Namespace = "";

  dag OutOperandList;       // An dag containing the MI def operand list.
  dag InOperandList;        // An dag containing the MI use operand list.
  string AsmString = "";    // The .s format to print the instruction with.

  // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
  // the Inst member of this Instruction is ignored.
  EncodingByHwMode EncodingInfos;

  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
  // otherwise, uninitialized.
  list<dag> Pattern;

  // The follow state will eventually be inferred automatically from the
  // instruction pattern.

  list<Register> Uses = []; // Default to using no non-operand registers
  list<Register> Defs = []; // Default to modifying no non-operand registers

  // Predicates - List of predicates which will be turned into isel matching
  // code.
  list<Predicate> Predicates = [];

  // Size - Size of encoded instruction, or zero if the size cannot be determined
  // from the opcode.
  int Size = 0;

  // Code size, for instruction selection.
  // FIXME: What does this actually mean?
  int CodeSize = 0;

  // Added complexity passed onto matching pattern.
  int AddedComplexity  = 0;

  // Indicates if this is a pre-isel opcode that should be
  // legalized/regbankselected/selected.
  bit isPreISelOpcode = false;

  // These bits capture information about the high-level semantics of the
  // instruction.
  bit isReturn     = false;     // Is this instruction a return instruction?
  bit isBranch     = false;     // Is this instruction a branch instruction?
  bit isEHScopeReturn = false;  // Does this instruction end an EH scope?
  bit isIndirectBranch = false; // Is this instruction an indirect branch?
  bit isCompare    = false;     // Is this instruction a comparison instruction?
  bit isMoveImm    = false;     // Is this instruction a move immediate instruction?
  bit isMoveReg    = false;     // Is this instruction a move register instruction?
  bit isBitcast    = false;     // Is this instruction a bitcast instruction?
  bit isSelect     = false;     // Is this instruction a select instruction?
  bit isBarrier    = false;     // Can control flow fall through this instruction?
  bit isCall       = false;     // Is this instruction a call instruction?
  bit isAdd        = false;     // Is this instruction an add instruction?
  bit isTrap       = false;     // Is this instruction a trap instruction?
  bit canFoldAsLoad = false;    // Can this be folded as a simple memory operand?
  bit mayLoad      = ?;         // Is it possible for this inst to read memory?
  bit mayStore     = ?;         // Is it possible for this inst to write memory?
  bit mayRaiseFPException = false; // Can this raise a floating-point exception?
  bit isConvertibleToThreeAddress = false;  // Can this 2-addr instruction promote?
  bit isCommutable = false;     // Is this 3 operand instruction commutable?
  bit isTerminator = false;     // Is this part of the terminator for a basic block?
  bit isReMaterializable = false; // Is this instruction re-materializable?
  bit isPredicable = false;     // 1 means this instruction is predicable
                                // even if it does not have any operand
                                // tablegen can identify as a predicate
  bit isUnpredicable = false;   // 1 means this instruction is not predicable
                                // even if it _does_ have a predicate operand
  bit hasDelaySlot = false;     // Does this instruction have an delay slot?
  bit usesCustomInserter = false; // Pseudo instr needing special help.
  bit hasPostISelHook = false;  // To be *adjusted* after isel by target hook.
  bit hasCtrlDep   = false;     // Does this instruction r/w ctrl-flow chains?
  bit isNotDuplicable = false;  // Is it unsafe to duplicate this instruction?
  bit isConvergent = false;     // Is this instruction convergent?
  bit isAuthenticated = false;  // Does this instruction authenticate a pointer?
  bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction.
  bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement?
  bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement?
  bit isRegSequence = false;    // Is this instruction a kind of reg sequence?
                                // If so, make sure to override
                                // TargetInstrInfo::getRegSequenceLikeInputs.
  bit isPseudo     = false;     // Is this instruction a pseudo-instruction?
                                // If so, won't have encoding information for
                                // the [MC]CodeEmitter stuff.
  bit isMeta = false;           // Is this instruction a meta-instruction?
                                // If so, won't produce any output in the form of
                                // executable instructions
  bit isExtractSubreg = false;  // Is this instruction a kind of extract subreg?
                                // If so, make sure to override
                                // TargetInstrInfo::getExtractSubregLikeInputs.
  bit isInsertSubreg = false;   // Is this instruction a kind of insert subreg?
                                // If so, make sure to override
                                // TargetInstrInfo::getInsertSubregLikeInputs.
  bit variadicOpsAreDefs = false; // Are variadic operands definitions?

  // Does the instruction have side effects that are not captured by any
  // operands of the instruction or other flags?
  bit hasSideEffects = ?;

  // Is this instruction a "real" instruction (with a distinct machine
  // encoding), or is it a pseudo instruction used for codegen modeling
  // purposes.
  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
  // instructions can (and often do) still have encoding information
  // associated with them. Once we've migrated all of them over to true
  // pseudo-instructions that are lowered to real instructions prior to
  // the printer/emitter, we can remove this attribute and just use isPseudo.
  //
  // The intended use is:
  // isPseudo: Does not have encoding information and should be expanded,
  //   at the latest, during lowering to MCInst.
  //
  // isCodeGenOnly: Does have encoding information and can go through to the
  //   CodeEmitter unchanged, but duplicates a canonical instruction
  //   definition's encoding and should be ignored when constructing the
  //   assembler match tables.
  bit isCodeGenOnly = false;

  // Is this instruction a pseudo instruction for use by the assembler parser.
  bit isAsmParserOnly = false;

  // This instruction is not expected to be queried for scheduling latencies
  // and therefore needs no scheduling information even for a complete
  // scheduling model.
  bit hasNoSchedulingInfo = false;

  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.

  // Scheduling information from TargetSchedule.td.
  list<SchedReadWrite> SchedRW;

  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.

  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
  /// be encoded into the output machineinstr.
  string DisableEncoding = "";

  string PostEncoderMethod = "";

  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
  bits<64> TSFlags = 0;

  ///@name Assembler Parser Support
  ///@{

  string AsmMatchConverter = "";

  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
  /// two-operand matcher inst-alias for a three operand instruction.
  /// For example, the arm instruction "add r3, r3, r5" can be written
  /// as "add r3, r5". The constraint is of the same form as a tied-operand
  /// constraint. For example, "$Rn = $Rd".
  string TwoOperandAliasConstraint = "";

  /// Assembler variant name to use for this instruction. If specified then
  /// instruction will be presented only in MatchTable for this variant. If
  /// not specified then assembler variants will be determined based on
  /// AsmString
  string AsmVariantName = "";

  ///@}

  /// UseNamedOperandTable - If set, the operand indices of this instruction
  /// can be queried via the getNamedOperandIdx() function which is generated
  /// by TableGen.
  bit UseNamedOperandTable = false;

  /// Should generate helper functions that help you to map a logical operand's
  /// index to the underlying MIOperand's index.
  /// In most architectures logical operand indicies are equal to
  /// MIOperand indicies, but for some CISC architectures, a logical operand
  /// might be consist of multiple MIOperand (e.g. a logical operand that
  /// uses complex address mode).
  bit UseLogicalOperandMappings = false;

  /// Should FastISel ignore this instruction. For certain ISAs, they have
  /// instructions which map to the same ISD Opcode, value type operands and
  /// instruction selection predicates. FastISel cannot handle such cases, but
  /// SelectionDAG can.
  bit FastISelShouldIgnore = false;

  /// HasPositionOrder: Indicate tablegen to sort the instructions by record
  /// ID, so that instruction that is defined earlier can be sorted earlier
  /// in the assembly matching table.
  bit HasPositionOrder = false;
}

/// Defines a Pat match between compressed and uncompressed instruction.
/// The relationship and helper function generation are handled by
/// CompressInstEmitter backend.
class CompressPat<dag input, dag output, list<Predicate> predicates = []> {
  /// Uncompressed instruction description.
  dag Input = input;
  /// Compressed instruction description.
  dag Output = output;
  /// Predicates that must be true for this to match.
  list<Predicate> Predicates = predicates;
  /// Duplicate match when tied operand is just different.
  bit isCompressOnly = false;
}

/// Defines an additional encoding that disassembles to the given instruction
/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
// to specify their size.
class AdditionalEncoding<Instruction I> : InstructionEncoding {
  Instruction AliasOf = I;
}

/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
/// Which instruction it expands to and how the operands map from the
/// pseudo.
class PseudoInstExpansion<dag Result> {
  dag ResultInst = Result;     // The instruction to generate.
  bit isPseudo = true;
}

/// Predicates - These are extra conditionals which are turned into instruction
/// selector matching code. Currently each predicate is just a string.
class Predicate<string cond> {
  string CondString = cond;

  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
  /// matcher, this is true.  Targets should set this by inheriting their
  /// feature from the AssemblerPredicate class in addition to Predicate.
  bit AssemblerMatcherPredicate = false;

  /// AssemblerCondDag - Set of subtarget features being tested used
  /// as alternative condition string used for assembler matcher. Must be used
  /// with (all_of) to indicate that all features must be present, or (any_of)
  /// to indicate that at least one must be. The required lack of presence of
  /// a feature can be tested using a (not) node including the feature.
  /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0".
  ///      "(all_of (not ModeThumb))" is translated to
  ///      "(Bits & ModeThumb) == 0".
  ///      "(all_of ModeThumb, FeatureThumb2)" is translated to
  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
  ///      "(any_of ModeTumb, FeatureThumb2)" is translated to
  ///      "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0".
  /// all_of and any_of cannot be combined in a single dag, instead multiple
  /// predicates can be placed onto Instruction definitions.
  dag AssemblerCondDag;

  /// PredicateName - User-level name to use for the predicate. Mainly for use
  /// in diagnostics such as missing feature errors in the asm matcher.
  string PredicateName = "";

  /// Setting this to '1' indicates that the predicate must be recomputed on
  /// every function change. Most predicates can leave this at '0'.
  ///
  /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
  bit RecomputePerFunction = false;
}

/// NoHonorSignDependentRounding - This predicate is true if support for
/// sign-dependent-rounding is not enabled.
def NoHonorSignDependentRounding
 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;

class Requires<list<Predicate> preds> {
  list<Predicate> Predicates = preds;
}

/// ops definition - This is just a simple marker used to identify the operand
/// list for an instruction. outs and ins are identical both syntactically and
/// semantically; they are used to define def operands and use operands to
/// improve readability. This should be used like this:
///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
def ops;
def outs;
def ins;

/// variable_ops definition - Mark this instruction as taking a variable number
/// of operands.
def variable_ops;

/// variable-length instruction encoding utilities.
/// The `ascend` operator should be used like this:
///     (ascend 0b0010, 0b1101)
/// Which represent a seqence of encoding fragments placing from LSB to MSB.
/// Thus, in this case the final encoding will be 0b1101_0010.
/// The arguments for `ascend` can either be `bits` or another DAG.
def ascend;
/// In addition, we can use `descend` to describe an encoding that places
/// its arguments (i.e. encoding fragments) from MSB to LSB. For instance:
///     (descend 0b0010, 0b1101)
/// This results in an encoding of 0b0010_1101.
def descend;
/// The `operand` operator should be used like this:
///     (operand "$src", 4)
/// Which represents a 4-bit encoding for an instruction operand named `$src`.
def operand;
/// Similar to `operand`, we can reference only part of the operand's encoding:
///     (slice "$src", 6, 8)
///     (slice "$src", 8, 6)
/// Both DAG represent bit 6 to 8 (total of 3 bits) in the encoding of operand
/// `$src`.
def slice;
/// You can use `encoder` or `decoder` to specify a custom encoder or decoder
/// function for a specific `operand` or `slice` directive. For example:
///     (operand "$src", 4, (encoder "encodeMyImm"))
///     (slice "$src", 8, 6, (encoder "encodeMyReg"))
///     (operand "$src", 4, (encoder "encodeMyImm"), (decoder "decodeMyImm"))
/// The ordering of `encoder` and `decoder` in the same `operand` or `slice`
/// doesn't matter.
/// Note that currently we cannot assign different decoders in the same
/// (instruction) operand.
def encoder;
def decoder;

/// PointerLikeRegClass - Values that are designed to have pointer width are
/// derived from this.  TableGen treats the register class as having a symbolic
/// type that it doesn't know, and resolves the actual regclass to use by using
/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
class PointerLikeRegClass<int Kind> {
  int RegClassKind = Kind;
}


/// ptr_rc definition - Mark this operand as being a pointer value whose
/// register class is resolved dynamically via a callback to TargetInstrInfo.
/// FIXME: We should probably change this to a class which contain a list of
/// flags. But currently we have but one flag.
def ptr_rc : PointerLikeRegClass<0>;

/// unknown definition - Mark this operand as being of unknown type, causing
/// it to be resolved by inference in the context it is used.
class unknown_class;
def unknown : unknown_class;

/// AsmOperandClass - Representation for the kinds of operands which the target
/// specific parser can create and the assembly matcher may need to distinguish.
///
/// Operand classes are used to define the order in which instructions are
/// matched, to ensure that the instruction which gets matched for any
/// particular list of operands is deterministic.
///
/// The target specific parser must be able to classify a parsed operand into a
/// unique class which does not partially overlap with any other classes. It can
/// match a subset of some other class, in which case the super class field
/// should be defined.
class AsmOperandClass {
  /// The name to use for this class, which should be usable as an enum value.
  string Name = ?;

  /// The super classes of this operand.
  list<AsmOperandClass> SuperClasses = [];

  /// The name of the method on the target specific operand to call to test
  /// whether the operand is an instance of this class. If not set, this will
  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
  /// signature should be:
  ///   bool isFoo() const;
  string PredicateMethod = ?;

  /// The name of the method on the target specific operand to call to add the
  /// target specific operand to an MCInst. If not set, this will default to
  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
  /// signature should be:
  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
  string RenderMethod = ?;

  /// The name of the method on the target specific operand to call to custom
  /// handle the operand parsing. This is useful when the operands do not relate
  /// to immediates or registers and are very instruction specific (as flags to
  /// set in a processor register, coprocessor number, ...).
  string ParserMethod = ?;

  // The diagnostic type to present when referencing this operand in a
  // match failure error message. By default, use a generic "invalid operand"
  // diagnostic. The target AsmParser maps these codes to text.
  string DiagnosticType = "";

  /// A diagnostic message to emit when an invalid value is provided for this
  /// operand.
  string DiagnosticString = "";

  /// Set to 1 if this operand is optional and not always required. Typically,
  /// the AsmParser will emit an error when it finishes parsing an
  /// instruction if it hasn't matched all the operands yet.  However, this
  /// error will be suppressed if all of the remaining unmatched operands are
  /// marked as IsOptional.
  ///
  /// Optional arguments must be at the end of the operand list.
  bit IsOptional = false;

  /// The name of the method on the target specific asm parser that returns the
  /// default operand for this optional operand. This method is only used if
  /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
  /// where Foo is the AsmOperandClass name. The method signature should be:
  ///   std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
  string DefaultMethod = ?;
}

def ImmAsmOperand : AsmOperandClass {
  let Name = "Imm";
}

/// Operand Types - These provide the built-in operand types that may be used
/// by a target.  Targets can optionally provide their own operand types as
/// needed, though this should not be needed for RISC targets.
class Operand<ValueType ty> : DAGOperand {
  ValueType Type = ty;
  string PrintMethod = "printOperand";
  string EncoderMethod = "";
  bit hasCompleteDecoder = true;
  string OperandType = "OPERAND_UNKNOWN";
  dag MIOperandInfo = (ops);

  // MCOperandPredicate - Optionally, a code fragment operating on
  // const MCOperand &MCOp, and returning a bool, to indicate if
  // the value of MCOp is valid for the specific subclass of Operand
  code MCOperandPredicate;

  // ParserMatchClass - The "match class" that operands of this type fit
  // in. Match classes are used to define the order in which instructions are
  // match, to ensure that which instructions gets matched is deterministic.
  //
  // The target specific parser must be able to classify an parsed operand into
  // a unique class, which does not partially overlap with any other classes. It
  // can match a subset of some other class, in which case the AsmOperandClass
  // should declare the other operand as one of its super classes.
  AsmOperandClass ParserMatchClass = ImmAsmOperand;
}

class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
  : DAGOperand {
  // RegClass - The register class of the operand.
  RegisterClass RegClass = regclass;
  // PrintMethod - The target method to call to print register operands of
  // this type. The method normally will just use an alt-name index to look
  // up the name to print. Default to the generic printOperand().
  string PrintMethod = pm;

  // EncoderMethod - The target method name to call to encode this register
  // operand.
  string EncoderMethod = "";

  // ParserMatchClass - The "match class" that operands of this type fit
  // in. Match classes are used to define the order in which instructions are
  // match, to ensure that which instructions gets matched is deterministic.
  //
  // The target specific parser must be able to classify an parsed operand into
  // a unique class, which does not partially overlap with any other classes. It
  // can match a subset of some other class, in which case the AsmOperandClass
  // should declare the other operand as one of its super classes.
  AsmOperandClass ParserMatchClass;

  string OperandType = "OPERAND_REGISTER";

  // When referenced in the result of a CodeGen pattern, GlobalISel will
  // normally copy the matched operand to the result. When this is set, it will
  // emit a special copy that will replace zero-immediates with the specified
  // zero-register.
  Register GIZeroRegister = ?;
}

let OperandType = "OPERAND_IMMEDIATE" in {
def i1imm  : Operand<i1>;
def i8imm  : Operand<i8>;
def i16imm : Operand<i16>;
def i32imm : Operand<i32>;
def i64imm : Operand<i64>;

def f32imm : Operand<f32>;
def f64imm : Operand<f64>;
}

// Register operands for generic instructions don't have an MVT, but do have
// constraints linking the operands (e.g. all operands of a G_ADD must
// have the same LLT).
class TypedOperand<string Ty> : Operand<untyped> {
  let OperandType = Ty;
  bit IsPointer = false;
  bit IsImmediate = false;
}

def type0 : TypedOperand<"OPERAND_GENERIC_0">;
def type1 : TypedOperand<"OPERAND_GENERIC_1">;
def type2 : TypedOperand<"OPERAND_GENERIC_2">;
def type3 : TypedOperand<"OPERAND_GENERIC_3">;
def type4 : TypedOperand<"OPERAND_GENERIC_4">;
def type5 : TypedOperand<"OPERAND_GENERIC_5">;

let IsPointer = true in {
  def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
  def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
  def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
  def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
  def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
  def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
}

// untyped_imm is for operands where isImm() will be true. It currently has no
// special behaviour and is only used for clarity.
def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
  let IsImmediate = true;
}

/// zero_reg definition - Special node to stand for the zero register.
///
def zero_reg;

/// undef_tied_input - Special node to indicate an input register tied
/// to an output which defaults to IMPLICIT_DEF.
def undef_tied_input;

/// All operands which the MC layer classifies as predicates should inherit from
/// this class in some manner. This is already handled for the most commonly
/// used PredicateOperand, but may be useful in other circumstances.
class PredicateOp;

/// OperandWithDefaultOps - This Operand class can be used as the parent class
/// for an Operand that needs to be initialized with a default value if
/// no value is supplied in a pattern.  This class can be used to simplify the
/// pattern definitions for instructions that have target specific flags
/// encoded as immediate operands.
class OperandWithDefaultOps<ValueType ty, dag defaultops>
  : Operand<ty> {
  dag DefaultOps = defaultops;
}

/// PredicateOperand - This can be used to define a predicate operand for an
/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
/// AlwaysVal specifies the value of this predicate when set to "always
/// execute".
class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
  let MIOperandInfo = OpTypes;
}

/// OptionalDefOperand - This is used to define a optional definition operand
/// for an instruction. DefaultOps is the register the operand represents if
/// none is supplied, e.g. zero_reg.
class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
  : OperandWithDefaultOps<ty, defaultops> {
  let MIOperandInfo = OpTypes;
}


// InstrInfo - This class should only be instantiated once to provide parameters
// which are global to the target machine.
//
class InstrInfo {
  // Target can specify its instructions in either big or little-endian formats.
  // For instance, while both Sparc and PowerPC are big-endian platforms, the
  // Sparc manual specifies its instructions in the format [31..0] (big), while
  // PowerPC specifies them using the format [0..31] (little).
  bit isLittleEndianEncoding = false;

  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
  // by default, and TableGen will infer their value from the instruction
  // pattern when possible.
  //
  // Normally, TableGen will issue an error if it can't infer the value of a
  // property that hasn't been set explicitly. When guessInstructionProperties
  // is set, it will guess a safe value instead.
  //
  // This option is a temporary migration help. It will go away.
  bit guessInstructionProperties = true;

  // TableGen's instruction encoder generator has support for matching operands
  // to bit-field variables both by name and by position. Support for matching
  // by position is DEPRECATED, and WILL BE REMOVED. Positional matching is
  // confusing to use, and makes it very easy to accidentally write buggy
  // instruction definitions.
  //
  // In previous versions of LLVM, the ability to match operands by position was
  // enabled unconditionally. It is now controllable by this option -- and
  // disabled by default. The previous behavior can be restored by setting this
  // option to true.
  //
  // This option is temporary, and will go away once all in-tree targets have
  // migrated.
  //
  // TODO: clean up and remove these options.
  bit useDeprecatedPositionallyEncodedOperands = false;

  // If positional encoding rules are used for the encoder generator, they may
  // also need to be used by the decoder generator -- if so, enable this
  // variable.
  //
  // This option is a no-op unless useDeprecatedPositionallyEncodedOperands is
  // true.
  //
  // This option is temporary, and will go away once all in-tree targets have
  // migrated.
  bit decodePositionallyEncodedOperands = false;

  // When set, this indicates that there will be no overlap between those
  // operands that are matched by ordering (positional operands) and those
  // matched by name.
  //
  // This is a no-op unless useDeprecatedPositionallyEncodedOperands is true
  // (though it does modify the "would've used positional operand XXX" error.)
  //
  // This option is temporary, and will go away once all in-tree targets have
  // migrated.
  bit noNamedPositionallyEncodedOperands = false;
}

// Standard Pseudo Instructions.
// This list must match TargetOpcodes.def.
// Only these instructions are allowed in the TargetOpcode namespace.
// Ensure mayLoad and mayStore have a default value, so as not to break
// targets that set guessInstructionProperties=0. Any local definition of
// mayLoad/mayStore takes precedence over these default values.
class StandardPseudoInstruction : Instruction {
  let mayLoad = false;
  let mayStore = false;
  let isCodeGenOnly = true;
  let isPseudo = true;
  let hasNoSchedulingInfo = true;
  let Namespace = "TargetOpcode";
}
def PHI : StandardPseudoInstruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins variable_ops);
  let AsmString = "PHINODE";
  let hasSideEffects = false;
}
def INLINEASM : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "";
  let hasSideEffects = false;  // Note side effect is encoded in an operand.
}
def INLINEASM_BR : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "";
  // Unlike INLINEASM, this is always treated as having side-effects.
  let hasSideEffects = true;
  // Despite potentially branching, this instruction is intentionally _not_
  // marked as a terminator or a branch.
}
def CFI_INSTRUCTION : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$id);
  let AsmString = "";
  let hasCtrlDep = true;
  let hasSideEffects = false;
  let isNotDuplicable = true;
  let isMeta = true;
}
def EH_LABEL : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$id);
  let AsmString = "";
  let hasCtrlDep = true;
  let hasSideEffects = false;
  let isNotDuplicable = true;
  let isMeta = true;
}
def GC_LABEL : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$id);
  let AsmString = "";
  let hasCtrlDep = true;
  let hasSideEffects = false;
  let isNotDuplicable = true;
  let isMeta = true;
}
def ANNOTATION_LABEL : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$id);
  let AsmString = "";
  let hasCtrlDep = true;
  let hasSideEffects = false;
  let isNotDuplicable = true;
}
def KILL : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "";
  let hasSideEffects = false;
  let isMeta = true;
}
def EXTRACT_SUBREG : StandardPseudoInstruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
  let AsmString = "";
  let hasSideEffects = false;
}
def INSERT_SUBREG : StandardPseudoInstruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
  let AsmString = "";
  let hasSideEffects = false;
  let Constraints = "$supersrc = $dst";
}
def IMPLICIT_DEF : StandardPseudoInstruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins);
  let AsmString = "";
  let hasSideEffects = false;
  let isReMaterializable = true;
  let isAsCheapAsAMove = true;
  let isMeta = true;
}
def SUBREG_TO_REG : StandardPseudoInstruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
  let AsmString = "";
  let hasSideEffects = false;
}
def COPY_TO_REGCLASS : StandardPseudoInstruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$src, i32imm:$regclass);
  let AsmString = "";
  let hasSideEffects = false;
  let isAsCheapAsAMove = true;
}
def DBG_VALUE : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "DBG_VALUE";
  let hasSideEffects = false;
  let isMeta = true;
}
def DBG_VALUE_LIST : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "DBG_VALUE_LIST";
  let hasSideEffects = 0;
  let isMeta = true;
}
def DBG_INSTR_REF : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "DBG_INSTR_REF";
  let hasSideEffects = false;
  let isMeta = true;
}
def DBG_PHI : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "DBG_PHI";
  let hasSideEffects = 0;
  let isMeta = true;
}
def DBG_LABEL : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins unknown:$label);
  let AsmString = "DBG_LABEL";
  let hasSideEffects = false;
  let isMeta = true;
}
def REG_SEQUENCE : StandardPseudoInstruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$supersrc, variable_ops);
  let AsmString = "";
  let hasSideEffects = false;
  let isAsCheapAsAMove = true;
}
def COPY : StandardPseudoInstruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$src);
  let AsmString = "";
  let hasSideEffects = false;
  let isAsCheapAsAMove = true;
  let hasNoSchedulingInfo = false;
}
def BUNDLE : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "BUNDLE";
  let hasSideEffects = false;
}
def LIFETIME_START : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$id);
  let AsmString = "LIFETIME_START";
  let hasSideEffects = false;
  let isMeta = true;
}
def LIFETIME_END : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$id);
  let AsmString = "LIFETIME_END";
  let hasSideEffects = false;
  let isMeta = true;
}
def PSEUDO_PROBE : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr);
  let AsmString = "PSEUDO_PROBE";
  let hasSideEffects = 1;
  let isMeta = true;
}
def ARITH_FENCE : StandardPseudoInstruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$src);
  let AsmString = "";
  let hasSideEffects = false;
  let Constraints = "$src = $dst";
  let isMeta = true;
}

def STACKMAP : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
  let hasSideEffects = true;
  let isCall = true;
  let mayLoad = true;
  let usesCustomInserter = true;
}
def PATCHPOINT : StandardPseudoInstruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
                       i32imm:$nargs, i32imm:$cc, variable_ops);
  let hasSideEffects = true;
  let isCall = true;
  let mayLoad = true;
  let usesCustomInserter = true;
}
def STATEPOINT : StandardPseudoInstruction {
  let OutOperandList = (outs variable_ops);
  let InOperandList = (ins variable_ops);
  let usesCustomInserter = true;
  let mayLoad = true;
  let mayStore = true;
  let hasSideEffects = true;
  let isCall = true;
}
def LOAD_STACK_GUARD : StandardPseudoInstruction {
  let OutOperandList = (outs ptr_rc:$dst);
  let InOperandList = (ins);
  let mayLoad = true;
  bit isReMaterializable = true;
  let hasSideEffects = false;
  bit isPseudo = true;
}
def PREALLOCATED_SETUP : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$a);
  let usesCustomInserter = true;
  let hasSideEffects = true;
}
def PREALLOCATED_ARG : StandardPseudoInstruction {
  let OutOperandList = (outs ptr_rc:$loc);
  let InOperandList = (ins i32imm:$a, i32imm:$b);
  let usesCustomInserter = true;
  let hasSideEffects = true;
}
def LOCAL_ESCAPE : StandardPseudoInstruction {
  // This instruction is really just a label. It has to be part of the chain so
  // that it doesn't get dropped from the DAG, but it produces nothing and has
  // no side effects.
  let OutOperandList = (outs);
  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
  let hasSideEffects = false;
  let hasCtrlDep = true;
}
def FAULTING_OP : StandardPseudoInstruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins variable_ops);
  let usesCustomInserter = true;
  let hasSideEffects = true;
  let mayLoad = true;
  let mayStore = true;
  let isTerminator = true;
  let isBranch = true;
}
def PATCHABLE_OP : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let usesCustomInserter = true;
  let mayLoad = true;
  let mayStore = true;
  let hasSideEffects = true;
}
def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins);
  let AsmString = "# XRay Function Enter.";
  let usesCustomInserter = true;
  let hasSideEffects = true;
}
def PATCHABLE_RET : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "# XRay Function Patchable RET.";
  let usesCustomInserter = true;
  let hasSideEffects = true;
  let isTerminator = true;
  let isReturn = true;
}
def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins);
  let AsmString = "# XRay Function Exit.";
  let usesCustomInserter = true;
  let hasSideEffects = true;
  let isReturn = false; // Original return instruction will follow
}
def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "# XRay Tail Call Exit.";
  let usesCustomInserter = true;
  let hasSideEffects = true;
  let isReturn = true;
}
def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins ptr_rc:$event, unknown:$size);
  let AsmString = "# XRay Custom Event Log.";
  let usesCustomInserter = true;
  let isCall = true;
  let mayLoad = true;
  let mayStore = true;
  let hasSideEffects = true;
}
def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);
  let AsmString = "# XRay Typed Event Log.";
  let usesCustomInserter = true;
  let isCall = true;
  let mayLoad = true;
  let mayStore = true;
  let hasSideEffects = true;
}
def FENTRY_CALL : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins);
  let AsmString = "# FEntry call";
  let usesCustomInserter = true;
  let isCall = true;
  let mayLoad = true;
  let mayStore = true;
  let hasSideEffects = true;
}
def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "";
  let hasSideEffects = true;
}
def MEMBARRIER : StandardPseudoInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins);
  let AsmString = "";
  let hasSideEffects = true;
  let Size = 0;
  let isMeta = true;
}

// Generic opcodes used in GlobalISel.
include "llvm/Target/GenericOpcodes.td"

//===----------------------------------------------------------------------===//
// AsmParser - This class can be implemented by targets that wish to implement
// .s file parsing.
//
// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
// syntax on X86 for example).
//
class AsmParser {
  // AsmParserClassName - This specifies the suffix to use for the asmparser
  // class.  Generated AsmParser classes are always prefixed with the target
  // name.
  string AsmParserClassName  = "AsmParser";

  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
  // function of the AsmParser class to call on every matched instruction.
  // This can be used to perform target specific instruction post-processing.
  string AsmParserInstCleanup  = "";

  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
  // written register name matcher
  bit ShouldEmitMatchRegisterName = true;

  // Set to true if the target needs a generated 'alternative register name'
  // matcher.
  //
  // This generates a function which can be used to lookup registers from
  // their aliases. This function will fail when called on targets where
  // several registers share the same alias (i.e. not a 1:1 mapping).
  bit ShouldEmitMatchRegisterAltName = false;

  // Set to true if MatchRegisterName and MatchRegisterAltName functions
  // should be generated even if there are duplicate register names. The
  // target is responsible for coercing aliased registers as necessary
  // (e.g. in validateTargetOperandClass), and there are no guarantees about
  // which numeric register identifier will be returned in the case of
  // multiple matches.
  bit AllowDuplicateRegisterNames = false;

  // HasMnemonicFirst - Set to false if target instructions don't always
  // start with a mnemonic as the first token.
  bit HasMnemonicFirst = true;

  // ReportMultipleNearMisses -
  // When 0, the assembly matcher reports an error for one encoding or operand
  // that did not match the parsed instruction.
  // When 1, the assembly matcher returns a list of encodings that were close
  // to matching the parsed instruction, so to allow more detailed error
  // messages.
  bit ReportMultipleNearMisses = false;

  // OperandParserMethod - If non-empty, this is the name of a custom
  // member function of the AsmParser class to call for every instruction
  // operand to be parsed.
  string OperandParserMethod = "";

  // CallCustomParserForAllOperands - Set to true if the custom parser
  // method shall be called for all operands as opposed to only those
  // that have their own specified custom parsers.
  bit CallCustomParserForAllOperands = false;
}
def DefaultAsmParser : AsmParser;

//===----------------------------------------------------------------------===//
// AsmParserVariant - Subtargets can have multiple different assembly parsers
// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
// implemented by targets to describe such variants.
//
class AsmParserVariant {
  // Variant - AsmParsers can be of multiple different variants.  Variants are
  // used to support targets that need to parse multiple formats for the
  // assembly language.
  int Variant = 0;

  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
  string Name = "";

  // CommentDelimiter - If given, the delimiter string used to recognize
  // comments which are hard coded in the .td assembler strings for individual
  // instructions.
  string CommentDelimiter = "";

  // RegisterPrefix - If given, the token prefix which indicates a register
  // token. This is used by the matcher to automatically recognize hard coded
  // register tokens as constrained registers, instead of tokens, for the
  // purposes of matching.
  string RegisterPrefix = "";

  // TokenizingCharacters - Characters that are standalone tokens
  string TokenizingCharacters = "[]*!";

  // SeparatorCharacters - Characters that are not tokens
  string SeparatorCharacters = " \t,";

  // BreakCharacters - Characters that start new identifiers
  string BreakCharacters = "";
}
def DefaultAsmParserVariant : AsmParserVariant;

// Operators for combining SubtargetFeatures in AssemblerPredicates
def any_of;
def all_of;

/// AssemblerPredicate - This is a Predicate that can be used when the assembler
/// matches instructions and aliases.
class AssemblerPredicate<dag cond, string name = ""> {
  bit AssemblerMatcherPredicate = true;
  dag AssemblerCondDag = cond;
  string PredicateName = name;
}

/// TokenAlias - This class allows targets to define assembler token
/// operand aliases. That is, a token literal operand which is equivalent
/// to another, canonical, token literal. For example, ARM allows:
///   vmov.u32 s4, #0  -> vmov.i32, #0
/// 'u32' is a more specific designator for the 32-bit integer type specifier
/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
///   def : TokenAlias<".u32", ".i32">;
///
/// This works by marking the match class of 'From' as a subclass of the
/// match class of 'To'.
class TokenAlias<string From, string To> {
  string FromToken = From;
  string ToToken = To;
}

/// MnemonicAlias - This class allows targets to define assembler mnemonic
/// aliases.  This should be used when all forms of one mnemonic are accepted
/// with a different mnemonic.  For example, X86 allows:
///   sal %al, 1    -> shl %al, 1
///   sal %ax, %cl  -> shl %ax, %cl
///   sal %eax, %cl -> shl %eax, %cl
/// etc.  Though "sal" is accepted with many forms, all of them are directly
/// translated to a shl, so it can be handled with (in the case of X86, it
/// actually has one for each suffix as well):
///   def : MnemonicAlias<"sal", "shl">;
///
/// Mnemonic aliases are mapped before any other translation in the match phase,
/// and do allow Requires predicates, e.g.:
///
///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
///
/// Mnemonic aliases can also be constrained to specific variants, e.g.:
///
///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
///
/// If no variant (e.g., "att" or "intel") is specified then the alias is
/// applied unconditionally.
class MnemonicAlias<string From, string To, string VariantName = ""> {
  string FromMnemonic = From;
  string ToMnemonic = To;
  string AsmVariantName = VariantName;

  // Predicates - Predicates that must be true for this remapping to happen.
  list<Predicate> Predicates = [];
}

/// InstAlias - This defines an alternate assembly syntax that is allowed to
/// match an instruction that has a different (more canonical) assembly
/// representation.
class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
  string AsmString = Asm;      // The .s format to match the instruction with.
  dag ResultInst = Result;     // The MCInst to generate.

  // This determines which order the InstPrinter detects aliases for
  // printing. A larger value makes the alias more likely to be
  // emitted. The Instruction's own definition is notionally 0.5, so 0
  // disables printing and 1 enables it if there are no conflicting aliases.
  int EmitPriority = Emit;

  // Predicates - Predicates that must be true for this to match.
  list<Predicate> Predicates = [];

  // If the instruction specified in Result has defined an AsmMatchConverter
  // then setting this to 1 will cause the alias to use the AsmMatchConverter
  // function when converting the OperandVector into an MCInst instead of the
  // function that is generated by the dag Result.
  // Setting this to 0 will cause the alias to ignore the Result instruction's
  // defined AsmMatchConverter and instead use the function generated by the
  // dag Result.
  bit UseInstAsmMatchConverter = true;

  // Assembler variant name to use for this alias. If not specified then
  // assembler variants will be determined based on AsmString
  string AsmVariantName = VariantName;
}

//===----------------------------------------------------------------------===//
// AsmWriter - This class can be implemented by targets that need to customize
// the format of the .s file writer.
//
// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
// on X86 for example).
//
class AsmWriter {
  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
  // class.  Generated AsmWriter classes are always prefixed with the target
  // name.
  string AsmWriterClassName  = "InstPrinter";

  // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
  // the various print methods.
  // FIXME: Remove after all ports are updated.
  int PassSubtarget = 0;

  // Variant - AsmWriters can be of multiple different variants.  Variants are
  // used to support targets that need to emit assembly code in ways that are
  // mostly the same for different targets, but have minor differences in
  // syntax.  If the asmstring contains {|} characters in them, this integer
  // will specify which alternative to use.  For example "{x|y|z}" with Variant
  // == 1, will expand to "y".
  int Variant = 0;
}
def DefaultAsmWriter : AsmWriter;


//===----------------------------------------------------------------------===//
// Target - This class contains the "global" target information
//
class Target {
  // InstructionSet - Instruction set description for this target.
  InstrInfo InstructionSet;

  // AssemblyParsers - The AsmParser instances available for this target.
  list<AsmParser> AssemblyParsers = [DefaultAsmParser];

  /// AssemblyParserVariants - The AsmParserVariant instances available for
  /// this target.
  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];

  // AssemblyWriters - The AsmWriter instances available for this target.
  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];

  // AllowRegisterRenaming - Controls whether this target allows
  // post-register-allocation renaming of registers.  This is done by
  // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
  // for all opcodes if this flag is set to 0.
  int AllowRegisterRenaming = 0;
}

//===----------------------------------------------------------------------===//
// SubtargetFeature - A characteristic of the chip set.
//
class SubtargetFeature<string n, string a,  string v, string d,
                       list<SubtargetFeature> i = []> {
  // Name - Feature name.  Used by command line (-mattr=) to determine the
  // appropriate target chip.
  //
  string Name = n;

  // Attribute - Attribute to be set by feature.
  //
  string Attribute = a;

  // Value - Value the attribute to be set to by feature.
  //
  string Value = v;

  // Desc - Feature description.  Used by command line (-mattr=) to display help
  // information.
  //
  string Desc = d;

  // Implies - Features that this feature implies are present. If one of those
  // features isn't set, then this one shouldn't be set either.
  //
  list<SubtargetFeature> Implies = i;
}

/// Specifies a Subtarget feature that this instruction is deprecated on.
class Deprecated<SubtargetFeature dep> {
  SubtargetFeature DeprecatedFeatureMask = dep;
}

/// A custom predicate used to determine if an instruction is
/// deprecated or not.
class ComplexDeprecationPredicate<string dep> {
  string ComplexDeprecationPredicate = dep;
}

//===----------------------------------------------------------------------===//
// Processor chip sets - These values represent each of the chip sets supported
// by the scheduler.  Each Processor definition requires corresponding
// instruction itineraries.
//
class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f,
                list<SubtargetFeature> tunef = []> {
  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
  // appropriate target chip.
  //
  string Name = n;

  // SchedModel - The machine model for scheduling and instruction cost.
  //
  SchedMachineModel SchedModel = NoSchedModel;

  // ProcItin - The scheduling information for the target processor.
  //
  ProcessorItineraries ProcItin = pi;

  // Features - list of
  list<SubtargetFeature> Features = f;

  // TuneFeatures - list of features for tuning for this CPU. If the target
  // supports -mtune, this should contain the list of features used to make
  // microarchitectural optimization decisions for a given processor.  While
  // Features should contain the architectural features for the processor.
  list<SubtargetFeature> TuneFeatures = tunef;
}

// ProcessorModel allows subtargets to specify the more general
// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
// gradually move to this newer form.
//
// Although this class always passes NoItineraries to the Processor
// class, the SchedMachineModel may still define valid Itineraries.
class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f,
                     list<SubtargetFeature> tunef = []>
  : Processor<n, NoItineraries, f, tunef> {
  let SchedModel = m;
}

//===----------------------------------------------------------------------===//
// InstrMapping - This class is used to create mapping tables to relate
// instructions with each other based on the values specified in RowFields,
// ColFields, KeyCol and ValueCols.
//
class InstrMapping {
  // FilterClass - Used to limit search space only to the instructions that
  // define the relationship modeled by this InstrMapping record.
  string FilterClass;

  // RowFields - List of fields/attributes that should be same for all the
  // instructions in a row of the relation table. Think of this as a set of
  // properties shared by all the instructions related by this relationship
  // model and is used to categorize instructions into subgroups. For instance,
  // if we want to define a relation that maps 'Add' instruction to its
  // predicated forms, we can define RowFields like this:
  //
  // let RowFields = BaseOp
  // All add instruction predicated/non-predicated will have to set their BaseOp
  // to the same value.
  //
  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
  list<string> RowFields = [];

  // List of fields/attributes that are same for all the instructions
  // in a column of the relation table.
  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
  // based on the 'predSense' values. All the instruction in a specific
  // column have the same value and it is fixed for the column according
  // to the values set in 'ValueCols'.
  list<string> ColFields = [];

  // Values for the fields/attributes listed in 'ColFields'.
  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
  // that models this relation) should be non-predicated.
  // In the example above, 'Add' is the key instruction.
  list<string> KeyCol = [];

  // List of values for the fields/attributes listed in 'ColFields', one for
  // each column in the relation table.
  //
  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
  // table. First column requires all the instructions to have predSense
  // set to 'true' and second column requires it to be 'false'.
  list<list<string> > ValueCols = [];
}

//===----------------------------------------------------------------------===//
// Pull in the common support for calling conventions.
//
include "llvm/Target/TargetCallingConv.td"

//===----------------------------------------------------------------------===//
// Pull in the common support for DAG isel generation.
//
include "llvm/Target/TargetSelectionDAG.td"

//===----------------------------------------------------------------------===//
// Pull in the common support for Global ISel register bank info generation.
//
include "llvm/Target/GlobalISel/RegisterBank.td"

//===----------------------------------------------------------------------===//
// Pull in the common support for DAG isel generation.
//
include "llvm/Target/GlobalISel/Target.td"

//===----------------------------------------------------------------------===//
// Pull in the common support for the Global ISel DAG-based selector generation.
//
include "llvm/Target/GlobalISel/SelectionDAGCompat.td"

//===----------------------------------------------------------------------===//
// Pull in the common support for Pfm Counters generation.
//
include "llvm/Target/TargetPfmCounters.td"