1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the ValueMap class. ValueMap maps Value* or any subclass
// to an arbitrary other type. It provides the DenseMap interface but updates
// itself to remain safe when keys are RAUWed or deleted. By default, when a
// key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
// mapping V2->target is added. If V2 already existed, its old target is
// overwritten. When a key is deleted, its mapping is removed.
//
// You can override a ValueMap's Config parameter to control exactly what
// happens on RAUW and destruction and to get called back on each event. It's
// legal to call back into the ValueMap from a Config's callbacks. Config
// parameters should inherit from ValueMapConfig<KeyT> to get default
// implementations of all the methods ValueMap uses. See ValueMapConfig for
// documentation of the functions you can override.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_VALUEMAP_H
#define LLVM_IR_VALUEMAP_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/IR/TrackingMDRef.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Mutex.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <mutex>
#include <optional>
#include <type_traits>
#include <utility>
namespace llvm {
template<typename KeyT, typename ValueT, typename Config>
class ValueMapCallbackVH;
template<typename DenseMapT, typename KeyT>
class ValueMapIterator;
template<typename DenseMapT, typename KeyT>
class ValueMapConstIterator;
/// This class defines the default behavior for configurable aspects of
/// ValueMap<>. User Configs should inherit from this class to be as compatible
/// as possible with future versions of ValueMap.
template<typename KeyT, typename MutexT = sys::Mutex>
struct ValueMapConfig {
using mutex_type = MutexT;
/// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
/// false, the ValueMap will leave the original mapping in place.
enum { FollowRAUW = true };
// All methods will be called with a first argument of type ExtraData. The
// default implementations in this class take a templated first argument so
// that users' subclasses can use any type they want without having to
// override all the defaults.
struct ExtraData {};
template<typename ExtraDataT>
static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
template<typename ExtraDataT>
static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
/// Returns a mutex that should be acquired around any changes to the map.
/// This is only acquired from the CallbackVH (and held around calls to onRAUW
/// and onDelete) and not inside other ValueMap methods. NULL means that no
/// mutex is necessary.
template<typename ExtraDataT>
static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; }
};
/// See the file comment.
template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT>>
class ValueMap {
friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
using ValueMapCVH = ValueMapCallbackVH<KeyT, ValueT, Config>;
using MapT = DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>>;
using MDMapT = DenseMap<const Metadata *, TrackingMDRef>;
using ExtraData = typename Config::ExtraData;
MapT Map;
std::optional<MDMapT> MDMap;
ExtraData Data;
public:
using key_type = KeyT;
using mapped_type = ValueT;
using value_type = std::pair<KeyT, ValueT>;
using size_type = unsigned;
explicit ValueMap(unsigned NumInitBuckets = 64)
: Map(NumInitBuckets), Data() {}
explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
: Map(NumInitBuckets), Data(Data) {}
// ValueMap can't be copied nor moved, because the callbacks store pointer to
// it.
ValueMap(const ValueMap &) = delete;
ValueMap(ValueMap &&) = delete;
ValueMap &operator=(const ValueMap &) = delete;
ValueMap &operator=(ValueMap &&) = delete;
bool hasMD() const { return bool(MDMap); }
MDMapT &MD() {
if (!MDMap)
MDMap.emplace();
return *MDMap;
}
std::optional<MDMapT> &getMDMap() { return MDMap; }
/// Get the mapped metadata, if it's in the map.
std::optional<Metadata *> getMappedMD(const Metadata *MD) const {
if (!MDMap)
return std::nullopt;
auto Where = MDMap->find(MD);
if (Where == MDMap->end())
return std::nullopt;
return Where->second.get();
}
using iterator = ValueMapIterator<MapT, KeyT>;
using const_iterator = ValueMapConstIterator<MapT, KeyT>;
inline iterator begin() { return iterator(Map.begin()); }
inline iterator end() { return iterator(Map.end()); }
inline const_iterator begin() const { return const_iterator(Map.begin()); }
inline const_iterator end() const { return const_iterator(Map.end()); }
bool empty() const { return Map.empty(); }
size_type size() const { return Map.size(); }
/// Grow the map so that it has at least Size buckets. Does not shrink
void reserve(size_t Size) { Map.reserve(Size); }
void clear() {
Map.clear();
MDMap.reset();
}
/// Return 1 if the specified key is in the map, 0 otherwise.
size_type count(const KeyT &Val) const {
return Map.find_as(Val) == Map.end() ? 0 : 1;
}
iterator find(const KeyT &Val) {
return iterator(Map.find_as(Val));
}
const_iterator find(const KeyT &Val) const {
return const_iterator(Map.find_as(Val));
}
/// lookup - Return the entry for the specified key, or a default
/// constructed value if no such entry exists.
ValueT lookup(const KeyT &Val) const {
typename MapT::const_iterator I = Map.find_as(Val);
return I != Map.end() ? I->second : ValueT();
}
// Inserts key,value pair into the map if the key isn't already in the map.
// If the key is already in the map, it returns false and doesn't update the
// value.
std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), KV.second));
return std::make_pair(iterator(MapResult.first), MapResult.second);
}
std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
auto MapResult =
Map.insert(std::make_pair(Wrap(KV.first), std::move(KV.second)));
return std::make_pair(iterator(MapResult.first), MapResult.second);
}
/// insert - Range insertion of pairs.
template<typename InputIt>
void insert(InputIt I, InputIt E) {
for (; I != E; ++I)
insert(*I);
}
bool erase(const KeyT &Val) {
typename MapT::iterator I = Map.find_as(Val);
if (I == Map.end())
return false;
Map.erase(I);
return true;
}
void erase(iterator I) {
return Map.erase(I.base());
}
value_type& FindAndConstruct(const KeyT &Key) {
return Map.FindAndConstruct(Wrap(Key));
}
ValueT &operator[](const KeyT &Key) {
return Map[Wrap(Key)];
}
/// isPointerIntoBucketsArray - Return true if the specified pointer points
/// somewhere into the ValueMap's array of buckets (i.e. either to a key or
/// value in the ValueMap).
bool isPointerIntoBucketsArray(const void *Ptr) const {
return Map.isPointerIntoBucketsArray(Ptr);
}
/// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
/// array. In conjunction with the previous method, this can be used to
/// determine whether an insertion caused the ValueMap to reallocate.
const void *getPointerIntoBucketsArray() const {
return Map.getPointerIntoBucketsArray();
}
private:
// Takes a key being looked up in the map and wraps it into a
// ValueMapCallbackVH, the actual key type of the map. We use a helper
// function because ValueMapCVH is constructed with a second parameter.
ValueMapCVH Wrap(KeyT key) const {
// The only way the resulting CallbackVH could try to modify *this (making
// the const_cast incorrect) is if it gets inserted into the map. But then
// this function must have been called from a non-const method, making the
// const_cast ok.
return ValueMapCVH(key, const_cast<ValueMap*>(this));
}
};
// This CallbackVH updates its ValueMap when the contained Value changes,
// according to the user's preferences expressed through the Config object.
template <typename KeyT, typename ValueT, typename Config>
class ValueMapCallbackVH final : public CallbackVH {
friend class ValueMap<KeyT, ValueT, Config>;
friend struct DenseMapInfo<ValueMapCallbackVH>;
using ValueMapT = ValueMap<KeyT, ValueT, Config>;
using KeySansPointerT = std::remove_pointer_t<KeyT>;
ValueMapT *Map;
ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
: CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
Map(Map) {}
// Private constructor used to create empty/tombstone DenseMap keys.
ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {}
public:
KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
void deleted() override {
// Make a copy that won't get changed even when *this is destroyed.
ValueMapCallbackVH Copy(*this);
typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
std::unique_lock<typename Config::mutex_type> Guard;
if (M)
Guard = std::unique_lock<typename Config::mutex_type>(*M);
Config::onDelete(Copy.Map->Data, Copy.Unwrap()); // May destroy *this.
Copy.Map->Map.erase(Copy); // Definitely destroys *this.
}
void allUsesReplacedWith(Value *new_key) override {
assert(isa<KeySansPointerT>(new_key) &&
"Invalid RAUW on key of ValueMap<>");
// Make a copy that won't get changed even when *this is destroyed.
ValueMapCallbackVH Copy(*this);
typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
std::unique_lock<typename Config::mutex_type> Guard;
if (M)
Guard = std::unique_lock<typename Config::mutex_type>(*M);
KeyT typed_new_key = cast<KeySansPointerT>(new_key);
// Can destroy *this:
Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
if (Config::FollowRAUW) {
typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
// I could == Copy.Map->Map.end() if the onRAUW callback already
// removed the old mapping.
if (I != Copy.Map->Map.end()) {
ValueT Target(std::move(I->second));
Copy.Map->Map.erase(I); // Definitely destroys *this.
Copy.Map->insert(std::make_pair(typed_new_key, std::move(Target)));
}
}
}
};
template<typename KeyT, typename ValueT, typename Config>
struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config>> {
using VH = ValueMapCallbackVH<KeyT, ValueT, Config>;
static inline VH getEmptyKey() {
return VH(DenseMapInfo<Value *>::getEmptyKey());
}
static inline VH getTombstoneKey() {
return VH(DenseMapInfo<Value *>::getTombstoneKey());
}
static unsigned getHashValue(const VH &Val) {
return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap());
}
static unsigned getHashValue(const KeyT &Val) {
return DenseMapInfo<KeyT>::getHashValue(Val);
}
static bool isEqual(const VH &LHS, const VH &RHS) {
return LHS == RHS;
}
static bool isEqual(const KeyT &LHS, const VH &RHS) {
return LHS == RHS.getValPtr();
}
};
template <typename DenseMapT, typename KeyT> class ValueMapIterator {
using BaseT = typename DenseMapT::iterator;
using ValueT = typename DenseMapT::mapped_type;
BaseT I;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = std::pair<KeyT, typename DenseMapT::mapped_type>;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
ValueMapIterator() : I() {}
ValueMapIterator(BaseT I) : I(I) {}
BaseT base() const { return I; }
struct ValueTypeProxy {
const KeyT first;
ValueT& second;
ValueTypeProxy *operator->() { return this; }
operator std::pair<KeyT, ValueT>() const {
return std::make_pair(first, second);
}
};
ValueTypeProxy operator*() const {
ValueTypeProxy Result = {I->first.Unwrap(), I->second};
return Result;
}
ValueTypeProxy operator->() const {
return operator*();
}
bool operator==(const ValueMapIterator &RHS) const {
return I == RHS.I;
}
bool operator!=(const ValueMapIterator &RHS) const {
return I != RHS.I;
}
inline ValueMapIterator& operator++() { // Preincrement
++I;
return *this;
}
ValueMapIterator operator++(int) { // Postincrement
ValueMapIterator tmp = *this; ++*this; return tmp;
}
};
template <typename DenseMapT, typename KeyT> class ValueMapConstIterator {
using BaseT = typename DenseMapT::const_iterator;
using ValueT = typename DenseMapT::mapped_type;
BaseT I;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = std::pair<KeyT, typename DenseMapT::mapped_type>;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
ValueMapConstIterator() : I() {}
ValueMapConstIterator(BaseT I) : I(I) {}
ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
: I(Other.base()) {}
BaseT base() const { return I; }
struct ValueTypeProxy {
const KeyT first;
const ValueT& second;
ValueTypeProxy *operator->() { return this; }
operator std::pair<KeyT, ValueT>() const {
return std::make_pair(first, second);
}
};
ValueTypeProxy operator*() const {
ValueTypeProxy Result = {I->first.Unwrap(), I->second};
return Result;
}
ValueTypeProxy operator->() const {
return operator*();
}
bool operator==(const ValueMapConstIterator &RHS) const {
return I == RHS.I;
}
bool operator!=(const ValueMapConstIterator &RHS) const {
return I != RHS.I;
}
inline ValueMapConstIterator& operator++() { // Preincrement
++I;
return *this;
}
ValueMapConstIterator operator++(int) { // Postincrement
ValueMapConstIterator tmp = *this; ++*this; return tmp;
}
};
} // end namespace llvm
#endif // LLVM_IR_VALUEMAP_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|