1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides a simple and efficient mechanism for performing general
// tree-based pattern matches on the LLVM IR. The power of these routines is
// that it allows you to write concise patterns that are expressive and easy to
// understand. The other major advantage of this is that it allows you to
// trivially capture/bind elements in the pattern to variables. For example,
// you can do something like this:
//
// Value *Exp = ...
// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
// m_And(m_Value(Y), m_ConstantInt(C2))))) {
// ... Pattern is matched and variables are bound ...
// }
//
// This is primarily useful to things like the instruction combiner, but can
// also be useful for static analysis tools or code generators.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_PATTERNMATCH_H
#define LLVM_IR_PATTERNMATCH_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include <cstdint>
namespace llvm {
namespace PatternMatch {
template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
return const_cast<Pattern &>(P).match(V);
}
template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
return const_cast<Pattern &>(P).match(Mask);
}
template <typename SubPattern_t> struct OneUse_match {
SubPattern_t SubPattern;
OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
template <typename OpTy> bool match(OpTy *V) {
return V->hasOneUse() && SubPattern.match(V);
}
};
template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
return SubPattern;
}
template <typename Class> struct class_match {
template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
};
/// Match an arbitrary value and ignore it.
inline class_match<Value> m_Value() { return class_match<Value>(); }
/// Match an arbitrary unary operation and ignore it.
inline class_match<UnaryOperator> m_UnOp() {
return class_match<UnaryOperator>();
}
/// Match an arbitrary binary operation and ignore it.
inline class_match<BinaryOperator> m_BinOp() {
return class_match<BinaryOperator>();
}
/// Matches any compare instruction and ignore it.
inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
struct undef_match {
static bool check(const Value *V) {
if (isa<UndefValue>(V))
return true;
const auto *CA = dyn_cast<ConstantAggregate>(V);
if (!CA)
return false;
SmallPtrSet<const ConstantAggregate *, 8> Seen;
SmallVector<const ConstantAggregate *, 8> Worklist;
// Either UndefValue, PoisonValue, or an aggregate that only contains
// these is accepted by matcher.
// CheckValue returns false if CA cannot satisfy this constraint.
auto CheckValue = [&](const ConstantAggregate *CA) {
for (const Value *Op : CA->operand_values()) {
if (isa<UndefValue>(Op))
continue;
const auto *CA = dyn_cast<ConstantAggregate>(Op);
if (!CA)
return false;
if (Seen.insert(CA).second)
Worklist.emplace_back(CA);
}
return true;
};
if (!CheckValue(CA))
return false;
while (!Worklist.empty()) {
if (!CheckValue(Worklist.pop_back_val()))
return false;
}
return true;
}
template <typename ITy> bool match(ITy *V) { return check(V); }
};
/// Match an arbitrary undef constant. This matches poison as well.
/// If this is an aggregate and contains a non-aggregate element that is
/// neither undef nor poison, the aggregate is not matched.
inline auto m_Undef() { return undef_match(); }
/// Match an arbitrary poison constant.
inline class_match<PoisonValue> m_Poison() {
return class_match<PoisonValue>();
}
/// Match an arbitrary Constant and ignore it.
inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
/// Match an arbitrary ConstantInt and ignore it.
inline class_match<ConstantInt> m_ConstantInt() {
return class_match<ConstantInt>();
}
/// Match an arbitrary ConstantFP and ignore it.
inline class_match<ConstantFP> m_ConstantFP() {
return class_match<ConstantFP>();
}
struct constantexpr_match {
template <typename ITy> bool match(ITy *V) {
auto *C = dyn_cast<Constant>(V);
return C && (isa<ConstantExpr>(C) || C->containsConstantExpression());
}
};
/// Match a constant expression or a constant that contains a constant
/// expression.
inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); }
/// Match an arbitrary basic block value and ignore it.
inline class_match<BasicBlock> m_BasicBlock() {
return class_match<BasicBlock>();
}
/// Inverting matcher
template <typename Ty> struct match_unless {
Ty M;
match_unless(const Ty &Matcher) : M(Matcher) {}
template <typename ITy> bool match(ITy *V) { return !M.match(V); }
};
/// Match if the inner matcher does *NOT* match.
template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
return match_unless<Ty>(M);
}
/// Matching combinators
template <typename LTy, typename RTy> struct match_combine_or {
LTy L;
RTy R;
match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
template <typename ITy> bool match(ITy *V) {
if (L.match(V))
return true;
if (R.match(V))
return true;
return false;
}
};
template <typename LTy, typename RTy> struct match_combine_and {
LTy L;
RTy R;
match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
template <typename ITy> bool match(ITy *V) {
if (L.match(V))
if (R.match(V))
return true;
return false;
}
};
/// Combine two pattern matchers matching L || R
template <typename LTy, typename RTy>
inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
return match_combine_or<LTy, RTy>(L, R);
}
/// Combine two pattern matchers matching L && R
template <typename LTy, typename RTy>
inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
return match_combine_and<LTy, RTy>(L, R);
}
struct apint_match {
const APInt *&Res;
bool AllowUndef;
apint_match(const APInt *&Res, bool AllowUndef)
: Res(Res), AllowUndef(AllowUndef) {}
template <typename ITy> bool match(ITy *V) {
if (auto *CI = dyn_cast<ConstantInt>(V)) {
Res = &CI->getValue();
return true;
}
if (V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
if (auto *CI =
dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) {
Res = &CI->getValue();
return true;
}
return false;
}
};
// Either constexpr if or renaming ConstantFP::getValueAPF to
// ConstantFP::getValue is needed to do it via single template
// function for both apint/apfloat.
struct apfloat_match {
const APFloat *&Res;
bool AllowUndef;
apfloat_match(const APFloat *&Res, bool AllowUndef)
: Res(Res), AllowUndef(AllowUndef) {}
template <typename ITy> bool match(ITy *V) {
if (auto *CI = dyn_cast<ConstantFP>(V)) {
Res = &CI->getValueAPF();
return true;
}
if (V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
if (auto *CI =
dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) {
Res = &CI->getValueAPF();
return true;
}
return false;
}
};
/// Match a ConstantInt or splatted ConstantVector, binding the
/// specified pointer to the contained APInt.
inline apint_match m_APInt(const APInt *&Res) {
// Forbid undefs by default to maintain previous behavior.
return apint_match(Res, /* AllowUndef */ false);
}
/// Match APInt while allowing undefs in splat vector constants.
inline apint_match m_APIntAllowUndef(const APInt *&Res) {
return apint_match(Res, /* AllowUndef */ true);
}
/// Match APInt while forbidding undefs in splat vector constants.
inline apint_match m_APIntForbidUndef(const APInt *&Res) {
return apint_match(Res, /* AllowUndef */ false);
}
/// Match a ConstantFP or splatted ConstantVector, binding the
/// specified pointer to the contained APFloat.
inline apfloat_match m_APFloat(const APFloat *&Res) {
// Forbid undefs by default to maintain previous behavior.
return apfloat_match(Res, /* AllowUndef */ false);
}
/// Match APFloat while allowing undefs in splat vector constants.
inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
return apfloat_match(Res, /* AllowUndef */ true);
}
/// Match APFloat while forbidding undefs in splat vector constants.
inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
return apfloat_match(Res, /* AllowUndef */ false);
}
template <int64_t Val> struct constantint_match {
template <typename ITy> bool match(ITy *V) {
if (const auto *CI = dyn_cast<ConstantInt>(V)) {
const APInt &CIV = CI->getValue();
if (Val >= 0)
return CIV == static_cast<uint64_t>(Val);
// If Val is negative, and CI is shorter than it, truncate to the right
// number of bits. If it is larger, then we have to sign extend. Just
// compare their negated values.
return -CIV == -Val;
}
return false;
}
};
/// Match a ConstantInt with a specific value.
template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
return constantint_match<Val>();
}
/// This helper class is used to match constant scalars, vector splats,
/// and fixed width vectors that satisfy a specified predicate.
/// For fixed width vector constants, undefined elements are ignored.
template <typename Predicate, typename ConstantVal>
struct cstval_pred_ty : public Predicate {
template <typename ITy> bool match(ITy *V) {
if (const auto *CV = dyn_cast<ConstantVal>(V))
return this->isValue(CV->getValue());
if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
if (const auto *C = dyn_cast<Constant>(V)) {
if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
return this->isValue(CV->getValue());
// Number of elements of a scalable vector unknown at compile time
auto *FVTy = dyn_cast<FixedVectorType>(VTy);
if (!FVTy)
return false;
// Non-splat vector constant: check each element for a match.
unsigned NumElts = FVTy->getNumElements();
assert(NumElts != 0 && "Constant vector with no elements?");
bool HasNonUndefElements = false;
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Elt = C->getAggregateElement(i);
if (!Elt)
return false;
if (isa<UndefValue>(Elt))
continue;
auto *CV = dyn_cast<ConstantVal>(Elt);
if (!CV || !this->isValue(CV->getValue()))
return false;
HasNonUndefElements = true;
}
return HasNonUndefElements;
}
}
return false;
}
};
/// specialization of cstval_pred_ty for ConstantInt
template <typename Predicate>
using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
/// specialization of cstval_pred_ty for ConstantFP
template <typename Predicate>
using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
/// This helper class is used to match scalar and vector constants that
/// satisfy a specified predicate, and bind them to an APInt.
template <typename Predicate> struct api_pred_ty : public Predicate {
const APInt *&Res;
api_pred_ty(const APInt *&R) : Res(R) {}
template <typename ITy> bool match(ITy *V) {
if (const auto *CI = dyn_cast<ConstantInt>(V))
if (this->isValue(CI->getValue())) {
Res = &CI->getValue();
return true;
}
if (V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
if (this->isValue(CI->getValue())) {
Res = &CI->getValue();
return true;
}
return false;
}
};
/// This helper class is used to match scalar and vector constants that
/// satisfy a specified predicate, and bind them to an APFloat.
/// Undefs are allowed in splat vector constants.
template <typename Predicate> struct apf_pred_ty : public Predicate {
const APFloat *&Res;
apf_pred_ty(const APFloat *&R) : Res(R) {}
template <typename ITy> bool match(ITy *V) {
if (const auto *CI = dyn_cast<ConstantFP>(V))
if (this->isValue(CI->getValue())) {
Res = &CI->getValue();
return true;
}
if (V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
if (auto *CI = dyn_cast_or_null<ConstantFP>(
C->getSplatValue(/* AllowUndef */ true)))
if (this->isValue(CI->getValue())) {
Res = &CI->getValue();
return true;
}
return false;
}
};
///////////////////////////////////////////////////////////////////////////////
//
// Encapsulate constant value queries for use in templated predicate matchers.
// This allows checking if constants match using compound predicates and works
// with vector constants, possibly with relaxed constraints. For example, ignore
// undef values.
//
///////////////////////////////////////////////////////////////////////////////
struct is_any_apint {
bool isValue(const APInt &C) { return true; }
};
/// Match an integer or vector with any integral constant.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
return cst_pred_ty<is_any_apint>();
}
struct is_all_ones {
bool isValue(const APInt &C) { return C.isAllOnes(); }
};
/// Match an integer or vector with all bits set.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_all_ones> m_AllOnes() {
return cst_pred_ty<is_all_ones>();
}
struct is_maxsignedvalue {
bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
};
/// Match an integer or vector with values having all bits except for the high
/// bit set (0x7f...).
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
return cst_pred_ty<is_maxsignedvalue>();
}
inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
return V;
}
struct is_negative {
bool isValue(const APInt &C) { return C.isNegative(); }
};
/// Match an integer or vector of negative values.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_negative> m_Negative() {
return cst_pred_ty<is_negative>();
}
inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
struct is_nonnegative {
bool isValue(const APInt &C) { return C.isNonNegative(); }
};
/// Match an integer or vector of non-negative values.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_nonnegative> m_NonNegative() {
return cst_pred_ty<is_nonnegative>();
}
inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
struct is_strictlypositive {
bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
};
/// Match an integer or vector of strictly positive values.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
return cst_pred_ty<is_strictlypositive>();
}
inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
return V;
}
struct is_nonpositive {
bool isValue(const APInt &C) { return C.isNonPositive(); }
};
/// Match an integer or vector of non-positive values.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_nonpositive> m_NonPositive() {
return cst_pred_ty<is_nonpositive>();
}
inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
struct is_one {
bool isValue(const APInt &C) { return C.isOne(); }
};
/// Match an integer 1 or a vector with all elements equal to 1.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
struct is_zero_int {
bool isValue(const APInt &C) { return C.isZero(); }
};
/// Match an integer 0 or a vector with all elements equal to 0.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_zero_int> m_ZeroInt() {
return cst_pred_ty<is_zero_int>();
}
struct is_zero {
template <typename ITy> bool match(ITy *V) {
auto *C = dyn_cast<Constant>(V);
// FIXME: this should be able to do something for scalable vectors
return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
}
};
/// Match any null constant or a vector with all elements equal to 0.
/// For vectors, this includes constants with undefined elements.
inline is_zero m_Zero() { return is_zero(); }
struct is_power2 {
bool isValue(const APInt &C) { return C.isPowerOf2(); }
};
/// Match an integer or vector power-of-2.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
struct is_negated_power2 {
bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
};
/// Match a integer or vector negated power-of-2.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
return cst_pred_ty<is_negated_power2>();
}
inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
return V;
}
struct is_power2_or_zero {
bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
};
/// Match an integer or vector of 0 or power-of-2 values.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
return cst_pred_ty<is_power2_or_zero>();
}
inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
return V;
}
struct is_sign_mask {
bool isValue(const APInt &C) { return C.isSignMask(); }
};
/// Match an integer or vector with only the sign bit(s) set.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_sign_mask> m_SignMask() {
return cst_pred_ty<is_sign_mask>();
}
struct is_lowbit_mask {
bool isValue(const APInt &C) { return C.isMask(); }
};
/// Match an integer or vector with only the low bit(s) set.
/// For vectors, this includes constants with undefined elements.
inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
return cst_pred_ty<is_lowbit_mask>();
}
inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
struct icmp_pred_with_threshold {
ICmpInst::Predicate Pred;
const APInt *Thr;
bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
};
/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
/// to Threshold. For vectors, this includes constants with undefined elements.
inline cst_pred_ty<icmp_pred_with_threshold>
m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
cst_pred_ty<icmp_pred_with_threshold> P;
P.Pred = Predicate;
P.Thr = &Threshold;
return P;
}
struct is_nan {
bool isValue(const APFloat &C) { return C.isNaN(); }
};
/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
/// For vectors, this includes constants with undefined elements.
inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); }
struct is_nonnan {
bool isValue(const APFloat &C) { return !C.isNaN(); }
};
/// Match a non-NaN FP constant.
/// For vectors, this includes constants with undefined elements.
inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
return cstfp_pred_ty<is_nonnan>();
}
struct is_inf {
bool isValue(const APFloat &C) { return C.isInfinity(); }
};
/// Match a positive or negative infinity FP constant.
/// For vectors, this includes constants with undefined elements.
inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); }
struct is_noninf {
bool isValue(const APFloat &C) { return !C.isInfinity(); }
};
/// Match a non-infinity FP constant, i.e. finite or NaN.
/// For vectors, this includes constants with undefined elements.
inline cstfp_pred_ty<is_noninf> m_NonInf() {
return cstfp_pred_ty<is_noninf>();
}
struct is_finite {
bool isValue(const APFloat &C) { return C.isFinite(); }
};
/// Match a finite FP constant, i.e. not infinity or NaN.
/// For vectors, this includes constants with undefined elements.
inline cstfp_pred_ty<is_finite> m_Finite() {
return cstfp_pred_ty<is_finite>();
}
inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
struct is_finitenonzero {
bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
};
/// Match a finite non-zero FP constant.
/// For vectors, this includes constants with undefined elements.
inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
return cstfp_pred_ty<is_finitenonzero>();
}
inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
return V;
}
struct is_any_zero_fp {
bool isValue(const APFloat &C) { return C.isZero(); }
};
/// Match a floating-point negative zero or positive zero.
/// For vectors, this includes constants with undefined elements.
inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
return cstfp_pred_ty<is_any_zero_fp>();
}
struct is_pos_zero_fp {
bool isValue(const APFloat &C) { return C.isPosZero(); }
};
/// Match a floating-point positive zero.
/// For vectors, this includes constants with undefined elements.
inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
return cstfp_pred_ty<is_pos_zero_fp>();
}
struct is_neg_zero_fp {
bool isValue(const APFloat &C) { return C.isNegZero(); }
};
/// Match a floating-point negative zero.
/// For vectors, this includes constants with undefined elements.
inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
return cstfp_pred_ty<is_neg_zero_fp>();
}
struct is_non_zero_fp {
bool isValue(const APFloat &C) { return C.isNonZero(); }
};
/// Match a floating-point non-zero.
/// For vectors, this includes constants with undefined elements.
inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
return cstfp_pred_ty<is_non_zero_fp>();
}
///////////////////////////////////////////////////////////////////////////////
template <typename Class> struct bind_ty {
Class *&VR;
bind_ty(Class *&V) : VR(V) {}
template <typename ITy> bool match(ITy *V) {
if (auto *CV = dyn_cast<Class>(V)) {
VR = CV;
return true;
}
return false;
}
};
/// Match a value, capturing it if we match.
inline bind_ty<Value> m_Value(Value *&V) { return V; }
inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
/// Match an instruction, capturing it if we match.
inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
/// Match a unary operator, capturing it if we match.
inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
/// Match a binary operator, capturing it if we match.
inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
/// Match a with overflow intrinsic, capturing it if we match.
inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) {
return I;
}
inline bind_ty<const WithOverflowInst>
m_WithOverflowInst(const WithOverflowInst *&I) {
return I;
}
/// Match a Constant, capturing the value if we match.
inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
/// Match a ConstantInt, capturing the value if we match.
inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
/// Match a ConstantFP, capturing the value if we match.
inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
/// Match a ConstantExpr, capturing the value if we match.
inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
/// Match a basic block value, capturing it if we match.
inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
return V;
}
/// Match an arbitrary immediate Constant and ignore it.
inline match_combine_and<class_match<Constant>,
match_unless<constantexpr_match>>
m_ImmConstant() {
return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
}
/// Match an immediate Constant, capturing the value if we match.
inline match_combine_and<bind_ty<Constant>,
match_unless<constantexpr_match>>
m_ImmConstant(Constant *&C) {
return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
}
/// Match a specified Value*.
struct specificval_ty {
const Value *Val;
specificval_ty(const Value *V) : Val(V) {}
template <typename ITy> bool match(ITy *V) { return V == Val; }
};
/// Match if we have a specific specified value.
inline specificval_ty m_Specific(const Value *V) { return V; }
/// Stores a reference to the Value *, not the Value * itself,
/// thus can be used in commutative matchers.
template <typename Class> struct deferredval_ty {
Class *const &Val;
deferredval_ty(Class *const &V) : Val(V) {}
template <typename ITy> bool match(ITy *const V) { return V == Val; }
};
/// Like m_Specific(), but works if the specific value to match is determined
/// as part of the same match() expression. For example:
/// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
/// bind X before the pattern match starts.
/// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
/// whichever value m_Value(X) populated.
inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
return V;
}
/// Match a specified floating point value or vector of all elements of
/// that value.
struct specific_fpval {
double Val;
specific_fpval(double V) : Val(V) {}
template <typename ITy> bool match(ITy *V) {
if (const auto *CFP = dyn_cast<ConstantFP>(V))
return CFP->isExactlyValue(Val);
if (V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
return CFP->isExactlyValue(Val);
return false;
}
};
/// Match a specific floating point value or vector with all elements
/// equal to the value.
inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
/// Match a float 1.0 or vector with all elements equal to 1.0.
inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
struct bind_const_intval_ty {
uint64_t &VR;
bind_const_intval_ty(uint64_t &V) : VR(V) {}
template <typename ITy> bool match(ITy *V) {
if (const auto *CV = dyn_cast<ConstantInt>(V))
if (CV->getValue().ule(UINT64_MAX)) {
VR = CV->getZExtValue();
return true;
}
return false;
}
};
/// Match a specified integer value or vector of all elements of that
/// value.
template <bool AllowUndefs> struct specific_intval {
APInt Val;
specific_intval(APInt V) : Val(std::move(V)) {}
template <typename ITy> bool match(ITy *V) {
const auto *CI = dyn_cast<ConstantInt>(V);
if (!CI && V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
return CI && APInt::isSameValue(CI->getValue(), Val);
}
};
/// Match a specific integer value or vector with all elements equal to
/// the value.
inline specific_intval<false> m_SpecificInt(APInt V) {
return specific_intval<false>(std::move(V));
}
inline specific_intval<false> m_SpecificInt(uint64_t V) {
return m_SpecificInt(APInt(64, V));
}
inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
return specific_intval<true>(std::move(V));
}
inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
return m_SpecificIntAllowUndef(APInt(64, V));
}
/// Match a ConstantInt and bind to its value. This does not match
/// ConstantInts wider than 64-bits.
inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
/// Match a specified basic block value.
struct specific_bbval {
BasicBlock *Val;
specific_bbval(BasicBlock *Val) : Val(Val) {}
template <typename ITy> bool match(ITy *V) {
const auto *BB = dyn_cast<BasicBlock>(V);
return BB && BB == Val;
}
};
/// Match a specific basic block value.
inline specific_bbval m_SpecificBB(BasicBlock *BB) {
return specific_bbval(BB);
}
/// A commutative-friendly version of m_Specific().
inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
return BB;
}
inline deferredval_ty<const BasicBlock>
m_Deferred(const BasicBlock *const &BB) {
return BB;
}
//===----------------------------------------------------------------------===//
// Matcher for any binary operator.
//
template <typename LHS_t, typename RHS_t, bool Commutable = false>
struct AnyBinaryOp_match {
LHS_t L;
RHS_t R;
// The evaluation order is always stable, regardless of Commutability.
// The LHS is always matched first.
AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *I = dyn_cast<BinaryOperator>(V))
return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
(Commutable && L.match(I->getOperand(1)) &&
R.match(I->getOperand(0)));
return false;
}
};
template <typename LHS, typename RHS>
inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
return AnyBinaryOp_match<LHS, RHS>(L, R);
}
//===----------------------------------------------------------------------===//
// Matcher for any unary operator.
// TODO fuse unary, binary matcher into n-ary matcher
//
template <typename OP_t> struct AnyUnaryOp_match {
OP_t X;
AnyUnaryOp_match(const OP_t &X) : X(X) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *I = dyn_cast<UnaryOperator>(V))
return X.match(I->getOperand(0));
return false;
}
};
template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
return AnyUnaryOp_match<OP_t>(X);
}
//===----------------------------------------------------------------------===//
// Matchers for specific binary operators.
//
template <typename LHS_t, typename RHS_t, unsigned Opcode,
bool Commutable = false>
struct BinaryOp_match {
LHS_t L;
RHS_t R;
// The evaluation order is always stable, regardless of Commutability.
// The LHS is always matched first.
BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
if (V->getValueID() == Value::InstructionVal + Opc) {
auto *I = cast<BinaryOperator>(V);
return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
(Commutable && L.match(I->getOperand(1)) &&
R.match(I->getOperand(0)));
}
if (auto *CE = dyn_cast<ConstantExpr>(V))
return CE->getOpcode() == Opc &&
((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
(Commutable && L.match(CE->getOperand(1)) &&
R.match(CE->getOperand(0))));
return false;
}
template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
};
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
}
template <typename Op_t> struct FNeg_match {
Op_t X;
FNeg_match(const Op_t &Op) : X(Op) {}
template <typename OpTy> bool match(OpTy *V) {
auto *FPMO = dyn_cast<FPMathOperator>(V);
if (!FPMO)
return false;
if (FPMO->getOpcode() == Instruction::FNeg)
return X.match(FPMO->getOperand(0));
if (FPMO->getOpcode() == Instruction::FSub) {
if (FPMO->hasNoSignedZeros()) {
// With 'nsz', any zero goes.
if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
return false;
} else {
// Without 'nsz', we need fsub -0.0, X exactly.
if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
return false;
}
return X.match(FPMO->getOperand(1));
}
return false;
}
};
/// Match 'fneg X' as 'fsub -0.0, X'.
template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) {
return FNeg_match<OpTy>(X);
}
/// Match 'fneg X' as 'fsub +-0.0, X'.
template <typename RHS>
inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
m_FNegNSZ(const RHS &X) {
return m_FSub(m_AnyZeroFP(), X);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
}
template <typename LHS_t, typename RHS_t, unsigned Opcode,
unsigned WrapFlags = 0>
struct OverflowingBinaryOp_match {
LHS_t L;
RHS_t R;
OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
: L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
if (Op->getOpcode() != Opcode)
return false;
if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
!Op->hasNoUnsignedWrap())
return false;
if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
!Op->hasNoSignedWrap())
return false;
return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
}
return false;
}
};
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
OverflowingBinaryOperator::NoSignedWrap>
m_NSWAdd(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
OverflowingBinaryOperator::NoSignedWrap>(L,
R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
OverflowingBinaryOperator::NoSignedWrap>
m_NSWSub(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
OverflowingBinaryOperator::NoSignedWrap>(L,
R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
OverflowingBinaryOperator::NoSignedWrap>
m_NSWMul(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
OverflowingBinaryOperator::NoSignedWrap>(L,
R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
OverflowingBinaryOperator::NoSignedWrap>
m_NSWShl(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
OverflowingBinaryOperator::NoSignedWrap>(L,
R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWAdd(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
OverflowingBinaryOperator::NoUnsignedWrap>(
L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWSub(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
OverflowingBinaryOperator::NoUnsignedWrap>(
L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWMul(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
OverflowingBinaryOperator::NoUnsignedWrap>(
L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWShl(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
OverflowingBinaryOperator::NoUnsignedWrap>(
L, R);
}
template <typename LHS_t, typename RHS_t, bool Commutable = false>
struct SpecificBinaryOp_match
: public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
unsigned Opcode;
SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
: BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
template <typename OpTy> bool match(OpTy *V) {
return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
}
};
/// Matches a specific opcode.
template <typename LHS, typename RHS>
inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
const RHS &R) {
return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
}
//===----------------------------------------------------------------------===//
// Class that matches a group of binary opcodes.
//
template <typename LHS_t, typename RHS_t, typename Predicate>
struct BinOpPred_match : Predicate {
LHS_t L;
RHS_t R;
BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *I = dyn_cast<Instruction>(V))
return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
R.match(I->getOperand(1));
if (auto *CE = dyn_cast<ConstantExpr>(V))
return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
R.match(CE->getOperand(1));
return false;
}
};
struct is_shift_op {
bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
};
struct is_right_shift_op {
bool isOpType(unsigned Opcode) {
return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
}
};
struct is_logical_shift_op {
bool isOpType(unsigned Opcode) {
return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
}
};
struct is_bitwiselogic_op {
bool isOpType(unsigned Opcode) {
return Instruction::isBitwiseLogicOp(Opcode);
}
};
struct is_idiv_op {
bool isOpType(unsigned Opcode) {
return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
}
};
struct is_irem_op {
bool isOpType(unsigned Opcode) {
return Opcode == Instruction::SRem || Opcode == Instruction::URem;
}
};
/// Matches shift operations.
template <typename LHS, typename RHS>
inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
const RHS &R) {
return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
}
/// Matches logical shift operations.
template <typename LHS, typename RHS>
inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
const RHS &R) {
return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
}
/// Matches logical shift operations.
template <typename LHS, typename RHS>
inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
m_LogicalShift(const LHS &L, const RHS &R) {
return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
}
/// Matches bitwise logic operations.
template <typename LHS, typename RHS>
inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
m_BitwiseLogic(const LHS &L, const RHS &R) {
return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
}
/// Matches integer division operations.
template <typename LHS, typename RHS>
inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
const RHS &R) {
return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
}
/// Matches integer remainder operations.
template <typename LHS, typename RHS>
inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
const RHS &R) {
return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
}
//===----------------------------------------------------------------------===//
// Class that matches exact binary ops.
//
template <typename SubPattern_t> struct Exact_match {
SubPattern_t SubPattern;
Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
return PEO->isExact() && SubPattern.match(V);
return false;
}
};
template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
return SubPattern;
}
//===----------------------------------------------------------------------===//
// Matchers for CmpInst classes
//
template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
bool Commutable = false>
struct CmpClass_match {
PredicateTy &Predicate;
LHS_t L;
RHS_t R;
// The evaluation order is always stable, regardless of Commutability.
// The LHS is always matched first.
CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
: Predicate(Pred), L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *I = dyn_cast<Class>(V)) {
if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
Predicate = I->getPredicate();
return true;
} else if (Commutable && L.match(I->getOperand(1)) &&
R.match(I->getOperand(0))) {
Predicate = I->getSwappedPredicate();
return true;
}
}
return false;
}
};
template <typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
}
template <typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
}
template <typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
}
//===----------------------------------------------------------------------===//
// Matchers for instructions with a given opcode and number of operands.
//
/// Matches instructions with Opcode and three operands.
template <typename T0, unsigned Opcode> struct OneOps_match {
T0 Op1;
OneOps_match(const T0 &Op1) : Op1(Op1) {}
template <typename OpTy> bool match(OpTy *V) {
if (V->getValueID() == Value::InstructionVal + Opcode) {
auto *I = cast<Instruction>(V);
return Op1.match(I->getOperand(0));
}
return false;
}
};
/// Matches instructions with Opcode and three operands.
template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
T0 Op1;
T1 Op2;
TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
template <typename OpTy> bool match(OpTy *V) {
if (V->getValueID() == Value::InstructionVal + Opcode) {
auto *I = cast<Instruction>(V);
return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
}
return false;
}
};
/// Matches instructions with Opcode and three operands.
template <typename T0, typename T1, typename T2, unsigned Opcode>
struct ThreeOps_match {
T0 Op1;
T1 Op2;
T2 Op3;
ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
: Op1(Op1), Op2(Op2), Op3(Op3) {}
template <typename OpTy> bool match(OpTy *V) {
if (V->getValueID() == Value::InstructionVal + Opcode) {
auto *I = cast<Instruction>(V);
return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
Op3.match(I->getOperand(2));
}
return false;
}
};
/// Matches SelectInst.
template <typename Cond, typename LHS, typename RHS>
inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
m_Select(const Cond &C, const LHS &L, const RHS &R) {
return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
}
/// This matches a select of two constants, e.g.:
/// m_SelectCst<-1, 0>(m_Value(V))
template <int64_t L, int64_t R, typename Cond>
inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
Instruction::Select>
m_SelectCst(const Cond &C) {
return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
}
/// Matches FreezeInst.
template <typename OpTy>
inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
return OneOps_match<OpTy, Instruction::Freeze>(Op);
}
/// Matches InsertElementInst.
template <typename Val_t, typename Elt_t, typename Idx_t>
inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
Val, Elt, Idx);
}
/// Matches ExtractElementInst.
template <typename Val_t, typename Idx_t>
inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
}
/// Matches shuffle.
template <typename T0, typename T1, typename T2> struct Shuffle_match {
T0 Op1;
T1 Op2;
T2 Mask;
Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
: Op1(Op1), Op2(Op2), Mask(Mask) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
Mask.match(I->getShuffleMask());
}
return false;
}
};
struct m_Mask {
ArrayRef<int> &MaskRef;
m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
bool match(ArrayRef<int> Mask) {
MaskRef = Mask;
return true;
}
};
struct m_ZeroMask {
bool match(ArrayRef<int> Mask) {
return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
}
};
struct m_SpecificMask {
ArrayRef<int> &MaskRef;
m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
};
struct m_SplatOrUndefMask {
int &SplatIndex;
m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
bool match(ArrayRef<int> Mask) {
auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
if (First == Mask.end())
return false;
SplatIndex = *First;
return all_of(Mask,
[First](int Elem) { return Elem == *First || Elem == -1; });
}
};
/// Matches ShuffleVectorInst independently of mask value.
template <typename V1_t, typename V2_t>
inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
m_Shuffle(const V1_t &v1, const V2_t &v2) {
return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
}
template <typename V1_t, typename V2_t, typename Mask_t>
inline Shuffle_match<V1_t, V2_t, Mask_t>
m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
}
/// Matches LoadInst.
template <typename OpTy>
inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
return OneOps_match<OpTy, Instruction::Load>(Op);
}
/// Matches StoreInst.
template <typename ValueOpTy, typename PointerOpTy>
inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
PointerOp);
}
//===----------------------------------------------------------------------===//
// Matchers for CastInst classes
//
template <typename Op_t, unsigned Opcode> struct CastClass_match {
Op_t Op;
CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *O = dyn_cast<Operator>(V))
return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
return false;
}
};
/// Matches BitCast.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::BitCast>(Op);
}
/// Matches PtrToInt.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
}
/// Matches IntToPtr.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
}
/// Matches Trunc.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::Trunc>(Op);
}
template <typename OpTy>
inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
m_TruncOrSelf(const OpTy &Op) {
return m_CombineOr(m_Trunc(Op), Op);
}
/// Matches SExt.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::SExt>(Op);
}
/// Matches ZExt.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::ZExt>(Op);
}
template <typename OpTy>
inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
m_ZExtOrSelf(const OpTy &Op) {
return m_CombineOr(m_ZExt(Op), Op);
}
template <typename OpTy>
inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
m_SExtOrSelf(const OpTy &Op) {
return m_CombineOr(m_SExt(Op), Op);
}
template <typename OpTy>
inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
CastClass_match<OpTy, Instruction::SExt>>
m_ZExtOrSExt(const OpTy &Op) {
return m_CombineOr(m_ZExt(Op), m_SExt(Op));
}
template <typename OpTy>
inline match_combine_or<
match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
CastClass_match<OpTy, Instruction::SExt>>,
OpTy>
m_ZExtOrSExtOrSelf(const OpTy &Op) {
return m_CombineOr(m_ZExtOrSExt(Op), Op);
}
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::UIToFP>(Op);
}
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::SIToFP>(Op);
}
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::FPToUI>(Op);
}
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::FPToSI>(Op);
}
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
}
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::FPExt>(Op);
}
//===----------------------------------------------------------------------===//
// Matchers for control flow.
//
struct br_match {
BasicBlock *&Succ;
br_match(BasicBlock *&Succ) : Succ(Succ) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *BI = dyn_cast<BranchInst>(V))
if (BI->isUnconditional()) {
Succ = BI->getSuccessor(0);
return true;
}
return false;
}
};
inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
struct brc_match {
Cond_t Cond;
TrueBlock_t T;
FalseBlock_t F;
brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
: Cond(C), T(t), F(f) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *BI = dyn_cast<BranchInst>(V))
if (BI->isConditional() && Cond.match(BI->getCondition()))
return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
return false;
}
};
template <typename Cond_t>
inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
C, m_BasicBlock(T), m_BasicBlock(F));
}
template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
}
//===----------------------------------------------------------------------===//
// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
//
template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
bool Commutable = false>
struct MaxMin_match {
using PredType = Pred_t;
LHS_t L;
RHS_t R;
// The evaluation order is always stable, regardless of Commutability.
// The LHS is always matched first.
MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *II = dyn_cast<IntrinsicInst>(V)) {
Intrinsic::ID IID = II->getIntrinsicID();
if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
(IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
(IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
(IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
return (L.match(LHS) && R.match(RHS)) ||
(Commutable && L.match(RHS) && R.match(LHS));
}
}
// Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
auto *SI = dyn_cast<SelectInst>(V);
if (!SI)
return false;
auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
if (!Cmp)
return false;
// At this point we have a select conditioned on a comparison. Check that
// it is the values returned by the select that are being compared.
auto *TrueVal = SI->getTrueValue();
auto *FalseVal = SI->getFalseValue();
auto *LHS = Cmp->getOperand(0);
auto *RHS = Cmp->getOperand(1);
if ((TrueVal != LHS || FalseVal != RHS) &&
(TrueVal != RHS || FalseVal != LHS))
return false;
typename CmpInst_t::Predicate Pred =
LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
// Does "(x pred y) ? x : y" represent the desired max/min operation?
if (!Pred_t::match(Pred))
return false;
// It does! Bind the operands.
return (L.match(LHS) && R.match(RHS)) ||
(Commutable && L.match(RHS) && R.match(LHS));
}
};
/// Helper class for identifying signed max predicates.
struct smax_pred_ty {
static bool match(ICmpInst::Predicate Pred) {
return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
}
};
/// Helper class for identifying signed min predicates.
struct smin_pred_ty {
static bool match(ICmpInst::Predicate Pred) {
return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
}
};
/// Helper class for identifying unsigned max predicates.
struct umax_pred_ty {
static bool match(ICmpInst::Predicate Pred) {
return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
}
};
/// Helper class for identifying unsigned min predicates.
struct umin_pred_ty {
static bool match(ICmpInst::Predicate Pred) {
return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
}
};
/// Helper class for identifying ordered max predicates.
struct ofmax_pred_ty {
static bool match(FCmpInst::Predicate Pred) {
return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
}
};
/// Helper class for identifying ordered min predicates.
struct ofmin_pred_ty {
static bool match(FCmpInst::Predicate Pred) {
return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
}
};
/// Helper class for identifying unordered max predicates.
struct ufmax_pred_ty {
static bool match(FCmpInst::Predicate Pred) {
return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
}
};
/// Helper class for identifying unordered min predicates.
struct ufmin_pred_ty {
static bool match(FCmpInst::Predicate Pred) {
return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
}
};
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
}
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
}
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
}
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
}
template <typename LHS, typename RHS>
inline match_combine_or<
match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
m_MaxOrMin(const LHS &L, const RHS &R) {
return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
}
/// Match an 'ordered' floating point maximum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
///
/// max(L, R) iff L and R are not NaN
/// m_OrdFMax(L, R) = R iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
const RHS &R) {
return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
}
/// Match an 'ordered' floating point minimum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
///
/// min(L, R) iff L and R are not NaN
/// m_OrdFMin(L, R) = R iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
const RHS &R) {
return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
}
/// Match an 'unordered' floating point maximum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
///
/// max(L, R) iff L and R are not NaN
/// m_UnordFMax(L, R) = L iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS &L, const RHS &R) {
return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
}
/// Match an 'unordered' floating point minimum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
///
/// min(L, R) iff L and R are not NaN
/// m_UnordFMin(L, R) = L iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS &L, const RHS &R) {
return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
}
//===----------------------------------------------------------------------===//
// Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
// Note that S might be matched to other instructions than AddInst.
//
template <typename LHS_t, typename RHS_t, typename Sum_t>
struct UAddWithOverflow_match {
LHS_t L;
RHS_t R;
Sum_t S;
UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
: L(L), R(R), S(S) {}
template <typename OpTy> bool match(OpTy *V) {
Value *ICmpLHS, *ICmpRHS;
ICmpInst::Predicate Pred;
if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
return false;
Value *AddLHS, *AddRHS;
auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
// (a + b) u< a, (a + b) u< b
if (Pred == ICmpInst::ICMP_ULT)
if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
// a >u (a + b), b >u (a + b)
if (Pred == ICmpInst::ICMP_UGT)
if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
Value *Op1;
auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
// (a ^ -1) <u b
if (Pred == ICmpInst::ICMP_ULT) {
if (XorExpr.match(ICmpLHS))
return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
}
// b > u (a ^ -1)
if (Pred == ICmpInst::ICMP_UGT) {
if (XorExpr.match(ICmpRHS))
return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
}
// Match special-case for increment-by-1.
if (Pred == ICmpInst::ICMP_EQ) {
// (a + 1) == 0
// (1 + a) == 0
if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
(m_One().match(AddLHS) || m_One().match(AddRHS)))
return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
// 0 == (a + 1)
// 0 == (1 + a)
if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
(m_One().match(AddLHS) || m_One().match(AddRHS)))
return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
}
return false;
}
};
/// Match an icmp instruction checking for unsigned overflow on addition.
///
/// S is matched to the addition whose result is being checked for overflow, and
/// L and R are matched to the LHS and RHS of S.
template <typename LHS_t, typename RHS_t, typename Sum_t>
UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
}
template <typename Opnd_t> struct Argument_match {
unsigned OpI;
Opnd_t Val;
Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
template <typename OpTy> bool match(OpTy *V) {
// FIXME: Should likely be switched to use `CallBase`.
if (const auto *CI = dyn_cast<CallInst>(V))
return Val.match(CI->getArgOperand(OpI));
return false;
}
};
/// Match an argument.
template <unsigned OpI, typename Opnd_t>
inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
return Argument_match<Opnd_t>(OpI, Op);
}
/// Intrinsic matchers.
struct IntrinsicID_match {
unsigned ID;
IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
template <typename OpTy> bool match(OpTy *V) {
if (const auto *CI = dyn_cast<CallInst>(V))
if (const auto *F = CI->getCalledFunction())
return F->getIntrinsicID() == ID;
return false;
}
};
/// Intrinsic matches are combinations of ID matchers, and argument
/// matchers. Higher arity matcher are defined recursively in terms of and-ing
/// them with lower arity matchers. Here's some convenient typedefs for up to
/// several arguments, and more can be added as needed
template <typename T0 = void, typename T1 = void, typename T2 = void,
typename T3 = void, typename T4 = void, typename T5 = void,
typename T6 = void, typename T7 = void, typename T8 = void,
typename T9 = void, typename T10 = void>
struct m_Intrinsic_Ty;
template <typename T0> struct m_Intrinsic_Ty<T0> {
using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
};
template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
using Ty =
match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
};
template <typename T0, typename T1, typename T2>
struct m_Intrinsic_Ty<T0, T1, T2> {
using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
Argument_match<T2>>;
};
template <typename T0, typename T1, typename T2, typename T3>
struct m_Intrinsic_Ty<T0, T1, T2, T3> {
using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
Argument_match<T3>>;
};
template <typename T0, typename T1, typename T2, typename T3, typename T4>
struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
Argument_match<T4>>;
};
template <typename T0, typename T1, typename T2, typename T3, typename T4,
typename T5>
struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
Argument_match<T5>>;
};
/// Match intrinsic calls like this:
/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
return IntrinsicID_match(IntrID);
}
/// Matches MaskedLoad Intrinsic.
template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
const Opnd3 &Op3) {
return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
}
/// Matches MaskedGather Intrinsic.
template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
const Opnd3 &Op3) {
return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
}
template <Intrinsic::ID IntrID, typename T0>
inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
}
template <Intrinsic::ID IntrID, typename T0, typename T1>
inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
const T1 &Op1) {
return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
}
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
}
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
typename T3>
inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
}
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
typename T3, typename T4>
inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
const T4 &Op4) {
return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
m_Argument<4>(Op4));
}
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
typename T3, typename T4, typename T5>
inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
const T4 &Op4, const T5 &Op5) {
return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
m_Argument<5>(Op5));
}
// Helper intrinsic matching specializations.
template <typename Opnd0>
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
return m_Intrinsic<Intrinsic::bitreverse>(Op0);
}
template <typename Opnd0>
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
return m_Intrinsic<Intrinsic::bswap>(Op0);
}
template <typename Opnd0>
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
return m_Intrinsic<Intrinsic::fabs>(Op0);
}
template <typename Opnd0>
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
return m_Intrinsic<Intrinsic::canonicalize>(Op0);
}
template <typename Opnd0, typename Opnd1>
inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
const Opnd1 &Op1) {
return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
}
template <typename Opnd0, typename Opnd1>
inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
const Opnd1 &Op1) {
return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
}
template <typename Opnd0, typename Opnd1, typename Opnd2>
inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
}
template <typename Opnd0, typename Opnd1, typename Opnd2>
inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
}
template <typename Opnd0>
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) {
return m_Intrinsic<Intrinsic::sqrt>(Op0);
}
template <typename Opnd0, typename Opnd1>
inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0,
const Opnd1 &Op1) {
return m_Intrinsic<Intrinsic::copysign>(Op0, Op1);
}
template <typename Opnd0>
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) {
return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0);
}
//===----------------------------------------------------------------------===//
// Matchers for two-operands operators with the operators in either order
//
/// Matches a BinaryOperator with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
return AnyBinaryOp_match<LHS, RHS, true>(L, R);
}
/// Matches an ICmp with a predicate over LHS and RHS in either order.
/// Swaps the predicate if operands are commuted.
template <typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
R);
}
/// Matches a specific opcode with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline SpecificBinaryOp_match<LHS, RHS, true>
m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
}
/// Matches a Add with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
}
/// Matches a Mul with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
}
/// Matches an And with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
}
/// Matches an Or with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
}
/// Matches an Xor with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
}
/// Matches a 'Neg' as 'sub 0, V'.
template <typename ValTy>
inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
m_Neg(const ValTy &V) {
return m_Sub(m_ZeroInt(), V);
}
/// Matches a 'Neg' as 'sub nsw 0, V'.
template <typename ValTy>
inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
Instruction::Sub,
OverflowingBinaryOperator::NoSignedWrap>
m_NSWNeg(const ValTy &V) {
return m_NSWSub(m_ZeroInt(), V);
}
/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
/// NOTE: we first match the 'Not' (by matching '-1'),
/// and only then match the inner matcher!
template <typename ValTy>
inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true>
m_Not(const ValTy &V) {
return m_c_Xor(m_AllOnes(), V);
}
template <typename ValTy> struct NotForbidUndef_match {
ValTy Val;
NotForbidUndef_match(const ValTy &V) : Val(V) {}
template <typename OpTy> bool match(OpTy *V) {
// We do not use m_c_Xor because that could match an arbitrary APInt that is
// not -1 as C and then fail to match the other operand if it is -1.
// This code should still work even when both operands are constants.
Value *X;
const APInt *C;
if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes())
return Val.match(X);
if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes())
return Val.match(X);
return false;
}
};
/// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the
/// constant value must be composed of only -1 scalar elements.
template <typename ValTy>
inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) {
return NotForbidUndef_match<ValTy>(V);
}
/// Matches an SMin with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
m_c_SMin(const LHS &L, const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
}
/// Matches an SMax with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
m_c_SMax(const LHS &L, const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
}
/// Matches a UMin with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
m_c_UMin(const LHS &L, const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
}
/// Matches a UMax with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
m_c_UMax(const LHS &L, const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
}
template <typename LHS, typename RHS>
inline match_combine_or<
match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
m_c_MaxOrMin(const LHS &L, const RHS &R) {
return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
}
/// Matches FAdd with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
m_c_FAdd(const LHS &L, const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
}
/// Matches FMul with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
m_c_FMul(const LHS &L, const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
}
template <typename Opnd_t> struct Signum_match {
Opnd_t Val;
Signum_match(const Opnd_t &V) : Val(V) {}
template <typename OpTy> bool match(OpTy *V) {
unsigned TypeSize = V->getType()->getScalarSizeInBits();
if (TypeSize == 0)
return false;
unsigned ShiftWidth = TypeSize - 1;
Value *OpL = nullptr, *OpR = nullptr;
// This is the representation of signum we match:
//
// signum(x) == (x >> 63) | (-x >>u 63)
//
// An i1 value is its own signum, so it's correct to match
//
// signum(x) == (x >> 0) | (-x >>u 0)
//
// for i1 values.
auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
auto Signum = m_Or(LHS, RHS);
return Signum.match(V) && OpL == OpR && Val.match(OpL);
}
};
/// Matches a signum pattern.
///
/// signum(x) =
/// x > 0 -> 1
/// x == 0 -> 0
/// x < 0 -> -1
template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
return Signum_match<Val_t>(V);
}
template <int Ind, typename Opnd_t> struct ExtractValue_match {
Opnd_t Val;
ExtractValue_match(const Opnd_t &V) : Val(V) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *I = dyn_cast<ExtractValueInst>(V)) {
// If Ind is -1, don't inspect indices
if (Ind != -1 &&
!(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
return false;
return Val.match(I->getAggregateOperand());
}
return false;
}
};
/// Match a single index ExtractValue instruction.
/// For example m_ExtractValue<1>(...)
template <int Ind, typename Val_t>
inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
return ExtractValue_match<Ind, Val_t>(V);
}
/// Match an ExtractValue instruction with any index.
/// For example m_ExtractValue(...)
template <typename Val_t>
inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
return ExtractValue_match<-1, Val_t>(V);
}
/// Matcher for a single index InsertValue instruction.
template <int Ind, typename T0, typename T1> struct InsertValue_match {
T0 Op0;
T1 Op1;
InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *I = dyn_cast<InsertValueInst>(V)) {
return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
I->getNumIndices() == 1 && Ind == I->getIndices()[0];
}
return false;
}
};
/// Matches a single index InsertValue instruction.
template <int Ind, typename Val_t, typename Elt_t>
inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
const Elt_t &Elt) {
return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
}
/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
/// the constant expression
/// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
/// under the right conditions determined by DataLayout.
struct VScaleVal_match {
const DataLayout &DL;
VScaleVal_match(const DataLayout &DL) : DL(DL) {}
template <typename ITy> bool match(ITy *V) {
if (m_Intrinsic<Intrinsic::vscale>().match(V))
return true;
Value *Ptr;
if (m_PtrToInt(m_Value(Ptr)).match(V)) {
if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
auto *DerefTy = GEP->getSourceElementType();
if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) &&
m_Zero().match(GEP->getPointerOperand()) &&
m_SpecificInt(1).match(GEP->idx_begin()->get()) &&
DL.getTypeAllocSizeInBits(DerefTy).getKnownMinValue() == 8)
return true;
}
}
return false;
}
};
inline VScaleVal_match m_VScale(const DataLayout &DL) {
return VScaleVal_match(DL);
}
template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
struct LogicalOp_match {
LHS L;
RHS R;
LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
template <typename T> bool match(T *V) {
auto *I = dyn_cast<Instruction>(V);
if (!I || !I->getType()->isIntOrIntVectorTy(1))
return false;
if (I->getOpcode() == Opcode) {
auto *Op0 = I->getOperand(0);
auto *Op1 = I->getOperand(1);
return (L.match(Op0) && R.match(Op1)) ||
(Commutable && L.match(Op1) && R.match(Op0));
}
if (auto *Select = dyn_cast<SelectInst>(I)) {
auto *Cond = Select->getCondition();
auto *TVal = Select->getTrueValue();
auto *FVal = Select->getFalseValue();
// Don't match a scalar select of bool vectors.
// Transforms expect a single type for operands if this matches.
if (Cond->getType() != Select->getType())
return false;
if (Opcode == Instruction::And) {
auto *C = dyn_cast<Constant>(FVal);
if (C && C->isNullValue())
return (L.match(Cond) && R.match(TVal)) ||
(Commutable && L.match(TVal) && R.match(Cond));
} else {
assert(Opcode == Instruction::Or);
auto *C = dyn_cast<Constant>(TVal);
if (C && C->isOneValue())
return (L.match(Cond) && R.match(FVal)) ||
(Commutable && L.match(FVal) && R.match(Cond));
}
}
return false;
}
};
/// Matches L && R either in the form of L & R or L ? R : false.
/// Note that the latter form is poison-blocking.
template <typename LHS, typename RHS>
inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L,
const RHS &R) {
return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
}
/// Matches L && R where L and R are arbitrary values.
inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
/// Matches L && R with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline LogicalOp_match<LHS, RHS, Instruction::And, true>
m_c_LogicalAnd(const LHS &L, const RHS &R) {
return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
}
/// Matches L || R either in the form of L | R or L ? true : R.
/// Note that the latter form is poison-blocking.
template <typename LHS, typename RHS>
inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L,
const RHS &R) {
return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
}
/// Matches L || R where L and R are arbitrary values.
inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
/// Matches L || R with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
m_c_LogicalOr(const LHS &L, const RHS &R) {
return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
}
/// Matches either L && R or L || R,
/// either one being in the either binary or logical form.
/// Note that the latter form is poison-blocking.
template <typename LHS, typename RHS, bool Commutable = false>
inline auto m_LogicalOp(const LHS &L, const RHS &R) {
return m_CombineOr(
LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R),
LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R));
}
/// Matches either L && R or L || R where L and R are arbitrary values.
inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); }
/// Matches either L && R or L || R with LHS and RHS in either order.
template <typename LHS, typename RHS>
inline auto m_c_LogicalOp(const LHS &L, const RHS &R) {
return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R);
}
} // end namespace PatternMatch
} // end namespace llvm
#endif // LLVM_IR_PATTERNMATCH_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|