1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value. This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range. To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators. When used with boolean values, the following are important
// ranges: :
//
// [F, F) = {} = Empty set
// [T, F) = {T}
// [F, T) = {F}
// [T, T) = {F, T} = Full set
//
// The other integral ranges use min/max values for special range values. For
// example, for 8-bit types, it uses:
// [0, 0) = {} = Empty set
// [255, 255) = {0..255} = Full Set
//
// Note that ConstantRange can be used to represent either signed or
// unsigned ranges.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_CONSTANTRANGE_H
#define LLVM_IR_CONSTANTRANGE_H
#include "llvm/ADT/APInt.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/Support/Compiler.h"
#include <cstdint>
namespace llvm {
class MDNode;
class raw_ostream;
struct KnownBits;
/// This class represents a range of values.
class [[nodiscard]] ConstantRange {
APInt Lower, Upper;
/// Create empty constant range with same bitwidth.
ConstantRange getEmpty() const {
return ConstantRange(getBitWidth(), false);
}
/// Create full constant range with same bitwidth.
ConstantRange getFull() const {
return ConstantRange(getBitWidth(), true);
}
public:
/// Initialize a full or empty set for the specified bit width.
explicit ConstantRange(uint32_t BitWidth, bool isFullSet);
/// Initialize a range to hold the single specified value.
ConstantRange(APInt Value);
/// Initialize a range of values explicitly. This will assert out if
/// Lower==Upper and Lower != Min or Max value for its type. It will also
/// assert out if the two APInt's are not the same bit width.
ConstantRange(APInt Lower, APInt Upper);
/// Create empty constant range with the given bit width.
static ConstantRange getEmpty(uint32_t BitWidth) {
return ConstantRange(BitWidth, false);
}
/// Create full constant range with the given bit width.
static ConstantRange getFull(uint32_t BitWidth) {
return ConstantRange(BitWidth, true);
}
/// Create non-empty constant range with the given bounds. If Lower and
/// Upper are the same, a full range is returned.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper) {
if (Lower == Upper)
return getFull(Lower.getBitWidth());
return ConstantRange(std::move(Lower), std::move(Upper));
}
/// Initialize a range based on a known bits constraint. The IsSigned flag
/// indicates whether the constant range should not wrap in the signed or
/// unsigned domain.
static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned);
/// Produce the smallest range such that all values that may satisfy the given
/// predicate with any value contained within Other is contained in the
/// returned range. Formally, this returns a superset of
/// 'union over all y in Other . { x : icmp op x y is true }'. If the exact
/// answer is not representable as a ConstantRange, the return value will be a
/// proper superset of the above.
///
/// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &Other);
/// Produce the largest range such that all values in the returned range
/// satisfy the given predicate with all values contained within Other.
/// Formally, this returns a subset of
/// 'intersection over all y in Other . { x : icmp op x y is true }'. If the
/// exact answer is not representable as a ConstantRange, the return value
/// will be a proper subset of the above.
///
/// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &Other);
/// Produce the exact range such that all values in the returned range satisfy
/// the given predicate with any value contained within Other. Formally, this
/// returns the exact answer when the superset of 'union over all y in Other
/// is exactly same as the subset of intersection over all y in Other.
/// { x : icmp op x y is true}'.
///
/// Example: Pred = ult and Other = i8 3 returns [0, 3)
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
const APInt &Other);
/// Does the predicate \p Pred hold between ranges this and \p Other?
/// NOTE: false does not mean that inverse predicate holds!
bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const;
/// Return true iff CR1 ult CR2 is equivalent to CR1 slt CR2.
/// Does not depend on strictness/direction of the predicate.
static bool
areInsensitiveToSignednessOfICmpPredicate(const ConstantRange &CR1,
const ConstantRange &CR2);
/// Return true iff CR1 ult CR2 is equivalent to CR1 sge CR2.
/// Does not depend on strictness/direction of the predicate.
static bool
areInsensitiveToSignednessOfInvertedICmpPredicate(const ConstantRange &CR1,
const ConstantRange &CR2);
/// If the comparison between constant ranges this and Other
/// is insensitive to the signedness of the comparison predicate,
/// return a predicate equivalent to \p Pred, with flipped signedness
/// (i.e. unsigned instead of signed or vice versa), and maybe inverted,
/// otherwise returns CmpInst::Predicate::BAD_ICMP_PREDICATE.
static CmpInst::Predicate
getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred,
const ConstantRange &CR1,
const ConstantRange &CR2);
/// Produce the largest range containing all X such that "X BinOp Y" is
/// guaranteed not to wrap (overflow) for *all* Y in Other. However, there may
/// be *some* Y in Other for which additional X not contained in the result
/// also do not overflow.
///
/// NoWrapKind must be one of OBO::NoUnsignedWrap or OBO::NoSignedWrap.
///
/// Examples:
/// typedef OverflowingBinaryOperator OBO;
/// #define MGNR makeGuaranteedNoWrapRegion
/// MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
/// MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
/// MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
/// MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
/// MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128)
/// MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0)
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
const ConstantRange &Other,
unsigned NoWrapKind);
/// Produce the range that contains X if and only if "X BinOp Other" does
/// not wrap.
static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
const APInt &Other,
unsigned NoWrapKind);
/// Returns true if ConstantRange calculations are supported for intrinsic
/// with \p IntrinsicID.
static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID);
/// Compute range of intrinsic result for the given operand ranges.
static ConstantRange intrinsic(Intrinsic::ID IntrinsicID,
ArrayRef<ConstantRange> Ops);
/// Set up \p Pred and \p RHS such that
/// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this. Return true if
/// successful.
bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
/// Set up \p Pred, \p RHS and \p Offset such that (V + Offset) Pred RHS
/// is true iff V is in the range. Prefers using Offset == 0 if possible.
void
getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS, APInt &Offset) const;
/// Return the lower value for this range.
const APInt &getLower() const { return Lower; }
/// Return the upper value for this range.
const APInt &getUpper() const { return Upper; }
/// Get the bit width of this ConstantRange.
uint32_t getBitWidth() const { return Lower.getBitWidth(); }
/// Return true if this set contains all of the elements possible
/// for this data-type.
bool isFullSet() const;
/// Return true if this set contains no members.
bool isEmptySet() const;
/// Return true if this set wraps around the unsigned domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, 0) == [X, Max]: Not wrapped.
bool isWrappedSet() const;
/// Return true if the exclusive upper bound wraps around the unsigned
/// domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, 0): Wrapped.
bool isUpperWrapped() const;
/// Return true if this set wraps around the signed domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, SignedMin) == [X, SignedMax]: Not wrapped.
bool isSignWrappedSet() const;
/// Return true if the (exclusive) upper bound wraps around the signed
/// domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, SignedMin): Wrapped.
bool isUpperSignWrapped() const;
/// Return true if the specified value is in the set.
bool contains(const APInt &Val) const;
/// Return true if the other range is a subset of this one.
bool contains(const ConstantRange &CR) const;
/// If this set contains a single element, return it, otherwise return null.
const APInt *getSingleElement() const {
if (Upper == Lower + 1)
return &Lower;
return nullptr;
}
/// If this set contains all but a single element, return it, otherwise return
/// null.
const APInt *getSingleMissingElement() const {
if (Lower == Upper + 1)
return &Upper;
return nullptr;
}
/// Return true if this set contains exactly one member.
bool isSingleElement() const { return getSingleElement() != nullptr; }
/// Compare set size of this range with the range CR.
bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;
/// Compare set size of this range with Value.
bool isSizeLargerThan(uint64_t MaxSize) const;
/// Return true if all values in this range are negative.
bool isAllNegative() const;
/// Return true if all values in this range are non-negative.
bool isAllNonNegative() const;
/// Return the largest unsigned value contained in the ConstantRange.
APInt getUnsignedMax() const;
/// Return the smallest unsigned value contained in the ConstantRange.
APInt getUnsignedMin() const;
/// Return the largest signed value contained in the ConstantRange.
APInt getSignedMax() const;
/// Return the smallest signed value contained in the ConstantRange.
APInt getSignedMin() const;
/// Return true if this range is equal to another range.
bool operator==(const ConstantRange &CR) const {
return Lower == CR.Lower && Upper == CR.Upper;
}
bool operator!=(const ConstantRange &CR) const {
return !operator==(CR);
}
/// Compute the maximal number of active bits needed to represent every value
/// in this range.
unsigned getActiveBits() const;
/// Compute the maximal number of bits needed to represent every value
/// in this signed range.
unsigned getMinSignedBits() const;
/// Subtract the specified constant from the endpoints of this constant range.
ConstantRange subtract(const APInt &CI) const;
/// Subtract the specified range from this range (aka relative complement of
/// the sets).
ConstantRange difference(const ConstantRange &CR) const;
/// If represented precisely, the result of some range operations may consist
/// of multiple disjoint ranges. As only a single range may be returned, any
/// range covering these disjoint ranges constitutes a valid result, but some
/// may be more useful than others depending on context. The preferred range
/// type specifies whether a range that is non-wrapping in the unsigned or
/// signed domain, or has the smallest size, is preferred. If a signedness is
/// preferred but all ranges are non-wrapping or all wrapping, then the
/// smallest set size is preferred. If there are multiple smallest sets, any
/// one of them may be returned.
enum PreferredRangeType { Smallest, Unsigned, Signed };
/// Return the range that results from the intersection of this range with
/// another range. If the intersection is disjoint, such that two results
/// are possible, the preferred range is determined by the PreferredRangeType.
ConstantRange intersectWith(const ConstantRange &CR,
PreferredRangeType Type = Smallest) const;
/// Return the range that results from the union of this range
/// with another range. The resultant range is guaranteed to include the
/// elements of both sets, but may contain more. For example, [3, 9) union
/// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
/// in either set before.
ConstantRange unionWith(const ConstantRange &CR,
PreferredRangeType Type = Smallest) const;
/// Intersect the two ranges and return the result if it can be represented
/// exactly, otherwise return std::nullopt.
std::optional<ConstantRange>
exactIntersectWith(const ConstantRange &CR) const;
/// Union the two ranges and return the result if it can be represented
/// exactly, otherwise return std::nullopt.
std::optional<ConstantRange> exactUnionWith(const ConstantRange &CR) const;
/// Return a new range representing the possible values resulting
/// from an application of the specified cast operator to this range. \p
/// BitWidth is the target bitwidth of the cast. For casts which don't
/// change bitwidth, it must be the same as the source bitwidth. For casts
/// which do change bitwidth, the bitwidth must be consistent with the
/// requested cast and source bitwidth.
ConstantRange castOp(Instruction::CastOps CastOp,
uint32_t BitWidth) const;
/// Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// zero extended to BitWidth.
ConstantRange zeroExtend(uint32_t BitWidth) const;
/// Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// sign extended to BitWidth.
ConstantRange signExtend(uint32_t BitWidth) const;
/// Return a new range in the specified integer type, which must be
/// strictly smaller than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// truncated to the specified type.
ConstantRange truncate(uint32_t BitWidth) const;
/// Make this range have the bit width given by \p BitWidth. The
/// value is zero extended, truncated, or left alone to make it that width.
ConstantRange zextOrTrunc(uint32_t BitWidth) const;
/// Make this range have the bit width given by \p BitWidth. The
/// value is sign extended, truncated, or left alone to make it that width.
ConstantRange sextOrTrunc(uint32_t BitWidth) const;
/// Return a new range representing the possible values resulting
/// from an application of the specified binary operator to an left hand side
/// of this range and a right hand side of \p Other.
ConstantRange binaryOp(Instruction::BinaryOps BinOp,
const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an application of the specified overflowing binary operator to a
/// left hand side of this range and a right hand side of \p Other given
/// the provided knowledge about lack of wrapping \p NoWrapKind.
ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp,
const ConstantRange &Other,
unsigned NoWrapKind) const;
/// Return a new range representing the possible values resulting
/// from an addition of a value in this range and a value in \p Other.
ConstantRange add(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an addition with wrap type \p NoWrapKind of a value in this
/// range and a value in \p Other.
/// If the result range is disjoint, the preferred range is determined by the
/// \p PreferredRangeType.
ConstantRange addWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
PreferredRangeType RangeType = Smallest) const;
/// Return a new range representing the possible values resulting
/// from a subtraction of a value in this range and a value in \p Other.
ConstantRange sub(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an subtraction with wrap type \p NoWrapKind of a value in this
/// range and a value in \p Other.
/// If the result range is disjoint, the preferred range is determined by the
/// \p PreferredRangeType.
ConstantRange subWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
PreferredRangeType RangeType = Smallest) const;
/// Return a new range representing the possible values resulting
/// from a multiplication of a value in this range and a value in \p Other,
/// treating both this and \p Other as unsigned ranges.
ConstantRange multiply(const ConstantRange &Other) const;
/// Return range of possible values for a signed multiplication of this and
/// \p Other. However, if overflow is possible always return a full range
/// rather than trying to determine a more precise result.
ConstantRange smul_fast(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed maximum of a value in this range and a value in \p Other.
ConstantRange smax(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned maximum of a value in this range and a value in \p Other.
ConstantRange umax(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed minimum of a value in this range and a value in \p Other.
ConstantRange smin(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned minimum of a value in this range and a value in \p Other.
ConstantRange umin(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned division of a value in this range and a value in
/// \p Other.
ConstantRange udiv(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed division of a value in this range and a value in
/// \p Other. Division by zero and division of SignedMin by -1 are considered
/// undefined behavior, in line with IR, and do not contribute towards the
/// result.
ConstantRange sdiv(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned remainder operation of a value in this range and a
/// value in \p Other.
ConstantRange urem(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed remainder operation of a value in this range and a
/// value in \p Other.
ConstantRange srem(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting from
/// a binary-xor of a value in this range by an all-one value,
/// aka bitwise complement operation.
ConstantRange binaryNot() const;
/// Return a new range representing the possible values resulting
/// from a binary-and of a value in this range by a value in \p Other.
ConstantRange binaryAnd(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a binary-or of a value in this range by a value in \p Other.
ConstantRange binaryOr(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a binary-xor of a value in this range by a value in \p Other.
ConstantRange binaryXor(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a left shift of a value in this range by a value in \p Other.
/// TODO: This isn't fully implemented yet.
ConstantRange shl(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting from a
/// logical right shift of a value in this range and a value in \p Other.
ConstantRange lshr(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting from a
/// arithmetic right shift of a value in this range and a value in \p Other.
ConstantRange ashr(const ConstantRange &Other) const;
/// Perform an unsigned saturating addition of two constant ranges.
ConstantRange uadd_sat(const ConstantRange &Other) const;
/// Perform a signed saturating addition of two constant ranges.
ConstantRange sadd_sat(const ConstantRange &Other) const;
/// Perform an unsigned saturating subtraction of two constant ranges.
ConstantRange usub_sat(const ConstantRange &Other) const;
/// Perform a signed saturating subtraction of two constant ranges.
ConstantRange ssub_sat(const ConstantRange &Other) const;
/// Perform an unsigned saturating multiplication of two constant ranges.
ConstantRange umul_sat(const ConstantRange &Other) const;
/// Perform a signed saturating multiplication of two constant ranges.
ConstantRange smul_sat(const ConstantRange &Other) const;
/// Perform an unsigned saturating left shift of this constant range by a
/// value in \p Other.
ConstantRange ushl_sat(const ConstantRange &Other) const;
/// Perform a signed saturating left shift of this constant range by a
/// value in \p Other.
ConstantRange sshl_sat(const ConstantRange &Other) const;
/// Return a new range that is the logical not of the current set.
ConstantRange inverse() const;
/// Calculate absolute value range. If the original range contains signed
/// min, then the resulting range will contain signed min if and only if
/// \p IntMinIsPoison is false.
ConstantRange abs(bool IntMinIsPoison = false) const;
/// Represents whether an operation on the given constant range is known to
/// always or never overflow.
enum class OverflowResult {
/// Always overflows in the direction of signed/unsigned min value.
AlwaysOverflowsLow,
/// Always overflows in the direction of signed/unsigned max value.
AlwaysOverflowsHigh,
/// May or may not overflow.
MayOverflow,
/// Never overflows.
NeverOverflows,
};
/// Return whether unsigned add of the two ranges always/never overflows.
OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const;
/// Return whether signed add of the two ranges always/never overflows.
OverflowResult signedAddMayOverflow(const ConstantRange &Other) const;
/// Return whether unsigned sub of the two ranges always/never overflows.
OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const;
/// Return whether signed sub of the two ranges always/never overflows.
OverflowResult signedSubMayOverflow(const ConstantRange &Other) const;
/// Return whether unsigned mul of the two ranges always/never overflows.
OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const;
/// Return known bits for values in this range.
KnownBits toKnownBits() const;
/// Print out the bounds to a stream.
void print(raw_ostream &OS) const;
/// Allow printing from a debugger easily.
void dump() const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
CR.print(OS);
return OS;
}
/// Parse out a conservative ConstantRange from !range metadata.
///
/// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
} // end namespace llvm
#endif // LLVM_IR_CONSTANTRANGE_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|