1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===-- OpDescriptor.h ------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Provides the fuzzerop::Descriptor class and related tools for describing
// operations an IR fuzzer can work with.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_FUZZMUTATE_OPDESCRIPTOR_H
#define LLVM_FUZZMUTATE_OPDESCRIPTOR_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include <functional>
namespace llvm {
class Instruction;
namespace fuzzerop {
/// @{
/// Populate a small list of potentially interesting constants of a given type.
void makeConstantsWithType(Type *T, std::vector<Constant *> &Cs);
std::vector<Constant *> makeConstantsWithType(Type *T);
/// @}
/// A matcher/generator for finding suitable values for the next source in an
/// operation's partially completed argument list.
///
/// Given that we're building some operation X and may have already filled some
/// subset of its operands, this predicate determines if some value New is
/// suitable for the next operand or generates a set of values that are
/// suitable.
class SourcePred {
public:
/// Given a list of already selected operands, returns whether a given new
/// operand is suitable for the next operand.
using PredT = std::function<bool(ArrayRef<Value *> Cur, const Value *New)>;
/// Given a list of already selected operands and a set of valid base types
/// for a fuzzer, generates a list of constants that could be used for the
/// next operand.
using MakeT = std::function<std::vector<Constant *>(
ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes)>;
private:
PredT Pred;
MakeT Make;
public:
/// Create a fully general source predicate.
SourcePred(PredT Pred, MakeT Make) : Pred(Pred), Make(Make) {}
SourcePred(PredT Pred, std::nullopt_t) : Pred(Pred) {
Make = [Pred](ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes) {
// Default filter just calls Pred on each of the base types.
std::vector<Constant *> Result;
for (Type *T : BaseTypes) {
Constant *V = UndefValue::get(T);
if (Pred(Cur, V))
makeConstantsWithType(T, Result);
}
if (Result.empty())
report_fatal_error("Predicate does not match for base types");
return Result;
};
}
/// Returns true if \c New is compatible for the argument after \c Cur
bool matches(ArrayRef<Value *> Cur, const Value *New) {
return Pred(Cur, New);
}
/// Generates a list of potential values for the argument after \c Cur.
std::vector<Constant *> generate(ArrayRef<Value *> Cur,
ArrayRef<Type *> BaseTypes) {
return Make(Cur, BaseTypes);
}
};
/// A description of some operation we can build while fuzzing IR.
struct OpDescriptor {
unsigned Weight;
SmallVector<SourcePred, 2> SourcePreds;
std::function<Value *(ArrayRef<Value *>, Instruction *)> BuilderFunc;
};
static inline SourcePred onlyType(Type *Only) {
auto Pred = [Only](ArrayRef<Value *>, const Value *V) {
return V->getType() == Only;
};
auto Make = [Only](ArrayRef<Value *>, ArrayRef<Type *>) {
return makeConstantsWithType(Only);
};
return {Pred, Make};
}
static inline SourcePred anyType() {
auto Pred = [](ArrayRef<Value *>, const Value *V) {
return !V->getType()->isVoidTy();
};
auto Make = std::nullopt;
return {Pred, Make};
}
static inline SourcePred anyIntType() {
auto Pred = [](ArrayRef<Value *>, const Value *V) {
return V->getType()->isIntegerTy();
};
auto Make = std::nullopt;
return {Pred, Make};
}
static inline SourcePred anyFloatType() {
auto Pred = [](ArrayRef<Value *>, const Value *V) {
return V->getType()->isFloatingPointTy();
};
auto Make = std::nullopt;
return {Pred, Make};
}
static inline SourcePred anyPtrType() {
auto Pred = [](ArrayRef<Value *>, const Value *V) {
return V->getType()->isPointerTy() && !V->isSwiftError();
};
auto Make = [](ArrayRef<Value *>, ArrayRef<Type *> Ts) {
std::vector<Constant *> Result;
// TODO: Should these point at something?
for (Type *T : Ts)
Result.push_back(UndefValue::get(PointerType::getUnqual(T)));
return Result;
};
return {Pred, Make};
}
static inline SourcePred sizedPtrType() {
auto Pred = [](ArrayRef<Value *>, const Value *V) {
if (V->isSwiftError())
return false;
if (const auto *PtrT = dyn_cast<PointerType>(V->getType()))
return PtrT->isOpaque() ||
PtrT->getNonOpaquePointerElementType()->isSized();
return false;
};
auto Make = [](ArrayRef<Value *>, ArrayRef<Type *> Ts) {
std::vector<Constant *> Result;
for (Type *T : Ts)
if (T->isSized())
Result.push_back(UndefValue::get(PointerType::getUnqual(T)));
return Result;
};
return {Pred, Make};
}
static inline SourcePred anyAggregateType() {
auto Pred = [](ArrayRef<Value *>, const Value *V) {
// We can't index zero sized arrays.
if (isa<ArrayType>(V->getType()))
return V->getType()->getArrayNumElements() > 0;
// Structs can also be zero sized. I.e opaque types.
if (isa<StructType>(V->getType()))
return V->getType()->getStructNumElements() > 0;
return V->getType()->isAggregateType();
};
// TODO: For now we only find aggregates in BaseTypes. It might be better to
// manufacture them out of the base types in some cases.
auto Find = std::nullopt;
return {Pred, Find};
}
static inline SourcePred anyVectorType() {
auto Pred = [](ArrayRef<Value *>, const Value *V) {
return V->getType()->isVectorTy();
};
// TODO: For now we only find vectors in BaseTypes. It might be better to
// manufacture vectors out of the base types, but it's tricky to be sure
// that's actually a reasonable type.
auto Make = std::nullopt;
return {Pred, Make};
}
/// Match values that have the same type as the first source.
static inline SourcePred matchFirstType() {
auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
assert(!Cur.empty() && "No first source yet");
return V->getType() == Cur[0]->getType();
};
auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) {
assert(!Cur.empty() && "No first source yet");
return makeConstantsWithType(Cur[0]->getType());
};
return {Pred, Make};
}
/// Match values that have the first source's scalar type.
static inline SourcePred matchScalarOfFirstType() {
auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
assert(!Cur.empty() && "No first source yet");
return V->getType() == Cur[0]->getType()->getScalarType();
};
auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) {
assert(!Cur.empty() && "No first source yet");
return makeConstantsWithType(Cur[0]->getType()->getScalarType());
};
return {Pred, Make};
}
} // namespace fuzzerop
} // namespace llvm
#endif // LLVM_FUZZMUTATE_OPDESCRIPTOR_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|