1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- DWARFDebugFrame.h - Parsing of .debug_frame --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H
#define LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/iterator.h"
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
#include "llvm/Support/Error.h"
#include <map>
#include <memory>
#include <vector>
namespace llvm {
class raw_ostream;
class DWARFDataExtractor;
class MCRegisterInfo;
struct DIDumpOptions;
namespace dwarf {
constexpr uint32_t InvalidRegisterNumber = UINT32_MAX;
/// A class that represents a location for the Call Frame Address (CFA) or a
/// register. This is decoded from the DWARF Call Frame Information
/// instructions and put into an UnwindRow.
class UnwindLocation {
public:
enum Location {
/// Not specified.
Unspecified,
/// Register is not available and can't be recovered.
Undefined,
/// Register value is in the register, nothing needs to be done to unwind
/// it:
/// reg = reg
Same,
/// Register is in or at the CFA plus an offset:
/// reg = CFA + offset
/// reg = defef(CFA + offset)
CFAPlusOffset,
/// Register or CFA is in or at a register plus offset, optionally in
/// an address space:
/// reg = reg + offset [in addrspace]
/// reg = deref(reg + offset [in addrspace])
RegPlusOffset,
/// Register or CFA value is in or at a value found by evaluating a DWARF
/// expression:
/// reg = eval(dwarf_expr)
/// reg = deref(eval(dwarf_expr))
DWARFExpr,
/// Value is a constant value contained in "Offset":
/// reg = Offset
Constant,
};
private:
Location Kind; /// The type of the location that describes how to unwind it.
uint32_t RegNum; /// The register number for Kind == RegPlusOffset.
int32_t Offset; /// The offset for Kind == CFAPlusOffset or RegPlusOffset.
std::optional<uint32_t> AddrSpace; /// The address space for Kind ==
/// RegPlusOffset for CFA.
std::optional<DWARFExpression> Expr; /// The DWARF expression for Kind ==
/// DWARFExpression.
bool Dereference; /// If true, the resulting location must be dereferenced
/// after the location value is computed.
// Constructors are private to force people to use the create static
// functions.
UnwindLocation(Location K)
: Kind(K), RegNum(InvalidRegisterNumber), Offset(0),
AddrSpace(std::nullopt), Dereference(false) {}
UnwindLocation(Location K, uint32_t Reg, int32_t Off,
std::optional<uint32_t> AS, bool Deref)
: Kind(K), RegNum(Reg), Offset(Off), AddrSpace(AS), Dereference(Deref) {}
UnwindLocation(DWARFExpression E, bool Deref)
: Kind(DWARFExpr), RegNum(InvalidRegisterNumber), Offset(0), Expr(E),
Dereference(Deref) {}
public:
/// Create a location whose rule is set to Unspecified. This means the
/// register value might be in the same register but it wasn't specified in
/// the unwind opcodes.
static UnwindLocation createUnspecified();
/// Create a location where the value is undefined and not available. This can
/// happen when a register is volatile and can't be recovered.
static UnwindLocation createUndefined();
/// Create a location where the value is known to be in the register itself.
static UnwindLocation createSame();
/// Create a location that is in (Deref == false) or at (Deref == true) the
/// CFA plus an offset. Most registers that are spilled onto the stack use
/// this rule. The rule for the register will use this rule and specify a
/// unique offset from the CFA with \a Deref set to true. This value will be
/// relative to a CFA value which is typically defined using the register
/// plus offset location. \see createRegisterPlusOffset(...) for more
/// information.
static UnwindLocation createIsCFAPlusOffset(int32_t Off);
static UnwindLocation createAtCFAPlusOffset(int32_t Off);
/// Create a location where the saved value is in (Deref == false) or at
/// (Deref == true) a regiser plus an offset and, optionally, in the specified
/// address space (used mostly for the CFA).
///
/// The CFA is usually defined using this rule by using the stack pointer or
/// frame pointer as the register, with an offset that accounts for all
/// spilled registers and all local variables in a function, and Deref ==
/// false.
static UnwindLocation
createIsRegisterPlusOffset(uint32_t Reg, int32_t Off,
std::optional<uint32_t> AddrSpace = std::nullopt);
static UnwindLocation
createAtRegisterPlusOffset(uint32_t Reg, int32_t Off,
std::optional<uint32_t> AddrSpace = std::nullopt);
/// Create a location whose value is the result of evaluating a DWARF
/// expression. This allows complex expressions to be evaluated in order to
/// unwind a register or CFA value.
static UnwindLocation createIsDWARFExpression(DWARFExpression Expr);
static UnwindLocation createAtDWARFExpression(DWARFExpression Expr);
static UnwindLocation createIsConstant(int32_t Value);
Location getLocation() const { return Kind; }
uint32_t getRegister() const { return RegNum; }
int32_t getOffset() const { return Offset; }
uint32_t getAddressSpace() const {
assert(Kind == RegPlusOffset && AddrSpace);
return *AddrSpace;
}
int32_t getConstant() const { return Offset; }
/// Some opcodes will modify the CFA location's register only, so we need
/// to be able to modify the CFA register when evaluating DWARF Call Frame
/// Information opcodes.
void setRegister(uint32_t NewRegNum) { RegNum = NewRegNum; }
/// Some opcodes will modify the CFA location's offset only, so we need
/// to be able to modify the CFA offset when evaluating DWARF Call Frame
/// Information opcodes.
void setOffset(int32_t NewOffset) { Offset = NewOffset; }
/// Some opcodes modify a constant value and we need to be able to update
/// the constant value (DW_CFA_GNU_window_save which is also known as
// DW_CFA_AARCH64_negate_ra_state).
void setConstant(int32_t Value) { Offset = Value; }
std::optional<DWARFExpression> getDWARFExpressionBytes() const {
return Expr;
}
/// Dump a location expression as text and use the register information if
/// some is provided.
///
/// \param OS the stream to use for output.
///
/// \param MRI register information that helps emit register names insteead
/// of raw register numbers.
///
/// \param IsEH true if the DWARF Call Frame Information is from .eh_frame
/// instead of from .debug_frame. This is needed for register number
/// conversion because some register numbers differ between the two sections
/// for certain architectures like x86.
void dump(raw_ostream &OS, DIDumpOptions DumpOpts) const;
bool operator==(const UnwindLocation &RHS) const;
};
raw_ostream &operator<<(raw_ostream &OS, const UnwindLocation &R);
/// A class that can track all registers with locations in a UnwindRow object.
///
/// Register locations use a map where the key is the register number and the
/// the value is a UnwindLocation.
///
/// The register maps are put into a class so that all register locations can
/// be copied when parsing the unwind opcodes DW_CFA_remember_state and
/// DW_CFA_restore_state.
class RegisterLocations {
std::map<uint32_t, UnwindLocation> Locations;
public:
/// Return the location for the register in \a RegNum if there is a location.
///
/// \param RegNum the register number to find a location for.
///
/// \returns A location if one is available for \a RegNum, or std::nullopt
/// otherwise.
std::optional<UnwindLocation> getRegisterLocation(uint32_t RegNum) const {
auto Pos = Locations.find(RegNum);
if (Pos == Locations.end())
return std::nullopt;
return Pos->second;
}
/// Set the location for the register in \a RegNum to \a Location.
///
/// \param RegNum the register number to set the location for.
///
/// \param Location the UnwindLocation that describes how to unwind the value.
void setRegisterLocation(uint32_t RegNum, const UnwindLocation &Location) {
Locations.erase(RegNum);
Locations.insert(std::make_pair(RegNum, Location));
}
/// Removes any rule for the register in \a RegNum.
///
/// \param RegNum the register number to remove the location for.
void removeRegisterLocation(uint32_t RegNum) { Locations.erase(RegNum); }
/// Dump all registers + locations that are currently defined in this object.
///
/// \param OS the stream to use for output.
///
/// \param MRI register information that helps emit register names insteead
/// of raw register numbers.
///
/// \param IsEH true if the DWARF Call Frame Information is from .eh_frame
/// instead of from .debug_frame. This is needed for register number
/// conversion because some register numbers differ between the two sections
/// for certain architectures like x86.
void dump(raw_ostream &OS, DIDumpOptions DumpOpts) const;
/// Returns true if we have any register locations in this object.
bool hasLocations() const { return !Locations.empty(); }
size_t size() const { return Locations.size(); }
bool operator==(const RegisterLocations &RHS) const {
return Locations == RHS.Locations;
}
};
raw_ostream &operator<<(raw_ostream &OS, const RegisterLocations &RL);
/// A class that represents a single row in the unwind table that is decoded by
/// parsing the DWARF Call Frame Information opcodes.
///
/// The row consists of an optional address, the rule to unwind the CFA and all
/// rules to unwind any registers. If the address doesn't have a value, this
/// row represents the initial instructions for a CIE. If the address has a
/// value the UnwindRow represents a row in the UnwindTable for a FDE. The
/// address is the first address for which the CFA location and register rules
/// are valid within a function.
///
/// UnwindRow objects are created by parsing opcodes in the DWARF Call Frame
/// Information and UnwindRow objects are lazily populated and pushed onto a
/// stack in the UnwindTable when evaluating this state machine. Accessors are
/// needed for the address, CFA value, and register locations as the opcodes
/// encode a state machine that produces a sorted array of UnwindRow objects
/// \see UnwindTable.
class UnwindRow {
/// The address will be valid when parsing the instructions in a FDE. If
/// invalid, this object represents the initial instructions of a CIE.
std::optional<uint64_t> Address; ///< Address for row in FDE, invalid for CIE.
UnwindLocation CFAValue; ///< How to unwind the Call Frame Address (CFA).
RegisterLocations RegLocs; ///< How to unwind all registers in this list.
public:
UnwindRow() : CFAValue(UnwindLocation::createUnspecified()) {}
/// Returns true if the address is valid in this object.
bool hasAddress() const { return Address.has_value(); }
/// Get the address for this row.
///
/// Clients should only call this function after verifying it has a valid
/// address with a call to \see hasAddress().
uint64_t getAddress() const { return *Address; }
/// Set the address for this UnwindRow.
///
/// The address represents the first address for which the CFAValue and
/// RegLocs are valid within a function.
void setAddress(uint64_t Addr) { Address = Addr; }
/// Offset the address for this UnwindRow.
///
/// The address represents the first address for which the CFAValue and
/// RegLocs are valid within a function. Clients must ensure that this object
/// already has an address (\see hasAddress()) prior to calling this
/// function.
void slideAddress(uint64_t Offset) { *Address += Offset; }
UnwindLocation &getCFAValue() { return CFAValue; }
const UnwindLocation &getCFAValue() const { return CFAValue; }
RegisterLocations &getRegisterLocations() { return RegLocs; }
const RegisterLocations &getRegisterLocations() const { return RegLocs; }
/// Dump the UnwindRow to the stream.
///
/// \param OS the stream to use for output.
///
/// \param MRI register information that helps emit register names insteead
/// of raw register numbers.
///
/// \param IsEH true if the DWARF Call Frame Information is from .eh_frame
/// instead of from .debug_frame. This is needed for register number
/// conversion because some register numbers differ between the two sections
/// for certain architectures like x86.
///
/// \param IndentLevel specify the indent level as an integer. The UnwindRow
/// will be output to the stream preceded by 2 * IndentLevel number of spaces.
void dump(raw_ostream &OS, DIDumpOptions DumpOpts,
unsigned IndentLevel = 0) const;
};
raw_ostream &operator<<(raw_ostream &OS, const UnwindRow &Row);
class CFIProgram;
class CIE;
class FDE;
/// A class that contains all UnwindRow objects for an FDE or a single unwind
/// row for a CIE. To unwind an address the rows, which are sorted by start
/// address, can be searched to find the UnwindRow with the lowest starting
/// address that is greater than or equal to the address that is being looked
/// up.
class UnwindTable {
public:
using RowContainer = std::vector<UnwindRow>;
using iterator = RowContainer::iterator;
using const_iterator = RowContainer::const_iterator;
size_t size() const { return Rows.size(); }
iterator begin() { return Rows.begin(); }
const_iterator begin() const { return Rows.begin(); }
iterator end() { return Rows.end(); }
const_iterator end() const { return Rows.end(); }
const UnwindRow &operator[](size_t Index) const {
assert(Index < size());
return Rows[Index];
}
/// Dump the UnwindTable to the stream.
///
/// \param OS the stream to use for output.
///
/// \param MRI register information that helps emit register names insteead
/// of raw register numbers.
///
/// \param IsEH true if the DWARF Call Frame Information is from .eh_frame
/// instead of from .debug_frame. This is needed for register number
/// conversion because some register numbers differ between the two sections
/// for certain architectures like x86.
///
/// \param IndentLevel specify the indent level as an integer. The UnwindRow
/// will be output to the stream preceded by 2 * IndentLevel number of spaces.
void dump(raw_ostream &OS, DIDumpOptions DumpOpts,
unsigned IndentLevel = 0) const;
/// Create an UnwindTable from a Common Information Entry (CIE).
///
/// \param Cie The Common Information Entry to extract the table from. The
/// CFIProgram is retrieved from the \a Cie object and used to create the
/// UnwindTable.
///
/// \returns An error if the DWARF Call Frame Information opcodes have state
/// machine errors, or a valid UnwindTable otherwise.
static Expected<UnwindTable> create(const CIE *Cie);
/// Create an UnwindTable from a Frame Descriptor Entry (FDE).
///
/// \param Fde The Frame Descriptor Entry to extract the table from. The
/// CFIProgram is retrieved from the \a Fde object and used to create the
/// UnwindTable.
///
/// \returns An error if the DWARF Call Frame Information opcodes have state
/// machine errors, or a valid UnwindTable otherwise.
static Expected<UnwindTable> create(const FDE *Fde);
private:
RowContainer Rows;
/// The end address when data is extracted from a FDE. This value will be
/// invalid when a UnwindTable is extracted from a CIE.
std::optional<uint64_t> EndAddress;
/// Parse the information in the CFIProgram and update the CurrRow object
/// that the state machine describes.
///
/// This is an internal implementation that emulates the state machine
/// described in the DWARF Call Frame Information opcodes and will push
/// CurrRow onto the Rows container when needed.
///
/// \param CFIP the CFI program that contains the opcodes from a CIE or FDE.
///
/// \param CurrRow the current row to modify while parsing the state machine.
///
/// \param InitialLocs If non-NULL, we are parsing a FDE and this contains
/// the initial register locations from the CIE. If NULL, then a CIE's
/// opcodes are being parsed and this is not needed. This is used for the
/// DW_CFA_restore and DW_CFA_restore_extended opcodes.
Error parseRows(const CFIProgram &CFIP, UnwindRow &CurrRow,
const RegisterLocations *InitialLocs);
};
raw_ostream &operator<<(raw_ostream &OS, const UnwindTable &Rows);
/// Represent a sequence of Call Frame Information instructions that, when read
/// in order, construct a table mapping PC to frame state. This can also be
/// referred to as "CFI rules" in DWARF literature to avoid confusion with
/// computer programs in the broader sense, and in this context each instruction
/// would be a rule to establish the mapping. Refer to pg. 172 in the DWARF5
/// manual, "6.4.1 Structure of Call Frame Information".
class CFIProgram {
public:
static constexpr size_t MaxOperands = 3;
typedef SmallVector<uint64_t, MaxOperands> Operands;
/// An instruction consists of a DWARF CFI opcode and an optional sequence of
/// operands. If it refers to an expression, then this expression has its own
/// sequence of operations and operands handled separately by DWARFExpression.
struct Instruction {
Instruction(uint8_t Opcode) : Opcode(Opcode) {}
uint8_t Opcode;
Operands Ops;
// Associated DWARF expression in case this instruction refers to one
std::optional<DWARFExpression> Expression;
Expected<uint64_t> getOperandAsUnsigned(const CFIProgram &CFIP,
uint32_t OperandIdx) const;
Expected<int64_t> getOperandAsSigned(const CFIProgram &CFIP,
uint32_t OperandIdx) const;
};
using InstrList = std::vector<Instruction>;
using iterator = InstrList::iterator;
using const_iterator = InstrList::const_iterator;
iterator begin() { return Instructions.begin(); }
const_iterator begin() const { return Instructions.begin(); }
iterator end() { return Instructions.end(); }
const_iterator end() const { return Instructions.end(); }
unsigned size() const { return (unsigned)Instructions.size(); }
bool empty() const { return Instructions.empty(); }
uint64_t codeAlign() const { return CodeAlignmentFactor; }
int64_t dataAlign() const { return DataAlignmentFactor; }
Triple::ArchType triple() const { return Arch; }
CFIProgram(uint64_t CodeAlignmentFactor, int64_t DataAlignmentFactor,
Triple::ArchType Arch)
: CodeAlignmentFactor(CodeAlignmentFactor),
DataAlignmentFactor(DataAlignmentFactor),
Arch(Arch) {}
/// Parse and store a sequence of CFI instructions from Data,
/// starting at *Offset and ending at EndOffset. *Offset is updated
/// to EndOffset upon successful parsing, or indicates the offset
/// where a problem occurred in case an error is returned.
Error parse(DWARFDataExtractor Data, uint64_t *Offset, uint64_t EndOffset);
void dump(raw_ostream &OS, DIDumpOptions DumpOpts,
unsigned IndentLevel = 1) const;
void addInstruction(const Instruction &I) { Instructions.push_back(I); }
/// Get a DWARF CFI call frame string for the given DW_CFA opcode.
StringRef callFrameString(unsigned Opcode) const;
private:
std::vector<Instruction> Instructions;
const uint64_t CodeAlignmentFactor;
const int64_t DataAlignmentFactor;
Triple::ArchType Arch;
/// Convenience method to add a new instruction with the given opcode.
void addInstruction(uint8_t Opcode) {
Instructions.push_back(Instruction(Opcode));
}
/// Add a new single-operand instruction.
void addInstruction(uint8_t Opcode, uint64_t Operand1) {
Instructions.push_back(Instruction(Opcode));
Instructions.back().Ops.push_back(Operand1);
}
/// Add a new instruction that has two operands.
void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) {
Instructions.push_back(Instruction(Opcode));
Instructions.back().Ops.push_back(Operand1);
Instructions.back().Ops.push_back(Operand2);
}
/// Add a new instruction that has three operands.
void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2,
uint64_t Operand3) {
Instructions.push_back(Instruction(Opcode));
Instructions.back().Ops.push_back(Operand1);
Instructions.back().Ops.push_back(Operand2);
Instructions.back().Ops.push_back(Operand3);
}
/// Types of operands to CFI instructions
/// In DWARF, this type is implicitly tied to a CFI instruction opcode and
/// thus this type doesn't need to be explictly written to the file (this is
/// not a DWARF encoding). The relationship of instrs to operand types can
/// be obtained from getOperandTypes() and is only used to simplify
/// instruction printing.
enum OperandType {
OT_Unset,
OT_None,
OT_Address,
OT_Offset,
OT_FactoredCodeOffset,
OT_SignedFactDataOffset,
OT_UnsignedFactDataOffset,
OT_Register,
OT_AddressSpace,
OT_Expression
};
/// Get the OperandType as a "const char *".
static const char *operandTypeString(OperandType OT);
/// Retrieve the array describing the types of operands according to the enum
/// above. This is indexed by opcode.
static ArrayRef<OperandType[MaxOperands]> getOperandTypes();
/// Print \p Opcode's operand number \p OperandIdx which has value \p Operand.
void printOperand(raw_ostream &OS, DIDumpOptions DumpOpts,
const Instruction &Instr, unsigned OperandIdx,
uint64_t Operand) const;
};
/// An entry in either debug_frame or eh_frame. This entry can be a CIE or an
/// FDE.
class FrameEntry {
public:
enum FrameKind { FK_CIE, FK_FDE };
FrameEntry(FrameKind K, bool IsDWARF64, uint64_t Offset, uint64_t Length,
uint64_t CodeAlign, int64_t DataAlign, Triple::ArchType Arch)
: Kind(K), IsDWARF64(IsDWARF64), Offset(Offset), Length(Length),
CFIs(CodeAlign, DataAlign, Arch) {}
virtual ~FrameEntry() = default;
FrameKind getKind() const { return Kind; }
uint64_t getOffset() const { return Offset; }
uint64_t getLength() const { return Length; }
const CFIProgram &cfis() const { return CFIs; }
CFIProgram &cfis() { return CFIs; }
/// Dump the instructions in this CFI fragment
virtual void dump(raw_ostream &OS, DIDumpOptions DumpOpts) const = 0;
protected:
const FrameKind Kind;
const bool IsDWARF64;
/// Offset of this entry in the section.
const uint64_t Offset;
/// Entry length as specified in DWARF.
const uint64_t Length;
CFIProgram CFIs;
};
/// DWARF Common Information Entry (CIE)
class CIE : public FrameEntry {
public:
// CIEs (and FDEs) are simply container classes, so the only sensible way to
// create them is by providing the full parsed contents in the constructor.
CIE(bool IsDWARF64, uint64_t Offset, uint64_t Length, uint8_t Version,
SmallString<8> Augmentation, uint8_t AddressSize,
uint8_t SegmentDescriptorSize, uint64_t CodeAlignmentFactor,
int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister,
SmallString<8> AugmentationData, uint32_t FDEPointerEncoding,
uint32_t LSDAPointerEncoding, std::optional<uint64_t> Personality,
std::optional<uint32_t> PersonalityEnc, Triple::ArchType Arch)
: FrameEntry(FK_CIE, IsDWARF64, Offset, Length, CodeAlignmentFactor,
DataAlignmentFactor, Arch),
Version(Version), Augmentation(std::move(Augmentation)),
AddressSize(AddressSize), SegmentDescriptorSize(SegmentDescriptorSize),
CodeAlignmentFactor(CodeAlignmentFactor),
DataAlignmentFactor(DataAlignmentFactor),
ReturnAddressRegister(ReturnAddressRegister),
AugmentationData(std::move(AugmentationData)),
FDEPointerEncoding(FDEPointerEncoding),
LSDAPointerEncoding(LSDAPointerEncoding), Personality(Personality),
PersonalityEnc(PersonalityEnc) {}
static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_CIE; }
StringRef getAugmentationString() const { return Augmentation; }
uint64_t getCodeAlignmentFactor() const { return CodeAlignmentFactor; }
int64_t getDataAlignmentFactor() const { return DataAlignmentFactor; }
uint8_t getVersion() const { return Version; }
uint64_t getReturnAddressRegister() const { return ReturnAddressRegister; }
std::optional<uint64_t> getPersonalityAddress() const { return Personality; }
std::optional<uint32_t> getPersonalityEncoding() const {
return PersonalityEnc;
}
StringRef getAugmentationData() const { return AugmentationData; }
uint32_t getFDEPointerEncoding() const { return FDEPointerEncoding; }
uint32_t getLSDAPointerEncoding() const { return LSDAPointerEncoding; }
void dump(raw_ostream &OS, DIDumpOptions DumpOpts) const override;
private:
/// The following fields are defined in section 6.4.1 of the DWARF standard v4
const uint8_t Version;
const SmallString<8> Augmentation;
const uint8_t AddressSize;
const uint8_t SegmentDescriptorSize;
const uint64_t CodeAlignmentFactor;
const int64_t DataAlignmentFactor;
const uint64_t ReturnAddressRegister;
// The following are used when the CIE represents an EH frame entry.
const SmallString<8> AugmentationData;
const uint32_t FDEPointerEncoding;
const uint32_t LSDAPointerEncoding;
const std::optional<uint64_t> Personality;
const std::optional<uint32_t> PersonalityEnc;
};
/// DWARF Frame Description Entry (FDE)
class FDE : public FrameEntry {
public:
FDE(bool IsDWARF64, uint64_t Offset, uint64_t Length, uint64_t CIEPointer,
uint64_t InitialLocation, uint64_t AddressRange, CIE *Cie,
std::optional<uint64_t> LSDAAddress, Triple::ArchType Arch)
: FrameEntry(FK_FDE, IsDWARF64, Offset, Length,
Cie ? Cie->getCodeAlignmentFactor() : 0,
Cie ? Cie->getDataAlignmentFactor() : 0, Arch),
CIEPointer(CIEPointer), InitialLocation(InitialLocation),
AddressRange(AddressRange), LinkedCIE(Cie), LSDAAddress(LSDAAddress) {}
~FDE() override = default;
const CIE *getLinkedCIE() const { return LinkedCIE; }
uint64_t getCIEPointer() const { return CIEPointer; }
uint64_t getInitialLocation() const { return InitialLocation; }
uint64_t getAddressRange() const { return AddressRange; }
std::optional<uint64_t> getLSDAAddress() const { return LSDAAddress; }
void dump(raw_ostream &OS, DIDumpOptions DumpOpts) const override;
static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_FDE; }
private:
/// The following fields are defined in section 6.4.1 of the DWARFv3 standard.
/// Note that CIE pointers in EH FDEs, unlike DWARF FDEs, contain relative
/// offsets to the linked CIEs. See the following link for more info:
/// https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
const uint64_t CIEPointer;
const uint64_t InitialLocation;
const uint64_t AddressRange;
const CIE *LinkedCIE;
const std::optional<uint64_t> LSDAAddress;
};
} // end namespace dwarf
/// A parsed .debug_frame or .eh_frame section
class DWARFDebugFrame {
const Triple::ArchType Arch;
// True if this is parsing an eh_frame section.
const bool IsEH;
// Not zero for sane pointer values coming out of eh_frame
const uint64_t EHFrameAddress;
std::vector<std::unique_ptr<dwarf::FrameEntry>> Entries;
using iterator = pointee_iterator<decltype(Entries)::const_iterator>;
/// Return the entry at the given offset or nullptr.
dwarf::FrameEntry *getEntryAtOffset(uint64_t Offset) const;
public:
// If IsEH is true, assume it is a .eh_frame section. Otherwise,
// it is a .debug_frame section. EHFrameAddress should be different
// than zero for correct parsing of .eh_frame addresses when they
// use a PC-relative encoding.
DWARFDebugFrame(Triple::ArchType Arch,
bool IsEH = false, uint64_t EHFrameAddress = 0);
~DWARFDebugFrame();
/// Dump the section data into the given stream.
void dump(raw_ostream &OS, DIDumpOptions DumpOpts,
std::optional<uint64_t> Offset) const;
/// Parse the section from raw data. \p Data is assumed to contain the whole
/// frame section contents to be parsed.
Error parse(DWARFDataExtractor Data);
/// Return whether the section has any entries.
bool empty() const { return Entries.empty(); }
/// DWARF Frame entries accessors
iterator begin() const { return Entries.begin(); }
iterator end() const { return Entries.end(); }
iterator_range<iterator> entries() const {
return iterator_range<iterator>(Entries.begin(), Entries.end());
}
uint64_t getEHFrameAddress() const { return EHFrameAddress; }
};
} // end namespace llvm
#endif // LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|