1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file describes how to lower LLVM code to machine code. This has two
/// main components:
///
/// 1. Which ValueTypes are natively supported by the target.
/// 2. Which operations are supported for supported ValueTypes.
/// 3. Cost thresholds for alternative implementations of certain operations.
///
/// In addition it has a few other components, like information about FP
/// immediates.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_TARGETLOWERING_H
#define LLVM_CODEGEN_TARGETLOWERING_H
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/ComplexDeinterleavingPass.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdint>
#include <iterator>
#include <map>
#include <string>
#include <utility>
#include <vector>
namespace llvm {
class AssumptionCache;
class CCState;
class CCValAssign;
class Constant;
class FastISel;
class FunctionLoweringInfo;
class GlobalValue;
class Loop;
class GISelKnownBits;
class IntrinsicInst;
class IRBuilderBase;
struct KnownBits;
class LegacyDivergenceAnalysis;
class LLVMContext;
class MachineBasicBlock;
class MachineFunction;
class MachineInstr;
class MachineJumpTableInfo;
class MachineLoop;
class MachineRegisterInfo;
class MCContext;
class MCExpr;
class Module;
class ProfileSummaryInfo;
class TargetLibraryInfo;
class TargetMachine;
class TargetRegisterClass;
class TargetRegisterInfo;
class TargetTransformInfo;
class Value;
namespace Sched {
enum Preference {
None, // No preference
Source, // Follow source order.
RegPressure, // Scheduling for lowest register pressure.
Hybrid, // Scheduling for both latency and register pressure.
ILP, // Scheduling for ILP in low register pressure mode.
VLIW, // Scheduling for VLIW targets.
Fast, // Fast suboptimal list scheduling
Linearize // Linearize DAG, no scheduling
};
} // end namespace Sched
// MemOp models a memory operation, either memset or memcpy/memmove.
struct MemOp {
private:
// Shared
uint64_t Size;
bool DstAlignCanChange; // true if destination alignment can satisfy any
// constraint.
Align DstAlign; // Specified alignment of the memory operation.
bool AllowOverlap;
// memset only
bool IsMemset; // If setthis memory operation is a memset.
bool ZeroMemset; // If set clears out memory with zeros.
// memcpy only
bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
// constant so it does not need to be loaded.
Align SrcAlign; // Inferred alignment of the source or default value if the
// memory operation does not need to load the value.
public:
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
Align SrcAlign, bool IsVolatile,
bool MemcpyStrSrc = false) {
MemOp Op;
Op.Size = Size;
Op.DstAlignCanChange = DstAlignCanChange;
Op.DstAlign = DstAlign;
Op.AllowOverlap = !IsVolatile;
Op.IsMemset = false;
Op.ZeroMemset = false;
Op.MemcpyStrSrc = MemcpyStrSrc;
Op.SrcAlign = SrcAlign;
return Op;
}
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
bool IsZeroMemset, bool IsVolatile) {
MemOp Op;
Op.Size = Size;
Op.DstAlignCanChange = DstAlignCanChange;
Op.DstAlign = DstAlign;
Op.AllowOverlap = !IsVolatile;
Op.IsMemset = true;
Op.ZeroMemset = IsZeroMemset;
Op.MemcpyStrSrc = false;
return Op;
}
uint64_t size() const { return Size; }
Align getDstAlign() const {
assert(!DstAlignCanChange);
return DstAlign;
}
bool isFixedDstAlign() const { return !DstAlignCanChange; }
bool allowOverlap() const { return AllowOverlap; }
bool isMemset() const { return IsMemset; }
bool isMemcpy() const { return !IsMemset; }
bool isMemcpyWithFixedDstAlign() const {
return isMemcpy() && !DstAlignCanChange;
}
bool isZeroMemset() const { return isMemset() && ZeroMemset; }
bool isMemcpyStrSrc() const {
assert(isMemcpy() && "Must be a memcpy");
return MemcpyStrSrc;
}
Align getSrcAlign() const {
assert(isMemcpy() && "Must be a memcpy");
return SrcAlign;
}
bool isSrcAligned(Align AlignCheck) const {
return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
}
bool isDstAligned(Align AlignCheck) const {
return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
}
bool isAligned(Align AlignCheck) const {
return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
}
};
/// This base class for TargetLowering contains the SelectionDAG-independent
/// parts that can be used from the rest of CodeGen.
class TargetLoweringBase {
public:
/// This enum indicates whether operations are valid for a target, and if not,
/// what action should be used to make them valid.
enum LegalizeAction : uint8_t {
Legal, // The target natively supports this operation.
Promote, // This operation should be executed in a larger type.
Expand, // Try to expand this to other ops, otherwise use a libcall.
LibCall, // Don't try to expand this to other ops, always use a libcall.
Custom // Use the LowerOperation hook to implement custom lowering.
};
/// This enum indicates whether a types are legal for a target, and if not,
/// what action should be used to make them valid.
enum LegalizeTypeAction : uint8_t {
TypeLegal, // The target natively supports this type.
TypePromoteInteger, // Replace this integer with a larger one.
TypeExpandInteger, // Split this integer into two of half the size.
TypeSoftenFloat, // Convert this float to a same size integer type.
TypeExpandFloat, // Split this float into two of half the size.
TypeScalarizeVector, // Replace this one-element vector with its element.
TypeSplitVector, // Split this vector into two of half the size.
TypeWidenVector, // This vector should be widened into a larger vector.
TypePromoteFloat, // Replace this float with a larger one.
TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
// While it is theoretically possible to
// legalize operations on scalable types with a
// loop that handles the vscale * #lanes of the
// vector, this is non-trivial at SelectionDAG
// level and these types are better to be
// widened or promoted.
};
/// LegalizeKind holds the legalization kind that needs to happen to EVT
/// in order to type-legalize it.
using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
/// Enum that describes how the target represents true/false values.
enum BooleanContent {
UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
ZeroOrOneBooleanContent, // All bits zero except for bit 0.
ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
};
/// Enum that describes what type of support for selects the target has.
enum SelectSupportKind {
ScalarValSelect, // The target supports scalar selects (ex: cmov).
ScalarCondVectorVal, // The target supports selects with a scalar condition
// and vector values (ex: cmov).
VectorMaskSelect // The target supports vector selects with a vector
// mask (ex: x86 blends).
};
/// Enum that specifies what an atomic load/AtomicRMWInst is expanded
/// to, if at all. Exists because different targets have different levels of
/// support for these atomic instructions, and also have different options
/// w.r.t. what they should expand to.
enum class AtomicExpansionKind {
None, // Don't expand the instruction.
CastToInteger, // Cast the atomic instruction to another type, e.g. from
// floating-point to integer type.
LLSC, // Expand the instruction into loadlinked/storeconditional; used
// by ARM/AArch64.
LLOnly, // Expand the (load) instruction into just a load-linked, which has
// greater atomic guarantees than a normal load.
CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
BitTestIntrinsic, // Use a target-specific intrinsic for special bit
// operations; used by X86.
CmpArithIntrinsic,// Use a target-specific intrinsic for special compare
// operations; used by X86.
Expand, // Generic expansion in terms of other atomic operations.
// Rewrite to a non-atomic form for use in a known non-preemptible
// environment.
NotAtomic
};
/// Enum that specifies when a multiplication should be expanded.
enum class MulExpansionKind {
Always, // Always expand the instruction.
OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
// or custom.
};
/// Enum that specifies when a float negation is beneficial.
enum class NegatibleCost {
Cheaper = 0, // Negated expression is cheaper.
Neutral = 1, // Negated expression has the same cost.
Expensive = 2 // Negated expression is more expensive.
};
class ArgListEntry {
public:
Value *Val = nullptr;
SDValue Node = SDValue();
Type *Ty = nullptr;
bool IsSExt : 1;
bool IsZExt : 1;
bool IsInReg : 1;
bool IsSRet : 1;
bool IsNest : 1;
bool IsByVal : 1;
bool IsByRef : 1;
bool IsInAlloca : 1;
bool IsPreallocated : 1;
bool IsReturned : 1;
bool IsSwiftSelf : 1;
bool IsSwiftAsync : 1;
bool IsSwiftError : 1;
bool IsCFGuardTarget : 1;
MaybeAlign Alignment = std::nullopt;
Type *IndirectType = nullptr;
ArgListEntry()
: IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
IsNest(false), IsByVal(false), IsByRef(false), IsInAlloca(false),
IsPreallocated(false), IsReturned(false), IsSwiftSelf(false),
IsSwiftAsync(false), IsSwiftError(false), IsCFGuardTarget(false) {}
void setAttributes(const CallBase *Call, unsigned ArgIdx);
};
using ArgListTy = std::vector<ArgListEntry>;
virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
ArgListTy &Args) const {};
static ISD::NodeType getExtendForContent(BooleanContent Content) {
switch (Content) {
case UndefinedBooleanContent:
// Extend by adding rubbish bits.
return ISD::ANY_EXTEND;
case ZeroOrOneBooleanContent:
// Extend by adding zero bits.
return ISD::ZERO_EXTEND;
case ZeroOrNegativeOneBooleanContent:
// Extend by copying the sign bit.
return ISD::SIGN_EXTEND;
}
llvm_unreachable("Invalid content kind");
}
explicit TargetLoweringBase(const TargetMachine &TM);
TargetLoweringBase(const TargetLoweringBase &) = delete;
TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
virtual ~TargetLoweringBase() = default;
/// Return true if the target support strict float operation
bool isStrictFPEnabled() const {
return IsStrictFPEnabled;
}
protected:
/// Initialize all of the actions to default values.
void initActions();
public:
const TargetMachine &getTargetMachine() const { return TM; }
virtual bool useSoftFloat() const { return false; }
/// Return the pointer type for the given address space, defaults to
/// the pointer type from the data layout.
/// FIXME: The default needs to be removed once all the code is updated.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
}
/// Return the in-memory pointer type for the given address space, defaults to
/// the pointer type from the data layout. FIXME: The default needs to be
/// removed once all the code is updated.
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
}
/// Return the type for frame index, which is determined by
/// the alloca address space specified through the data layout.
MVT getFrameIndexTy(const DataLayout &DL) const {
return getPointerTy(DL, DL.getAllocaAddrSpace());
}
/// Return the type for code pointers, which is determined by the program
/// address space specified through the data layout.
MVT getProgramPointerTy(const DataLayout &DL) const {
return getPointerTy(DL, DL.getProgramAddressSpace());
}
/// Return the type for operands of fence.
/// TODO: Let fence operands be of i32 type and remove this.
virtual MVT getFenceOperandTy(const DataLayout &DL) const {
return getPointerTy(DL);
}
/// Return the type to use for a scalar shift opcode, given the shifted amount
/// type. Targets should return a legal type if the input type is legal.
/// Targets can return a type that is too small if the input type is illegal.
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
/// Returns the type for the shift amount of a shift opcode. For vectors,
/// returns the input type. For scalars, behavior depends on \p LegalTypes. If
/// \p LegalTypes is true, calls getScalarShiftAmountTy, otherwise uses
/// pointer type. If getScalarShiftAmountTy or pointer type cannot represent
/// all possible shift amounts, returns MVT::i32. In general, \p LegalTypes
/// should be set to true for calls during type legalization and after type
/// legalization has been completed.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
bool LegalTypes = true) const;
/// Return the preferred type to use for a shift opcode, given the shifted
/// amount type is \p ShiftValueTy.
LLVM_READONLY
virtual LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const {
return ShiftValueTy;
}
/// Returns the type to be used for the index operand of:
/// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
/// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
virtual MVT getVectorIdxTy(const DataLayout &DL) const {
return getPointerTy(DL);
}
/// Returns the type to be used for the EVL/AVL operand of VP nodes:
/// ISD::VP_ADD, ISD::VP_SUB, etc. It must be a legal scalar integer type,
/// and must be at least as large as i32. The EVL is implicitly zero-extended
/// to any larger type.
virtual MVT getVPExplicitVectorLengthTy() const { return MVT::i32; }
/// This callback is used to inspect load/store instructions and add
/// target-specific MachineMemOperand flags to them. The default
/// implementation does nothing.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const {
return MachineMemOperand::MONone;
}
MachineMemOperand::Flags
getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL,
AssumptionCache *AC = nullptr,
const TargetLibraryInfo *LibInfo = nullptr) const;
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI,
const DataLayout &DL) const;
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI,
const DataLayout &DL) const;
virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
return true;
}
/// Return true if the @llvm.get.active.lane.mask intrinsic should be expanded
/// using generic code in SelectionDAGBuilder.
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const {
return true;
}
/// Return true if it is profitable to convert a select of FP constants into
/// a constant pool load whose address depends on the select condition. The
/// parameter may be used to differentiate a select with FP compare from
/// integer compare.
virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
return true;
}
/// Return true if multiple condition registers are available.
bool hasMultipleConditionRegisters() const {
return HasMultipleConditionRegisters;
}
/// Return true if the target has BitExtract instructions.
bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
/// Return the preferred vector type legalization action.
virtual TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const {
// The default action for one element vectors is to scalarize
if (VT.getVectorElementCount().isScalar())
return TypeScalarizeVector;
// The default action for an odd-width vector is to widen.
if (!VT.isPow2VectorType())
return TypeWidenVector;
// The default action for other vectors is to promote
return TypePromoteInteger;
}
// Return true if the half type should be passed around as i16, but promoted
// to float around arithmetic. The default behavior is to pass around as
// float and convert around loads/stores/bitcasts and other places where
// the size matters.
virtual bool softPromoteHalfType() const { return false; }
// There are two general methods for expanding a BUILD_VECTOR node:
// 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
// them together.
// 2. Build the vector on the stack and then load it.
// If this function returns true, then method (1) will be used, subject to
// the constraint that all of the necessary shuffles are legal (as determined
// by isShuffleMaskLegal). If this function returns false, then method (2) is
// always used. The vector type, and the number of defined values, are
// provided.
virtual bool
shouldExpandBuildVectorWithShuffles(EVT /* VT */,
unsigned DefinedValues) const {
return DefinedValues < 3;
}
/// Return true if integer divide is usually cheaper than a sequence of
/// several shifts, adds, and multiplies for this target.
/// The definition of "cheaper" may depend on whether we're optimizing
/// for speed or for size.
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
/// Return true if the target can handle a standalone remainder operation.
virtual bool hasStandaloneRem(EVT VT) const {
return true;
}
/// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
// Default behavior is to replace SQRT(X) with X*RSQRT(X).
return false;
}
/// Reciprocal estimate status values used by the functions below.
enum ReciprocalEstimate : int {
Unspecified = -1,
Disabled = 0,
Enabled = 1
};
/// Return a ReciprocalEstimate enum value for a square root of the given type
/// based on the function's attributes. If the operation is not overridden by
/// the function's attributes, "Unspecified" is returned and target defaults
/// are expected to be used for instruction selection.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
/// Return a ReciprocalEstimate enum value for a division of the given type
/// based on the function's attributes. If the operation is not overridden by
/// the function's attributes, "Unspecified" is returned and target defaults
/// are expected to be used for instruction selection.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
/// Return the refinement step count for a square root of the given type based
/// on the function's attributes. If the operation is not overridden by
/// the function's attributes, "Unspecified" is returned and target defaults
/// are expected to be used for instruction selection.
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
/// Return the refinement step count for a division of the given type based
/// on the function's attributes. If the operation is not overridden by
/// the function's attributes, "Unspecified" is returned and target defaults
/// are expected to be used for instruction selection.
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
/// Returns true if target has indicated at least one type should be bypassed.
bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
/// Returns map of slow types for division or remainder with corresponding
/// fast types
const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
return BypassSlowDivWidths;
}
/// Return true only if vscale must be a power of two.
virtual bool isVScaleKnownToBeAPowerOfTwo() const { return false; }
/// Return true if Flow Control is an expensive operation that should be
/// avoided.
bool isJumpExpensive() const { return JumpIsExpensive; }
/// Return true if selects are only cheaper than branches if the branch is
/// unlikely to be predicted right.
bool isPredictableSelectExpensive() const {
return PredictableSelectIsExpensive;
}
virtual bool fallBackToDAGISel(const Instruction &Inst) const {
return false;
}
/// Return true if the following transform is beneficial:
/// fold (conv (load x)) -> (load (conv*)x)
/// On architectures that don't natively support some vector loads
/// efficiently, casting the load to a smaller vector of larger types and
/// loading is more efficient, however, this can be undone by optimizations in
/// dag combiner.
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
const SelectionDAG &DAG,
const MachineMemOperand &MMO) const;
/// Return true if the following transform is beneficial:
/// (store (y (conv x)), y*)) -> (store x, (x*))
virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
const SelectionDAG &DAG,
const MachineMemOperand &MMO) const {
// Default to the same logic as loads.
return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
}
/// Return true if it is expected to be cheaper to do a store of a non-zero
/// vector constant with the given size and type for the address space than to
/// store the individual scalar element constants.
virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
unsigned NumElem,
unsigned AddrSpace) const {
return false;
}
/// Allow store merging for the specified type after legalization in addition
/// to before legalization. This may transform stores that do not exist
/// earlier (for example, stores created from intrinsics).
virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
return true;
}
/// Returns if it's reasonable to merge stores to MemVT size.
virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
const MachineFunction &MF) const {
return true;
}
/// Return true if it is cheap to speculate a call to intrinsic cttz.
virtual bool isCheapToSpeculateCttz(Type *Ty) const {
return false;
}
/// Return true if it is cheap to speculate a call to intrinsic ctlz.
virtual bool isCheapToSpeculateCtlz(Type *Ty) const {
return false;
}
/// Return true if ctlz instruction is fast.
virtual bool isCtlzFast() const {
return false;
}
/// Return the maximum number of "x & (x - 1)" operations that can be done
/// instead of deferring to a custom CTPOP.
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const {
return 1;
}
/// Return true if instruction generated for equality comparison is folded
/// with instruction generated for signed comparison.
virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
/// Return true if the heuristic to prefer icmp eq zero should be used in code
/// gen prepare.
virtual bool preferZeroCompareBranch() const { return false; }
/// Return true if it is safe to transform an integer-domain bitwise operation
/// into the equivalent floating-point operation. This should be set to true
/// if the target has IEEE-754-compliant fabs/fneg operations for the input
/// type.
virtual bool hasBitPreservingFPLogic(EVT VT) const {
return false;
}
/// Return true if it is cheaper to split the store of a merged int val
/// from a pair of smaller values into multiple stores.
virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
return false;
}
/// Return if the target supports combining a
/// chain like:
/// \code
/// %andResult = and %val1, #mask
/// %icmpResult = icmp %andResult, 0
/// \endcode
/// into a single machine instruction of a form like:
/// \code
/// cc = test %register, #mask
/// \endcode
virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
return false;
}
/// Use bitwise logic to make pairs of compares more efficient. For example:
/// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
/// This should be true when it takes more than one instruction to lower
/// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
/// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
return false;
}
/// Return the preferred operand type if the target has a quick way to compare
/// integer values of the given size. Assume that any legal integer type can
/// be compared efficiently. Targets may override this to allow illegal wide
/// types to return a vector type if there is support to compare that type.
virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
MVT VT = MVT::getIntegerVT(NumBits);
return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
}
/// Return true if the target should transform:
/// (X & Y) == Y ---> (~X & Y) == 0
/// (X & Y) != Y ---> (~X & Y) != 0
///
/// This may be profitable if the target has a bitwise and-not operation that
/// sets comparison flags. A target may want to limit the transformation based
/// on the type of Y or if Y is a constant.
///
/// Note that the transform will not occur if Y is known to be a power-of-2
/// because a mask and compare of a single bit can be handled by inverting the
/// predicate, for example:
/// (X & 8) == 8 ---> (X & 8) != 0
virtual bool hasAndNotCompare(SDValue Y) const {
return false;
}
/// Return true if the target has a bitwise and-not operation:
/// X = ~A & B
/// This can be used to simplify select or other instructions.
virtual bool hasAndNot(SDValue X) const {
// If the target has the more complex version of this operation, assume that
// it has this operation too.
return hasAndNotCompare(X);
}
/// Return true if the target has a bit-test instruction:
/// (X & (1 << Y)) ==/!= 0
/// This knowledge can be used to prevent breaking the pattern,
/// or creating it if it could be recognized.
virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
/// There are two ways to clear extreme bits (either low or high):
/// Mask: x & (-1 << y) (the instcombine canonical form)
/// Shifts: x >> y << y
/// Return true if the variant with 2 variable shifts is preferred.
/// Return false if there is no preference.
virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const {
// By default, let's assume that no one prefers shifts.
return false;
}
/// Return true if it is profitable to fold a pair of shifts into a mask.
/// This is usually true on most targets. But some targets, like Thumb1,
/// have immediate shift instructions, but no immediate "and" instruction;
/// this makes the fold unprofitable.
virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N,
CombineLevel Level) const {
return true;
}
/// Should we tranform the IR-optimal check for whether given truncation
/// down into KeptBits would be truncating or not:
/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
/// Into it's more traditional form:
/// ((%x << C) a>> C) dstcond %x
/// Return true if we should transform.
/// Return false if there is no preference.
virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
unsigned KeptBits) const {
// By default, let's assume that no one prefers shifts.
return false;
}
/// Given the pattern
/// (X & (C l>>/<< Y)) ==/!= 0
/// return true if it should be transformed into:
/// ((X <</l>> Y) & C) ==/!= 0
/// WARNING: if 'X' is a constant, the fold may deadlock!
/// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
/// here because it can end up being not linked in.
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
unsigned OldShiftOpcode, unsigned NewShiftOpcode,
SelectionDAG &DAG) const {
if (hasBitTest(X, Y)) {
// One interesting pattern that we'd want to form is 'bit test':
// ((1 << Y) & C) ==/!= 0
// But we also need to be careful not to try to reverse that fold.
// Is this '1 << Y' ?
if (OldShiftOpcode == ISD::SHL && CC->isOne())
return false; // Keep the 'bit test' pattern.
// Will it be '1 << Y' after the transform ?
if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
return true; // Do form the 'bit test' pattern.
}
// If 'X' is a constant, and we transform, then we will immediately
// try to undo the fold, thus causing endless combine loop.
// So by default, let's assume everyone prefers the fold
// iff 'X' is not a constant.
return !XC;
}
/// These two forms are equivalent:
/// sub %y, (xor %x, -1)
/// add (add %x, 1), %y
/// The variant with two add's is IR-canonical.
/// Some targets may prefer one to the other.
virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
// By default, let's assume that everyone prefers the form with two add's.
return true;
}
// Return true if the target wants to transform Op(Splat(X)) -> Splat(Op(X))
virtual bool preferScalarizeSplat(unsigned Opc) const { return true; }
/// Return true if the target wants to use the optimization that
/// turns ext(promotableInst1(...(promotableInstN(load)))) into
/// promotedInst1(...(promotedInstN(ext(load)))).
bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
/// Return true if the target can combine store(extractelement VectorTy,
/// Idx).
/// \p Cost[out] gives the cost of that transformation when this is true.
virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
unsigned &Cost) const {
return false;
}
/// Return true if inserting a scalar into a variable element of an undef
/// vector is more efficiently handled by splatting the scalar instead.
virtual bool shouldSplatInsEltVarIndex(EVT) const {
return false;
}
/// Return true if target always benefits from combining into FMA for a
/// given value type. This must typically return false on targets where FMA
/// takes more cycles to execute than FADD.
virtual bool enableAggressiveFMAFusion(EVT VT) const { return false; }
/// Return true if target always benefits from combining into FMA for a
/// given value type. This must typically return false on targets where FMA
/// takes more cycles to execute than FADD.
virtual bool enableAggressiveFMAFusion(LLT Ty) const { return false; }
/// Return the ValueType of the result of SETCC operations.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
EVT VT) const;
/// Return the ValueType for comparison libcalls. Comparison libcalls include
/// floating point comparison calls, and Ordered/Unordered check calls on
/// floating point numbers.
virtual
MVT::SimpleValueType getCmpLibcallReturnType() const;
/// For targets without i1 registers, this gives the nature of the high-bits
/// of boolean values held in types wider than i1.
///
/// "Boolean values" are special true/false values produced by nodes like
/// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
/// Not to be confused with general values promoted from i1. Some cpus
/// distinguish between vectors of boolean and scalars; the isVec parameter
/// selects between the two kinds. For example on X86 a scalar boolean should
/// be zero extended from i1, while the elements of a vector of booleans
/// should be sign extended from i1.
///
/// Some cpus also treat floating point types the same way as they treat
/// vectors instead of the way they treat scalars.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
if (isVec)
return BooleanVectorContents;
return isFloat ? BooleanFloatContents : BooleanContents;
}
BooleanContent getBooleanContents(EVT Type) const {
return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
}
/// Promote the given target boolean to a target boolean of the given type.
/// A target boolean is an integer value, not necessarily of type i1, the bits
/// of which conform to getBooleanContents.
///
/// ValVT is the type of values that produced the boolean.
SDValue promoteTargetBoolean(SelectionDAG &DAG, SDValue Bool,
EVT ValVT) const {
SDLoc dl(Bool);
EVT BoolVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ValVT);
ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(ValVT));
return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
}
/// Return target scheduling preference.
Sched::Preference getSchedulingPreference() const {
return SchedPreferenceInfo;
}
/// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
/// for different nodes. This function returns the preference (or none) for
/// the given node.
virtual Sched::Preference getSchedulingPreference(SDNode *) const {
return Sched::None;
}
/// Return the register class that should be used for the specified value
/// type.
virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
(void)isDivergent;
const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
assert(RC && "This value type is not natively supported!");
return RC;
}
/// Allows target to decide about the register class of the
/// specific value that is live outside the defining block.
/// Returns true if the value needs uniform register class.
virtual bool requiresUniformRegister(MachineFunction &MF,
const Value *) const {
return false;
}
/// Return the 'representative' register class for the specified value
/// type.
///
/// The 'representative' register class is the largest legal super-reg
/// register class for the register class of the value type. For example, on
/// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
/// register class is GR64 on x86_64.
virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
return RC;
}
/// Return the cost of the 'representative' register class for the specified
/// value type.
virtual uint8_t getRepRegClassCostFor(MVT VT) const {
return RepRegClassCostForVT[VT.SimpleTy];
}
/// Return the preferred strategy to legalize tihs SHIFT instruction, with
/// \p ExpansionFactor being the recursion depth - how many expansion needed.
enum class ShiftLegalizationStrategy {
ExpandToParts,
ExpandThroughStack,
LowerToLibcall
};
virtual ShiftLegalizationStrategy
preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N,
unsigned ExpansionFactor) const {
if (ExpansionFactor == 1)
return ShiftLegalizationStrategy::ExpandToParts;
return ShiftLegalizationStrategy::ExpandThroughStack;
}
/// Return true if the target has native support for the specified value type.
/// This means that it has a register that directly holds it without
/// promotions or expansions.
bool isTypeLegal(EVT VT) const {
assert(!VT.isSimple() ||
(unsigned)VT.getSimpleVT().SimpleTy < std::size(RegClassForVT));
return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
}
class ValueTypeActionImpl {
/// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
/// that indicates how instruction selection should deal with the type.
LegalizeTypeAction ValueTypeActions[MVT::VALUETYPE_SIZE];
public:
ValueTypeActionImpl() {
std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
TypeLegal);
}
LegalizeTypeAction getTypeAction(MVT VT) const {
return ValueTypeActions[VT.SimpleTy];
}
void setTypeAction(MVT VT, LegalizeTypeAction Action) {
ValueTypeActions[VT.SimpleTy] = Action;
}
};
const ValueTypeActionImpl &getValueTypeActions() const {
return ValueTypeActions;
}
/// Return pair that represents the legalization kind (first) that needs to
/// happen to EVT (second) in order to type-legalize it.
///
/// First: how we should legalize values of this type, either it is already
/// legal (return 'Legal') or we need to promote it to a larger type (return
/// 'Promote'), or we need to expand it into multiple registers of smaller
/// integer type (return 'Expand'). 'Custom' is not an option.
///
/// Second: for types supported by the target, this is an identity function.
/// For types that must be promoted to larger types, this returns the larger
/// type to promote to. For integer types that are larger than the largest
/// integer register, this contains one step in the expansion to get to the
/// smaller register. For illegal floating point types, this returns the
/// integer type to transform to.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
/// Return how we should legalize values of this type, either it is already
/// legal (return 'Legal') or we need to promote it to a larger type (return
/// 'Promote'), or we need to expand it into multiple registers of smaller
/// integer type (return 'Expand'). 'Custom' is not an option.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
return getTypeConversion(Context, VT).first;
}
LegalizeTypeAction getTypeAction(MVT VT) const {
return ValueTypeActions.getTypeAction(VT);
}
/// For types supported by the target, this is an identity function. For
/// types that must be promoted to larger types, this returns the larger type
/// to promote to. For integer types that are larger than the largest integer
/// register, this contains one step in the expansion to get to the smaller
/// register. For illegal floating point types, this returns the integer type
/// to transform to.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
return getTypeConversion(Context, VT).second;
}
/// For types supported by the target, this is an identity function. For
/// types that must be expanded (i.e. integer types that are larger than the
/// largest integer register or illegal floating point types), this returns
/// the largest legal type it will be expanded to.
EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
assert(!VT.isVector());
while (true) {
switch (getTypeAction(Context, VT)) {
case TypeLegal:
return VT;
case TypeExpandInteger:
VT = getTypeToTransformTo(Context, VT);
break;
default:
llvm_unreachable("Type is not legal nor is it to be expanded!");
}
}
}
/// Vector types are broken down into some number of legal first class types.
/// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
/// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
/// turns into 4 EVT::i32 values with both PPC and X86.
///
/// This method returns the number of registers needed, and the VT for each
/// register. It also returns the VT and quantity of the intermediate values
/// before they are promoted/expanded.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
EVT &IntermediateVT,
unsigned &NumIntermediates,
MVT &RegisterVT) const;
/// Certain targets such as MIPS require that some types such as vectors are
/// always broken down into scalars in some contexts. This occurs even if the
/// vector type is legal.
virtual unsigned getVectorTypeBreakdownForCallingConv(
LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
unsigned &NumIntermediates, MVT &RegisterVT) const {
return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
RegisterVT);
}
struct IntrinsicInfo {
unsigned opc = 0; // target opcode
EVT memVT; // memory VT
// value representing memory location
PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
// Fallback address space for use if ptrVal is nullptr. std::nullopt means
// unknown address space.
std::optional<unsigned> fallbackAddressSpace;
int offset = 0; // offset off of ptrVal
uint64_t size = 0; // the size of the memory location
// (taken from memVT if zero)
MaybeAlign align = Align(1); // alignment
MachineMemOperand::Flags flags = MachineMemOperand::MONone;
IntrinsicInfo() = default;
};
/// Given an intrinsic, checks if on the target the intrinsic will need to map
/// to a MemIntrinsicNode (touches memory). If this is the case, it returns
/// true and store the intrinsic information into the IntrinsicInfo that was
/// passed to the function.
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
MachineFunction &,
unsigned /*Intrinsic*/) const {
return false;
}
/// Returns true if the target can instruction select the specified FP
/// immediate natively. If false, the legalizer will materialize the FP
/// immediate as a load from a constant pool.
virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
bool ForCodeSize = false) const {
return false;
}
/// Targets can use this to indicate that they only support *some*
/// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
/// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
/// legal.
virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
return true;
}
/// Returns true if the operation can trap for the value type.
///
/// VT must be a legal type. By default, we optimistically assume most
/// operations don't trap except for integer divide and remainder.
virtual bool canOpTrap(unsigned Op, EVT VT) const;
/// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
/// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
/// constant pool entry.
virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
EVT /*VT*/) const {
return false;
}
/// How to legalize this custom operation?
virtual LegalizeAction getCustomOperationAction(SDNode &Op) const {
return Legal;
}
/// Return how this operation should be treated: either it is legal, needs to
/// be promoted to a larger size, needs to be expanded to some other code
/// sequence, or the target has a custom expander for it.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
if (VT.isExtended()) return Expand;
// If a target-specific SDNode requires legalization, require the target
// to provide custom legalization for it.
if (Op >= std::size(OpActions[0]))
return Custom;
return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
}
/// Custom method defined by each target to indicate if an operation which
/// may require a scale is supported natively by the target.
/// If not, the operation is illegal.
virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
unsigned Scale) const {
return false;
}
/// Some fixed point operations may be natively supported by the target but
/// only for specific scales. This method allows for checking
/// if the width is supported by the target for a given operation that may
/// depend on scale.
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT,
unsigned Scale) const {
auto Action = getOperationAction(Op, VT);
if (Action != Legal)
return Action;
// This operation is supported in this type but may only work on specific
// scales.
bool Supported;
switch (Op) {
default:
llvm_unreachable("Unexpected fixed point operation.");
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT:
case ISD::SDIVFIX:
case ISD::SDIVFIXSAT:
case ISD::UDIVFIX:
case ISD::UDIVFIXSAT:
Supported = isSupportedFixedPointOperation(Op, VT, Scale);
break;
}
return Supported ? Action : Expand;
}
// If Op is a strict floating-point operation, return the result
// of getOperationAction for the equivalent non-strict operation.
LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
unsigned EqOpc;
switch (Op) {
default: llvm_unreachable("Unexpected FP pseudo-opcode");
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
#include "llvm/IR/ConstrainedOps.def"
}
return getOperationAction(EqOpc, VT);
}
/// Return true if the specified operation is legal on this target or can be
/// made legal with custom lowering. This is used to help guide high-level
/// lowering decisions. LegalOnly is an optional convenience for code paths
/// traversed pre and post legalisation.
bool isOperationLegalOrCustom(unsigned Op, EVT VT,
bool LegalOnly = false) const {
if (LegalOnly)
return isOperationLegal(Op, VT);
return (VT == MVT::Other || isTypeLegal(VT)) &&
(getOperationAction(Op, VT) == Legal ||
getOperationAction(Op, VT) == Custom);
}
/// Return true if the specified operation is legal on this target or can be
/// made legal using promotion. This is used to help guide high-level lowering
/// decisions. LegalOnly is an optional convenience for code paths traversed
/// pre and post legalisation.
bool isOperationLegalOrPromote(unsigned Op, EVT VT,
bool LegalOnly = false) const {
if (LegalOnly)
return isOperationLegal(Op, VT);
return (VT == MVT::Other || isTypeLegal(VT)) &&
(getOperationAction(Op, VT) == Legal ||
getOperationAction(Op, VT) == Promote);
}
/// Return true if the specified operation is legal on this target or can be
/// made legal with custom lowering or using promotion. This is used to help
/// guide high-level lowering decisions. LegalOnly is an optional convenience
/// for code paths traversed pre and post legalisation.
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT,
bool LegalOnly = false) const {
if (LegalOnly)
return isOperationLegal(Op, VT);
return (VT == MVT::Other || isTypeLegal(VT)) &&
(getOperationAction(Op, VT) == Legal ||
getOperationAction(Op, VT) == Custom ||
getOperationAction(Op, VT) == Promote);
}
/// Return true if the operation uses custom lowering, regardless of whether
/// the type is legal or not.
bool isOperationCustom(unsigned Op, EVT VT) const {
return getOperationAction(Op, VT) == Custom;
}
/// Return true if lowering to a jump table is allowed.
virtual bool areJTsAllowed(const Function *Fn) const {
if (Fn->getFnAttribute("no-jump-tables").getValueAsBool())
return false;
return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
}
/// Check whether the range [Low,High] fits in a machine word.
bool rangeFitsInWord(const APInt &Low, const APInt &High,
const DataLayout &DL) const {
// FIXME: Using the pointer type doesn't seem ideal.
uint64_t BW = DL.getIndexSizeInBits(0u);
uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
return Range <= BW;
}
/// Return true if lowering to a jump table is suitable for a set of case
/// clusters which may contain \p NumCases cases, \p Range range of values.
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
uint64_t Range, ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) const;
/// Returns preferred type for switch condition.
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context,
EVT ConditionVT) const;
/// Return true if lowering to a bit test is suitable for a set of case
/// clusters which contains \p NumDests unique destinations, \p Low and
/// \p High as its lowest and highest case values, and expects \p NumCmps
/// case value comparisons. Check if the number of destinations, comparison
/// metric, and range are all suitable.
bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
const APInt &Low, const APInt &High,
const DataLayout &DL) const {
// FIXME: I don't think NumCmps is the correct metric: a single case and a
// range of cases both require only one branch to lower. Just looking at the
// number of clusters and destinations should be enough to decide whether to
// build bit tests.
// To lower a range with bit tests, the range must fit the bitwidth of a
// machine word.
if (!rangeFitsInWord(Low, High, DL))
return false;
// Decide whether it's profitable to lower this range with bit tests. Each
// destination requires a bit test and branch, and there is an overall range
// check branch. For a small number of clusters, separate comparisons might
// be cheaper, and for many destinations, splitting the range might be
// better.
return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
(NumDests == 3 && NumCmps >= 6);
}
/// Return true if the specified operation is illegal on this target or
/// unlikely to be made legal with custom lowering. This is used to help guide
/// high-level lowering decisions.
bool isOperationExpand(unsigned Op, EVT VT) const {
return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
}
/// Return true if the specified operation is legal on this target.
bool isOperationLegal(unsigned Op, EVT VT) const {
return (VT == MVT::Other || isTypeLegal(VT)) &&
getOperationAction(Op, VT) == Legal;
}
/// Return how this load with extension should be treated: either it is legal,
/// needs to be promoted to a larger size, needs to be expanded to some other
/// code sequence, or the target has a custom expander for it.
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
EVT MemVT) const {
if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::VALUETYPE_SIZE &&
MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
unsigned Shift = 4 * ExtType;
return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
}
/// Return true if the specified load with extension is legal on this target.
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
}
/// Return true if the specified load with extension is legal or custom
/// on this target.
bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
}
/// Return how this store with truncation should be treated: either it is
/// legal, needs to be promoted to a larger size, needs to be expanded to some
/// other code sequence, or the target has a custom expander for it.
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
assert(ValI < MVT::VALUETYPE_SIZE && MemI < MVT::VALUETYPE_SIZE &&
"Table isn't big enough!");
return TruncStoreActions[ValI][MemI];
}
/// Return true if the specified store with truncation is legal on this
/// target.
bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
}
/// Return true if the specified store with truncation has solution on this
/// target.
bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
return isTypeLegal(ValVT) &&
(getTruncStoreAction(ValVT, MemVT) == Legal ||
getTruncStoreAction(ValVT, MemVT) == Custom);
}
virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT,
bool LegalOnly) const {
if (LegalOnly)
return isTruncStoreLegal(ValVT, MemVT);
return isTruncStoreLegalOrCustom(ValVT, MemVT);
}
/// Return how the indexed load should be treated: either it is legal, needs
/// to be promoted to a larger size, needs to be expanded to some other code
/// sequence, or the target has a custom expander for it.
LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
return getIndexedModeAction(IdxMode, VT, IMAB_Load);
}
/// Return true if the specified indexed load is legal on this target.
bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
return VT.isSimple() &&
(getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
}
/// Return how the indexed store should be treated: either it is legal, needs
/// to be promoted to a larger size, needs to be expanded to some other code
/// sequence, or the target has a custom expander for it.
LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
return getIndexedModeAction(IdxMode, VT, IMAB_Store);
}
/// Return true if the specified indexed load is legal on this target.
bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
return VT.isSimple() &&
(getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
}
/// Return how the indexed load should be treated: either it is legal, needs
/// to be promoted to a larger size, needs to be expanded to some other code
/// sequence, or the target has a custom expander for it.
LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
}
/// Return true if the specified indexed load is legal on this target.
bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
return VT.isSimple() &&
(getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
}
/// Return how the indexed store should be treated: either it is legal, needs
/// to be promoted to a larger size, needs to be expanded to some other code
/// sequence, or the target has a custom expander for it.
LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
}
/// Return true if the specified indexed load is legal on this target.
bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
return VT.isSimple() &&
(getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
}
/// Returns true if the index type for a masked gather/scatter requires
/// extending
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const { return false; }
// Returns true if VT is a legal index type for masked gathers/scatters
// on this target
virtual bool shouldRemoveExtendFromGSIndex(EVT IndexVT, EVT DataVT) const {
return false;
}
// Return true if the target supports a scatter/gather instruction with
// indices which are scaled by the particular value. Note that all targets
// must by definition support scale of 1.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale,
uint64_t ElemSize) const {
// MGATHER/MSCATTER are only required to support scaling by one or by the
// element size.
if (Scale != ElemSize && Scale != 1)
return false;
return true;
}
/// Return how the condition code should be treated: either it is legal, needs
/// to be expanded to some other code sequence, or the target has a custom
/// expander for it.
LegalizeAction
getCondCodeAction(ISD::CondCode CC, MVT VT) const {
assert((unsigned)CC < std::size(CondCodeActions) &&
((unsigned)VT.SimpleTy >> 3) < std::size(CondCodeActions[0]) &&
"Table isn't big enough!");
// See setCondCodeAction for how this is encoded.
uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
assert(Action != Promote && "Can't promote condition code!");
return Action;
}
/// Return true if the specified condition code is legal on this target.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
return getCondCodeAction(CC, VT) == Legal;
}
/// Return true if the specified condition code is legal or custom on this
/// target.
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
return getCondCodeAction(CC, VT) == Legal ||
getCondCodeAction(CC, VT) == Custom;
}
/// If the action for this operation is to promote, this method returns the
/// ValueType to promote to.
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
assert(getOperationAction(Op, VT) == Promote &&
"This operation isn't promoted!");
// See if this has an explicit type specified.
std::map<std::pair<unsigned, MVT::SimpleValueType>,
MVT::SimpleValueType>::const_iterator PTTI =
PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
if (PTTI != PromoteToType.end()) return PTTI->second;
assert((VT.isInteger() || VT.isFloatingPoint()) &&
"Cannot autopromote this type, add it with AddPromotedToType.");
MVT NVT = VT;
do {
NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
"Didn't find type to promote to!");
} while (!isTypeLegal(NVT) ||
getOperationAction(Op, NVT) == Promote);
return NVT;
}
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty,
bool AllowUnknown = false) const {
return getValueType(DL, Ty, AllowUnknown);
}
/// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
/// operations except for the pointer size. If AllowUnknown is true, this
/// will return MVT::Other for types with no EVT counterpart (e.g. structs),
/// otherwise it will assert.
EVT getValueType(const DataLayout &DL, Type *Ty,
bool AllowUnknown = false) const {
// Lower scalar pointers to native pointer types.
if (auto *PTy = dyn_cast<PointerType>(Ty))
return getPointerTy(DL, PTy->getAddressSpace());
if (auto *VTy = dyn_cast<VectorType>(Ty)) {
Type *EltTy = VTy->getElementType();
// Lower vectors of pointers to native pointer types.
if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
EltTy = PointerTy.getTypeForEVT(Ty->getContext());
}
return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
VTy->getElementCount());
}
return EVT::getEVT(Ty, AllowUnknown);
}
EVT getMemValueType(const DataLayout &DL, Type *Ty,
bool AllowUnknown = false) const {
// Lower scalar pointers to native pointer types.
if (PointerType *PTy = dyn_cast<PointerType>(Ty))
return getPointerMemTy(DL, PTy->getAddressSpace());
else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
Type *Elm = VTy->getElementType();
if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
EVT PointerTy(getPointerMemTy(DL, PT->getAddressSpace()));
Elm = PointerTy.getTypeForEVT(Ty->getContext());
}
return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
VTy->getElementCount());
}
return getValueType(DL, Ty, AllowUnknown);
}
/// Return the MVT corresponding to this LLVM type. See getValueType.
MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
bool AllowUnknown = false) const {
return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
}
/// Return the desired alignment for ByVal or InAlloca aggregate function
/// arguments in the caller parameter area. This is the actual alignment, not
/// its logarithm.
virtual uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
/// Return the type of registers that this ValueType will eventually require.
MVT getRegisterType(MVT VT) const {
assert((unsigned)VT.SimpleTy < std::size(RegisterTypeForVT));
return RegisterTypeForVT[VT.SimpleTy];
}
/// Return the type of registers that this ValueType will eventually require.
MVT getRegisterType(LLVMContext &Context, EVT VT) const {
if (VT.isSimple()) {
assert((unsigned)VT.getSimpleVT().SimpleTy <
std::size(RegisterTypeForVT));
return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
}
if (VT.isVector()) {
EVT VT1;
MVT RegisterVT;
unsigned NumIntermediates;
(void)getVectorTypeBreakdown(Context, VT, VT1,
NumIntermediates, RegisterVT);
return RegisterVT;
}
if (VT.isInteger()) {
return getRegisterType(Context, getTypeToTransformTo(Context, VT));
}
llvm_unreachable("Unsupported extended type!");
}
/// Return the number of registers that this ValueType will eventually
/// require.
///
/// This is one for any types promoted to live in larger registers, but may be
/// more than one for types (like i64) that are split into pieces. For types
/// like i140, which are first promoted then expanded, it is the number of
/// registers needed to hold all the bits of the original type. For an i140
/// on a 32 bit machine this means 5 registers.
///
/// RegisterVT may be passed as a way to override the default settings, for
/// instance with i128 inline assembly operands on SystemZ.
virtual unsigned
getNumRegisters(LLVMContext &Context, EVT VT,
std::optional<MVT> RegisterVT = std::nullopt) const {
if (VT.isSimple()) {
assert((unsigned)VT.getSimpleVT().SimpleTy <
std::size(NumRegistersForVT));
return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
}
if (VT.isVector()) {
EVT VT1;
MVT VT2;
unsigned NumIntermediates;
return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
}
if (VT.isInteger()) {
unsigned BitWidth = VT.getSizeInBits();
unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
return (BitWidth + RegWidth - 1) / RegWidth;
}
llvm_unreachable("Unsupported extended type!");
}
/// Certain combinations of ABIs, Targets and features require that types
/// are legal for some operations and not for other operations.
/// For MIPS all vector types must be passed through the integer register set.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
CallingConv::ID CC, EVT VT) const {
return getRegisterType(Context, VT);
}
/// Certain targets require unusual breakdowns of certain types. For MIPS,
/// this occurs when a vector type is used, as vector are passed through the
/// integer register set.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
return getNumRegisters(Context, VT);
}
/// Certain targets have context sensitive alignment requirements, where one
/// type has the alignment requirement of another type.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy,
const DataLayout &DL) const {
return DL.getABITypeAlign(ArgTy);
}
/// If true, then instruction selection should seek to shrink the FP constant
/// of the specified type to a smaller type in order to save space and / or
/// reduce runtime.
virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
/// Return true if it is profitable to reduce a load to a smaller type.
/// Example: (i16 (trunc (i32 (load x))) -> i16 load x
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
EVT NewVT) const {
// By default, assume that it is cheaper to extract a subvector from a wide
// vector load rather than creating multiple narrow vector loads.
if (NewVT.isVector() && !Load->hasOneUse())
return false;
return true;
}
/// When splitting a value of the specified type into parts, does the Lo
/// or Hi part come first? This usually follows the endianness, except
/// for ppcf128, where the Hi part always comes first.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
return DL.isBigEndian() || VT == MVT::ppcf128;
}
/// If true, the target has custom DAG combine transformations that it can
/// perform for the specified node.
bool hasTargetDAGCombine(ISD::NodeType NT) const {
assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
}
unsigned getGatherAllAliasesMaxDepth() const {
return GatherAllAliasesMaxDepth;
}
/// Returns the size of the platform's va_list object.
virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
return getPointerTy(DL).getSizeInBits();
}
/// Get maximum # of store operations permitted for llvm.memset
///
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memset. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
unsigned getMaxStoresPerMemset(bool OptSize) const {
return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
}
/// Get maximum # of store operations permitted for llvm.memcpy
///
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memcpy. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
unsigned getMaxStoresPerMemcpy(bool OptSize) const {
return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
}
/// \brief Get maximum # of store operations to be glued together
///
/// This function returns the maximum number of store operations permitted
/// to glue together during lowering of llvm.memcpy. The value is set by
// the target at the performance threshold for such a replacement.
virtual unsigned getMaxGluedStoresPerMemcpy() const {
return MaxGluedStoresPerMemcpy;
}
/// Get maximum # of load operations permitted for memcmp
///
/// This function returns the maximum number of load operations permitted
/// to replace a call to memcmp. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
}
/// Get maximum # of store operations permitted for llvm.memmove
///
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memmove. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
unsigned getMaxStoresPerMemmove(bool OptSize) const {
return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
}
/// Determine if the target supports unaligned memory accesses.
///
/// This function returns true if the target allows unaligned memory accesses
/// of the specified type in the given address space. If true, it also returns
/// a relative speed of the unaligned memory access in the last argument by
/// reference. The higher the speed number the faster the operation comparing
/// to a number returned by another such call. This is used, for example, in
/// situations where an array copy/move/set is converted to a sequence of
/// store operations. Its use helps to ensure that such replacements don't
/// generate code that causes an alignment error (trap) on the target machine.
virtual bool allowsMisalignedMemoryAccesses(
EVT, unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
unsigned * /*Fast*/ = nullptr) const {
return false;
}
/// LLT handling variant.
virtual bool allowsMisalignedMemoryAccesses(
LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
unsigned * /*Fast*/ = nullptr) const {
return false;
}
/// This function returns true if the memory access is aligned or if the
/// target allows this specific unaligned memory access. If the access is
/// allowed, the optional final parameter returns a relative speed of the
/// access (as defined by the target).
bool allowsMemoryAccessForAlignment(
LLVMContext &Context, const DataLayout &DL, EVT VT,
unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
unsigned *Fast = nullptr) const;
/// Return true if the memory access of this type is aligned or if the target
/// allows this specific unaligned access for the given MachineMemOperand.
/// If the access is allowed, the optional final parameter returns a relative
/// speed of the access (as defined by the target).
bool allowsMemoryAccessForAlignment(LLVMContext &Context,
const DataLayout &DL, EVT VT,
const MachineMemOperand &MMO,
unsigned *Fast = nullptr) const;
/// Return true if the target supports a memory access of this type for the
/// given address space and alignment. If the access is allowed, the optional
/// final parameter returns the relative speed of the access (as defined by
/// the target).
virtual bool
allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
unsigned *Fast = nullptr) const;
/// Return true if the target supports a memory access of this type for the
/// given MachineMemOperand. If the access is allowed, the optional
/// final parameter returns the relative access speed (as defined by the
/// target).
bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
const MachineMemOperand &MMO,
unsigned *Fast = nullptr) const;
/// LLT handling variant.
bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, LLT Ty,
const MachineMemOperand &MMO,
unsigned *Fast = nullptr) const;
/// Returns the target specific optimal type for load and store operations as
/// a result of memset, memcpy, and memmove lowering.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
virtual EVT
getOptimalMemOpType(const MemOp &Op,
const AttributeList & /*FuncAttributes*/) const {
return MVT::Other;
}
/// LLT returning variant.
virtual LLT
getOptimalMemOpLLT(const MemOp &Op,
const AttributeList & /*FuncAttributes*/) const {
return LLT();
}
/// Returns true if it's safe to use load / store of the specified type to
/// expand memcpy / memset inline.
///
/// This is mostly true for all types except for some special cases. For
/// example, on X86 targets without SSE2 f64 load / store are done with fldl /
/// fstpl which also does type conversion. Note the specified type doesn't
/// have to be legal as the hook is used before type legalization.
virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
/// Return lower limit for number of blocks in a jump table.
virtual unsigned getMinimumJumpTableEntries() const;
/// Return lower limit of the density in a jump table.
unsigned getMinimumJumpTableDensity(bool OptForSize) const;
/// Return upper limit for number of entries in a jump table.
/// Zero if no limit.
unsigned getMaximumJumpTableSize() const;
virtual bool isJumpTableRelative() const;
/// If a physical register, this specifies the register that
/// llvm.savestack/llvm.restorestack should save and restore.
Register getStackPointerRegisterToSaveRestore() const {
return StackPointerRegisterToSaveRestore;
}
/// If a physical register, this returns the register that receives the
/// exception address on entry to an EH pad.
virtual Register
getExceptionPointerRegister(const Constant *PersonalityFn) const {
return Register();
}
/// If a physical register, this returns the register that receives the
/// exception typeid on entry to a landing pad.
virtual Register
getExceptionSelectorRegister(const Constant *PersonalityFn) const {
return Register();
}
virtual bool needsFixedCatchObjects() const {
report_fatal_error("Funclet EH is not implemented for this target");
}
/// Return the minimum stack alignment of an argument.
Align getMinStackArgumentAlignment() const {
return MinStackArgumentAlignment;
}
/// Return the minimum function alignment.
Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
/// Return the preferred function alignment.
Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
/// Return the preferred loop alignment.
virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const;
/// Return the maximum amount of bytes allowed to be emitted when padding for
/// alignment
virtual unsigned
getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const;
/// Should loops be aligned even when the function is marked OptSize (but not
/// MinSize).
virtual bool alignLoopsWithOptSize() const { return false; }
/// If the target has a standard location for the stack protector guard,
/// returns the address of that location. Otherwise, returns nullptr.
/// DEPRECATED: please override useLoadStackGuardNode and customize
/// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
virtual Value *getIRStackGuard(IRBuilderBase &IRB) const;
/// Inserts necessary declarations for SSP (stack protection) purpose.
/// Should be used only when getIRStackGuard returns nullptr.
virtual void insertSSPDeclarations(Module &M) const;
/// Return the variable that's previously inserted by insertSSPDeclarations,
/// if any, otherwise return nullptr. Should be used only when
/// getIRStackGuard returns nullptr.
virtual Value *getSDagStackGuard(const Module &M) const;
/// If this function returns true, stack protection checks should XOR the
/// frame pointer (or whichever pointer is used to address locals) into the
/// stack guard value before checking it. getIRStackGuard must return nullptr
/// if this returns true.
virtual bool useStackGuardXorFP() const { return false; }
/// If the target has a standard stack protection check function that
/// performs validation and error handling, returns the function. Otherwise,
/// returns nullptr. Must be previously inserted by insertSSPDeclarations.
/// Should be used only when getIRStackGuard returns nullptr.
virtual Function *getSSPStackGuardCheck(const Module &M) const;
/// \returns true if a constant G_UBFX is legal on the target.
virtual bool isConstantUnsignedBitfieldExtractLegal(unsigned Opc, LLT Ty1,
LLT Ty2) const {
return false;
}
protected:
Value *getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
bool UseTLS) const;
public:
/// Returns the target-specific address of the unsafe stack pointer.
virtual Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const;
/// Returns the name of the symbol used to emit stack probes or the empty
/// string if not applicable.
virtual bool hasStackProbeSymbol(const MachineFunction &MF) const { return false; }
virtual bool hasInlineStackProbe(const MachineFunction &MF) const { return false; }
virtual StringRef getStackProbeSymbolName(const MachineFunction &MF) const {
return "";
}
/// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
/// are happy to sink it into basic blocks. A cast may be free, but not
/// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const;
/// Return true if the pointer arguments to CI should be aligned by aligning
/// the object whose address is being passed. If so then MinSize is set to the
/// minimum size the object must be to be aligned and PrefAlign is set to the
/// preferred alignment.
virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
Align & /*PrefAlign*/) const {
return false;
}
//===--------------------------------------------------------------------===//
/// \name Helpers for TargetTransformInfo implementations
/// @{
/// Get the ISD node that corresponds to the Instruction class opcode.
int InstructionOpcodeToISD(unsigned Opcode) const;
/// @}
//===--------------------------------------------------------------------===//
/// \name Helpers for atomic expansion.
/// @{
/// Returns the maximum atomic operation size (in bits) supported by
/// the backend. Atomic operations greater than this size (as well
/// as ones that are not naturally aligned), will be expanded by
/// AtomicExpandPass into an __atomic_* library call.
unsigned getMaxAtomicSizeInBitsSupported() const {
return MaxAtomicSizeInBitsSupported;
}
/// Returns the size in bits of the maximum div/rem the backend supports.
/// Larger operations will be expanded by ExpandLargeDivRem.
unsigned getMaxDivRemBitWidthSupported() const {
return MaxDivRemBitWidthSupported;
}
/// Returns the size in bits of the maximum larget fp convert the backend
/// supports. Larger operations will be expanded by ExpandLargeFPConvert.
unsigned getMaxLargeFPConvertBitWidthSupported() const {
return MaxLargeFPConvertBitWidthSupported;
}
/// Returns the size of the smallest cmpxchg or ll/sc instruction
/// the backend supports. Any smaller operations are widened in
/// AtomicExpandPass.
///
/// Note that *unlike* operations above the maximum size, atomic ops
/// are still natively supported below the minimum; they just
/// require a more complex expansion.
unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
/// Whether the target supports unaligned atomic operations.
bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
/// Whether AtomicExpandPass should automatically insert fences and reduce
/// ordering for this atomic. This should be true for most architectures with
/// weak memory ordering. Defaults to false.
virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
return false;
}
/// Whether AtomicExpandPass should automatically insert a trailing fence
/// without reducing the ordering for this atomic. Defaults to false.
virtual bool
shouldInsertTrailingFenceForAtomicStore(const Instruction *I) const {
return false;
}
/// Perform a load-linked operation on Addr, returning a "Value *" with the
/// corresponding pointee type. This may entail some non-trivial operations to
/// truncate or reconstruct types that will be illegal in the backend. See
/// ARMISelLowering for an example implementation.
virtual Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
Value *Addr, AtomicOrdering Ord) const {
llvm_unreachable("Load linked unimplemented on this target");
}
/// Perform a store-conditional operation to Addr. Return the status of the
/// store. This should be 0 if the store succeeded, non-zero otherwise.
virtual Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val,
Value *Addr, AtomicOrdering Ord) const {
llvm_unreachable("Store conditional unimplemented on this target");
}
/// Perform a masked atomicrmw using a target-specific intrinsic. This
/// represents the core LL/SC loop which will be lowered at a late stage by
/// the backend. The target-specific intrinsic returns the loaded value and
/// is not responsible for masking and shifting the result.
virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder,
AtomicRMWInst *AI,
Value *AlignedAddr, Value *Incr,
Value *Mask, Value *ShiftAmt,
AtomicOrdering Ord) const {
llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
}
/// Perform a atomicrmw expansion using a target-specific way. This is
/// expected to be called when masked atomicrmw and bit test atomicrmw don't
/// work, and the target supports another way to lower atomicrmw.
virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const {
llvm_unreachable(
"Generic atomicrmw expansion unimplemented on this target");
}
/// Perform a bit test atomicrmw using a target-specific intrinsic. This
/// represents the combined bit test intrinsic which will be lowered at a late
/// stage by the backend.
virtual void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const {
llvm_unreachable(
"Bit test atomicrmw expansion unimplemented on this target");
}
/// Perform a atomicrmw which the result is only used by comparison, using a
/// target-specific intrinsic. This represents the combined atomic and compare
/// intrinsic which will be lowered at a late stage by the backend.
virtual void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const {
llvm_unreachable(
"Compare arith atomicrmw expansion unimplemented on this target");
}
/// Perform a masked cmpxchg using a target-specific intrinsic. This
/// represents the core LL/SC loop which will be lowered at a late stage by
/// the backend. The target-specific intrinsic returns the loaded value and
/// is not responsible for masking and shifting the result.
virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
}
/// Inserts in the IR a target-specific intrinsic specifying a fence.
/// It is called by AtomicExpandPass before expanding an
/// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
/// if shouldInsertFencesForAtomic returns true.
///
/// Inst is the original atomic instruction, prior to other expansions that
/// may be performed.
///
/// This function should either return a nullptr, or a pointer to an IR-level
/// Instruction*. Even complex fence sequences can be represented by a
/// single Instruction* through an intrinsic to be lowered later.
/// Backends should override this method to produce target-specific intrinsic
/// for their fences.
/// FIXME: Please note that the default implementation here in terms of
/// IR-level fences exists for historical/compatibility reasons and is
/// *unsound* ! Fences cannot, in general, be used to restore sequential
/// consistency. For example, consider the following example:
/// atomic<int> x = y = 0;
/// int r1, r2, r3, r4;
/// Thread 0:
/// x.store(1);
/// Thread 1:
/// y.store(1);
/// Thread 2:
/// r1 = x.load();
/// r2 = y.load();
/// Thread 3:
/// r3 = y.load();
/// r4 = x.load();
/// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
/// seq_cst. But if they are lowered to monotonic accesses, no amount of
/// IR-level fences can prevent it.
/// @{
virtual Instruction *emitLeadingFence(IRBuilderBase &Builder,
Instruction *Inst,
AtomicOrdering Ord) const;
virtual Instruction *emitTrailingFence(IRBuilderBase &Builder,
Instruction *Inst,
AtomicOrdering Ord) const;
/// @}
// Emits code that executes when the comparison result in the ll/sc
// expansion of a cmpxchg instruction is such that the store-conditional will
// not execute. This makes it possible to balance out the load-linked with
// a dedicated instruction, if desired.
// E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
// be unnecessarily held, except if clrex, inserted by this hook, is executed.
virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const {}
/// Returns true if arguments should be sign-extended in lib calls.
virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
return IsSigned;
}
/// Returns true if arguments should be extended in lib calls.
virtual bool shouldExtendTypeInLibCall(EVT Type) const {
return true;
}
/// Returns how the given (atomic) load should be expanded by the
/// IR-level AtomicExpand pass.
virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
return AtomicExpansionKind::None;
}
/// Returns how the given (atomic) load should be cast by the IR-level
/// AtomicExpand pass.
virtual AtomicExpansionKind shouldCastAtomicLoadInIR(LoadInst *LI) const {
if (LI->getType()->isFloatingPointTy())
return AtomicExpansionKind::CastToInteger;
return AtomicExpansionKind::None;
}
/// Returns how the given (atomic) store should be expanded by the IR-level
/// AtomicExpand pass into. For instance AtomicExpansionKind::Expand will try
/// to use an atomicrmw xchg.
virtual AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const {
return AtomicExpansionKind::None;
}
/// Returns how the given (atomic) store should be cast by the IR-level
/// AtomicExpand pass into. For instance AtomicExpansionKind::CastToInteger
/// will try to cast the operands to integer values.
virtual AtomicExpansionKind shouldCastAtomicStoreInIR(StoreInst *SI) const {
if (SI->getValueOperand()->getType()->isFloatingPointTy())
return AtomicExpansionKind::CastToInteger;
return AtomicExpansionKind::None;
}
/// Returns how the given atomic cmpxchg should be expanded by the IR-level
/// AtomicExpand pass.
virtual AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
return AtomicExpansionKind::None;
}
/// Returns how the IR-level AtomicExpand pass should expand the given
/// AtomicRMW, if at all. Default is to never expand.
virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
return RMW->isFloatingPointOperation() ?
AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None;
}
/// Returns how the given atomic atomicrmw should be cast by the IR-level
/// AtomicExpand pass.
virtual AtomicExpansionKind
shouldCastAtomicRMWIInIR(AtomicRMWInst *RMWI) const {
if (RMWI->getOperation() == AtomicRMWInst::Xchg &&
(RMWI->getValOperand()->getType()->isFloatingPointTy() ||
RMWI->getValOperand()->getType()->isPointerTy()))
return AtomicExpansionKind::CastToInteger;
return AtomicExpansionKind::None;
}
/// On some platforms, an AtomicRMW that never actually modifies the value
/// (such as fetch_add of 0) can be turned into a fence followed by an
/// atomic load. This may sound useless, but it makes it possible for the
/// processor to keep the cacheline shared, dramatically improving
/// performance. And such idempotent RMWs are useful for implementing some
/// kinds of locks, see for example (justification + benchmarks):
/// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
/// This method tries doing that transformation, returning the atomic load if
/// it succeeds, and nullptr otherwise.
/// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
/// another round of expansion.
virtual LoadInst *
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
return nullptr;
}
/// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
/// SIGN_EXTEND, or ANY_EXTEND).
virtual ISD::NodeType getExtendForAtomicOps() const {
return ISD::ZERO_EXTEND;
}
/// Returns how the platform's atomic compare and swap expects its comparison
/// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
/// separate from getExtendForAtomicOps, which is concerned with the
/// sign-extension of the instruction's output, whereas here we are concerned
/// with the sign-extension of the input. For targets with compare-and-swap
/// instructions (or sub-word comparisons in their LL/SC loop expansions),
/// the input can be ANY_EXTEND, but the output will still have a specific
/// extension.
virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const {
return ISD::ANY_EXTEND;
}
/// @}
/// Returns true if we should normalize
/// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
/// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
/// that it saves us from materializing N0 and N1 in an integer register.
/// Targets that are able to perform and/or on flags should return false here.
virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
EVT VT) const {
// If a target has multiple condition registers, then it likely has logical
// operations on those registers.
if (hasMultipleConditionRegisters())
return false;
// Only do the transform if the value won't be split into multiple
// registers.
LegalizeTypeAction Action = getTypeAction(Context, VT);
return Action != TypeExpandInteger && Action != TypeExpandFloat &&
Action != TypeSplitVector;
}
virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
/// Return true if a select of constants (select Cond, C1, C2) should be
/// transformed into simple math ops with the condition value. For example:
/// select Cond, C1, C1-1 --> add (zext Cond), C1-1
virtual bool convertSelectOfConstantsToMath(EVT VT) const {
return false;
}
/// Return true if it is profitable to transform an integer
/// multiplication-by-constant into simpler operations like shifts and adds.
/// This may be true if the target does not directly support the
/// multiplication operation for the specified type or the sequence of simpler
/// ops is faster than the multiply.
virtual bool decomposeMulByConstant(LLVMContext &Context,
EVT VT, SDValue C) const {
return false;
}
/// Return true if it may be profitable to transform
/// (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
/// This may not be true if c1 and c2 can be represented as immediates but
/// c1*c2 cannot, for example.
/// The target should check if c1, c2 and c1*c2 can be represented as
/// immediates, or have to be materialized into registers. If it is not sure
/// about some cases, a default true can be returned to let the DAGCombiner
/// decide.
/// AddNode is (add x, c1), and ConstNode is c2.
virtual bool isMulAddWithConstProfitable(SDValue AddNode,
SDValue ConstNode) const {
return true;
}
/// Return true if it is more correct/profitable to use strict FP_TO_INT
/// conversion operations - canonicalizing the FP source value instead of
/// converting all cases and then selecting based on value.
/// This may be true if the target throws exceptions for out of bounds
/// conversions or has fast FP CMOV.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
bool IsSigned) const {
return false;
}
/// Return true if it is beneficial to expand an @llvm.powi.* intrinsic.
/// If not optimizing for size, expanding @llvm.powi.* intrinsics is always
/// considered beneficial.
/// If optimizing for size, expansion is only considered beneficial for upto
/// 5 multiplies and a divide (if the exponent is negative).
bool isBeneficialToExpandPowI(int Exponent, bool OptForSize) const {
if (Exponent < 0)
Exponent = -Exponent;
return !OptForSize ||
(llvm::popcount((unsigned int)Exponent) + Log2_32(Exponent) < 7);
}
//===--------------------------------------------------------------------===//
// TargetLowering Configuration Methods - These methods should be invoked by
// the derived class constructor to configure this object for the target.
//
protected:
/// Specify how the target extends the result of integer and floating point
/// boolean values from i1 to a wider type. See getBooleanContents.
void setBooleanContents(BooleanContent Ty) {
BooleanContents = Ty;
BooleanFloatContents = Ty;
}
/// Specify how the target extends the result of integer and floating point
/// boolean values from i1 to a wider type. See getBooleanContents.
void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
BooleanContents = IntTy;
BooleanFloatContents = FloatTy;
}
/// Specify how the target extends the result of a vector boolean value from a
/// vector of i1 to a wider type. See getBooleanContents.
void setBooleanVectorContents(BooleanContent Ty) {
BooleanVectorContents = Ty;
}
/// Specify the target scheduling preference.
void setSchedulingPreference(Sched::Preference Pref) {
SchedPreferenceInfo = Pref;
}
/// Indicate the minimum number of blocks to generate jump tables.
void setMinimumJumpTableEntries(unsigned Val);
/// Indicate the maximum number of entries in jump tables.
/// Set to zero to generate unlimited jump tables.
void setMaximumJumpTableSize(unsigned);
/// If set to a physical register, this specifies the register that
/// llvm.savestack/llvm.restorestack should save and restore.
void setStackPointerRegisterToSaveRestore(Register R) {
StackPointerRegisterToSaveRestore = R;
}
/// Tells the code generator that the target has multiple (allocatable)
/// condition registers that can be used to store the results of comparisons
/// for use by selects and conditional branches. With multiple condition
/// registers, the code generator will not aggressively sink comparisons into
/// the blocks of their users.
void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
HasMultipleConditionRegisters = hasManyRegs;
}
/// Tells the code generator that the target has BitExtract instructions.
/// The code generator will aggressively sink "shift"s into the blocks of
/// their users if the users will generate "and" instructions which can be
/// combined with "shift" to BitExtract instructions.
void setHasExtractBitsInsn(bool hasExtractInsn = true) {
HasExtractBitsInsn = hasExtractInsn;
}
/// Tells the code generator not to expand logic operations on comparison
/// predicates into separate sequences that increase the amount of flow
/// control.
void setJumpIsExpensive(bool isExpensive = true);
/// Tells the code generator which bitwidths to bypass.
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
}
/// Add the specified register class as an available regclass for the
/// specified value type. This indicates the selector can handle values of
/// that class natively.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
assert((unsigned)VT.SimpleTy < std::size(RegClassForVT));
RegClassForVT[VT.SimpleTy] = RC;
}
/// Return the largest legal super-reg register class of the register class
/// for the specified type and its associated "cost".
virtual std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
/// Once all of the register classes are added, this allows us to compute
/// derived properties we expose.
void computeRegisterProperties(const TargetRegisterInfo *TRI);
/// Indicate that the specified operation does not work with the specified
/// type and indicate what to do about it. Note that VT may refer to either
/// the type of a result or that of an operand of Op.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) {
assert(Op < std::size(OpActions[0]) && "Table isn't big enough!");
OpActions[(unsigned)VT.SimpleTy][Op] = Action;
}
void setOperationAction(ArrayRef<unsigned> Ops, MVT VT,
LegalizeAction Action) {
for (auto Op : Ops)
setOperationAction(Op, VT, Action);
}
void setOperationAction(ArrayRef<unsigned> Ops, ArrayRef<MVT> VTs,
LegalizeAction Action) {
for (auto VT : VTs)
setOperationAction(Ops, VT, Action);
}
/// Indicate that the specified load with extension does not work with the
/// specified type and indicate what to do about it.
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
LegalizeAction Action) {
assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
MemVT.isValid() && "Table isn't big enough!");
assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
unsigned Shift = 4 * ExtType;
LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
}
void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT, MVT MemVT,
LegalizeAction Action) {
for (auto ExtType : ExtTypes)
setLoadExtAction(ExtType, ValVT, MemVT, Action);
}
void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT,
ArrayRef<MVT> MemVTs, LegalizeAction Action) {
for (auto MemVT : MemVTs)
setLoadExtAction(ExtTypes, ValVT, MemVT, Action);
}
/// Indicate that the specified truncating store does not work with the
/// specified type and indicate what to do about it.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) {
assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
}
/// Indicate that the specified indexed load does or does not work with the
/// specified type and indicate what to do abort it.
///
/// NOTE: All indexed mode loads are initialized to Expand in
/// TargetLowering.cpp
void setIndexedLoadAction(ArrayRef<unsigned> IdxModes, MVT VT,
LegalizeAction Action) {
for (auto IdxMode : IdxModes)
setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
}
void setIndexedLoadAction(ArrayRef<unsigned> IdxModes, ArrayRef<MVT> VTs,
LegalizeAction Action) {
for (auto VT : VTs)
setIndexedLoadAction(IdxModes, VT, Action);
}
/// Indicate that the specified indexed store does or does not work with the
/// specified type and indicate what to do about it.
///
/// NOTE: All indexed mode stores are initialized to Expand in
/// TargetLowering.cpp
void setIndexedStoreAction(ArrayRef<unsigned> IdxModes, MVT VT,
LegalizeAction Action) {
for (auto IdxMode : IdxModes)
setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
}
void setIndexedStoreAction(ArrayRef<unsigned> IdxModes, ArrayRef<MVT> VTs,
LegalizeAction Action) {
for (auto VT : VTs)
setIndexedStoreAction(IdxModes, VT, Action);
}
/// Indicate that the specified indexed masked load does or does not work with
/// the specified type and indicate what to do about it.
///
/// NOTE: All indexed mode masked loads are initialized to Expand in
/// TargetLowering.cpp
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
LegalizeAction Action) {
setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
}
/// Indicate that the specified indexed masked store does or does not work
/// with the specified type and indicate what to do about it.
///
/// NOTE: All indexed mode masked stores are initialized to Expand in
/// TargetLowering.cpp
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
LegalizeAction Action) {
setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
}
/// Indicate that the specified condition code is or isn't supported on the
/// target and indicate what to do about it.
void setCondCodeAction(ArrayRef<ISD::CondCode> CCs, MVT VT,
LegalizeAction Action) {
for (auto CC : CCs) {
assert(VT.isValid() && (unsigned)CC < std::size(CondCodeActions) &&
"Table isn't big enough!");
assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
/// The lower 3 bits of the SimpleTy index into Nth 4bit set from the
/// 32-bit value and the upper 29 bits index into the second dimension of
/// the array to select what 32-bit value to use.
uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
}
}
void setCondCodeAction(ArrayRef<ISD::CondCode> CCs, ArrayRef<MVT> VTs,
LegalizeAction Action) {
for (auto VT : VTs)
setCondCodeAction(CCs, VT, Action);
}
/// If Opc/OrigVT is specified as being promoted, the promotion code defaults
/// to trying a larger integer/fp until it can find one that works. If that
/// default is insufficient, this method can be used by the target to override
/// the default.
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
}
/// Convenience method to set an operation to Promote and specify the type
/// in a single call.
void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
setOperationAction(Opc, OrigVT, Promote);
AddPromotedToType(Opc, OrigVT, DestVT);
}
/// Targets should invoke this method for each target independent node that
/// they want to provide a custom DAG combiner for by implementing the
/// PerformDAGCombine virtual method.
void setTargetDAGCombine(ArrayRef<ISD::NodeType> NTs) {
for (auto NT : NTs) {
assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
TargetDAGCombineArray[NT >> 3] |= 1 << (NT & 7);
}
}
/// Set the target's minimum function alignment.
void setMinFunctionAlignment(Align Alignment) {
MinFunctionAlignment = Alignment;
}
/// Set the target's preferred function alignment. This should be set if
/// there is a performance benefit to higher-than-minimum alignment
void setPrefFunctionAlignment(Align Alignment) {
PrefFunctionAlignment = Alignment;
}
/// Set the target's preferred loop alignment. Default alignment is one, it
/// means the target does not care about loop alignment. The target may also
/// override getPrefLoopAlignment to provide per-loop values.
void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
void setMaxBytesForAlignment(unsigned MaxBytes) {
MaxBytesForAlignment = MaxBytes;
}
/// Set the minimum stack alignment of an argument.
void setMinStackArgumentAlignment(Align Alignment) {
MinStackArgumentAlignment = Alignment;
}
/// Set the maximum atomic operation size supported by the
/// backend. Atomic operations greater than this size (as well as
/// ones that are not naturally aligned), will be expanded by
/// AtomicExpandPass into an __atomic_* library call.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
MaxAtomicSizeInBitsSupported = SizeInBits;
}
/// Set the size in bits of the maximum div/rem the backend supports.
/// Larger operations will be expanded by ExpandLargeDivRem.
void setMaxDivRemBitWidthSupported(unsigned SizeInBits) {
MaxDivRemBitWidthSupported = SizeInBits;
}
/// Set the size in bits of the maximum fp convert the backend supports.
/// Larger operations will be expanded by ExpandLargeFPConvert.
void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits) {
MaxLargeFPConvertBitWidthSupported = SizeInBits;
}
/// Sets the minimum cmpxchg or ll/sc size supported by the backend.
void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
MinCmpXchgSizeInBits = SizeInBits;
}
/// Sets whether unaligned atomic operations are supported.
void setSupportsUnalignedAtomics(bool UnalignedSupported) {
SupportsUnalignedAtomics = UnalignedSupported;
}
public:
//===--------------------------------------------------------------------===//
// Addressing mode description hooks (used by LSR etc).
//
/// CodeGenPrepare sinks address calculations into the same BB as Load/Store
/// instructions reading the address. This allows as much computation as
/// possible to be done in the address mode for that operand. This hook lets
/// targets also pass back when this should be done on intrinsics which
/// load/store.
virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
SmallVectorImpl<Value*> &/*Ops*/,
Type *&/*AccessTy*/) const {
return false;
}
/// This represents an addressing mode of:
/// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
/// If BaseGV is null, there is no BaseGV.
/// If BaseOffs is zero, there is no base offset.
/// If HasBaseReg is false, there is no base register.
/// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
/// no scale.
struct AddrMode {
GlobalValue *BaseGV = nullptr;
int64_t BaseOffs = 0;
bool HasBaseReg = false;
int64_t Scale = 0;
AddrMode() = default;
};
/// Return true if the addressing mode represented by AM is legal for this
/// target, for a load/store of the specified type.
///
/// The type may be VoidTy, in which case only return true if the addressing
/// mode is legal for a load/store of any legal type. TODO: Handle
/// pre/postinc as well.
///
/// If the address space cannot be determined, it will be -1.
///
/// TODO: Remove default argument
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
Type *Ty, unsigned AddrSpace,
Instruction *I = nullptr) const;
/// Return true if the specified immediate is legal icmp immediate, that is
/// the target has icmp instructions which can compare a register against the
/// immediate without having to materialize the immediate into a register.
virtual bool isLegalICmpImmediate(int64_t) const {
return true;
}
/// Return true if the specified immediate is legal add immediate, that is the
/// target has add instructions which can add a register with the immediate
/// without having to materialize the immediate into a register.
virtual bool isLegalAddImmediate(int64_t) const {
return true;
}
/// Return true if the specified immediate is legal for the value input of a
/// store instruction.
virtual bool isLegalStoreImmediate(int64_t Value) const {
// Default implementation assumes that at least 0 works since it is likely
// that a zero register exists or a zero immediate is allowed.
return Value == 0;
}
/// Return true if it's significantly cheaper to shift a vector by a uniform
/// scalar than by an amount which will vary across each lane. On x86 before
/// AVX2 for example, there is a "psllw" instruction for the former case, but
/// no simple instruction for a general "a << b" operation on vectors.
/// This should also apply to lowering for vector funnel shifts (rotates).
virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
return false;
}
/// Given a shuffle vector SVI representing a vector splat, return a new
/// scalar type of size equal to SVI's scalar type if the new type is more
/// profitable. Returns nullptr otherwise. For example under MVE float splats
/// are converted to integer to prevent the need to move from SPR to GPR
/// registers.
virtual Type* shouldConvertSplatType(ShuffleVectorInst* SVI) const {
return nullptr;
}
/// Given a set in interconnected phis of type 'From' that are loaded/stored
/// or bitcast to type 'To', return true if the set should be converted to
/// 'To'.
virtual bool shouldConvertPhiType(Type *From, Type *To) const {
return (From->isIntegerTy() || From->isFloatingPointTy()) &&
(To->isIntegerTy() || To->isFloatingPointTy());
}
/// Returns true if the opcode is a commutative binary operation.
virtual bool isCommutativeBinOp(unsigned Opcode) const {
// FIXME: This should get its info from the td file.
switch (Opcode) {
case ISD::ADD:
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
case ISD::MUL:
case ISD::MULHU:
case ISD::MULHS:
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI:
case ISD::FADD:
case ISD::FMUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SADDO:
case ISD::UADDO:
case ISD::ADDC:
case ISD::ADDE:
case ISD::SADDSAT:
case ISD::UADDSAT:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMINNUM_IEEE:
case ISD::FMAXNUM_IEEE:
case ISD::FMINIMUM:
case ISD::FMAXIMUM:
case ISD::AVGFLOORS:
case ISD::AVGFLOORU:
case ISD::AVGCEILS:
case ISD::AVGCEILU:
return true;
default: return false;
}
}
/// Return true if the node is a math/logic binary operator.
virtual bool isBinOp(unsigned Opcode) const {
// A commutative binop must be a binop.
if (isCommutativeBinOp(Opcode))
return true;
// These are non-commutative binops.
switch (Opcode) {
case ISD::SUB:
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
case ISD::ROTL:
case ISD::ROTR:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
case ISD::SSUBSAT:
case ISD::USUBSAT:
case ISD::FSUB:
case ISD::FDIV:
case ISD::FREM:
return true;
default:
return false;
}
}
/// Return true if it's free to truncate a value of type FromTy to type
/// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
/// by referencing its sub-register AX.
/// Targets must return false when FromTy <= ToTy.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
return false;
}
/// Return true if a truncation from FromTy to ToTy is permitted when deciding
/// whether a call is in tail position. Typically this means that both results
/// would be assigned to the same register or stack slot, but it could mean
/// the target performs adequate checks of its own before proceeding with the
/// tail call. Targets must return false when FromTy <= ToTy.
virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
return false;
}
virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { return false; }
virtual bool isTruncateFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
LLVMContext &Ctx) const {
return isTruncateFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
getApproximateEVTForLLT(ToTy, DL, Ctx));
}
virtual bool isProfitableToHoist(Instruction *I) const { return true; }
/// Return true if the extension represented by \p I is free.
/// Unlikely the is[Z|FP]ExtFree family which is based on types,
/// this method can use the context provided by \p I to decide
/// whether or not \p I is free.
/// This method extends the behavior of the is[Z|FP]ExtFree family.
/// In other words, if is[Z|FP]Free returns true, then this method
/// returns true as well. The converse is not true.
/// The target can perform the adequate checks by overriding isExtFreeImpl.
/// \pre \p I must be a sign, zero, or fp extension.
bool isExtFree(const Instruction *I) const {
switch (I->getOpcode()) {
case Instruction::FPExt:
if (isFPExtFree(EVT::getEVT(I->getType()),
EVT::getEVT(I->getOperand(0)->getType())))
return true;
break;
case Instruction::ZExt:
if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
return true;
break;
case Instruction::SExt:
break;
default:
llvm_unreachable("Instruction is not an extension");
}
return isExtFreeImpl(I);
}
/// Return true if \p Load and \p Ext can form an ExtLoad.
/// For example, in AArch64
/// %L = load i8, i8* %ptr
/// %E = zext i8 %L to i32
/// can be lowered into one load instruction
/// ldrb w0, [x0]
bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
const DataLayout &DL) const {
EVT VT = getValueType(DL, Ext->getType());
EVT LoadVT = getValueType(DL, Load->getType());
// If the load has other users and the truncate is not free, the ext
// probably isn't free.
if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
!isTruncateFree(Ext->getType(), Load->getType()))
return false;
// Check whether the target supports casts folded into loads.
unsigned LType;
if (isa<ZExtInst>(Ext))
LType = ISD::ZEXTLOAD;
else {
assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
LType = ISD::SEXTLOAD;
}
return isLoadExtLegal(LType, VT, LoadVT);
}
/// Return true if any actual instruction that defines a value of type FromTy
/// implicitly zero-extends the value to ToTy in the result register.
///
/// The function should return true when it is likely that the truncate can
/// be freely folded with an instruction defining a value of FromTy. If
/// the defining instruction is unknown (because you're looking at a
/// function argument, PHI, etc.) then the target may require an
/// explicit truncate, which is not necessarily free, but this function
/// does not deal with those cases.
/// Targets must return false when FromTy >= ToTy.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
return false;
}
virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { return false; }
virtual bool isZExtFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
LLVMContext &Ctx) const {
return isZExtFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
getApproximateEVTForLLT(ToTy, DL, Ctx));
}
/// Return true if sign-extension from FromTy to ToTy is cheaper than
/// zero-extension.
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
return false;
}
/// Return true if this constant should be sign extended when promoting to
/// a larger type.
virtual bool signExtendConstant(const ConstantInt *C) const { return false; }
/// Return true if sinking I's operands to the same basic block as I is
/// profitable, e.g. because the operands can be folded into a target
/// instruction during instruction selection. After calling the function
/// \p Ops contains the Uses to sink ordered by dominance (dominating users
/// come first).
virtual bool shouldSinkOperands(Instruction *I,
SmallVectorImpl<Use *> &Ops) const {
return false;
}
/// Try to optimize extending or truncating conversion instructions (like
/// zext, trunc, fptoui, uitofp) for the target.
virtual bool optimizeExtendOrTruncateConversion(Instruction *I,
Loop *L) const {
return false;
}
/// Return true if the target supplies and combines to a paired load
/// two loaded values of type LoadedType next to each other in memory.
/// RequiredAlignment gives the minimal alignment constraints that must be met
/// to be able to select this paired load.
///
/// This information is *not* used to generate actual paired loads, but it is
/// used to generate a sequence of loads that is easier to combine into a
/// paired load.
/// For instance, something like this:
/// a = load i64* addr
/// b = trunc i64 a to i32
/// c = lshr i64 a, 32
/// d = trunc i64 c to i32
/// will be optimized into:
/// b = load i32* addr1
/// d = load i32* addr2
/// Where addr1 = addr2 +/- sizeof(i32).
///
/// In other words, unless the target performs a post-isel load combining,
/// this information should not be provided because it will generate more
/// loads.
virtual bool hasPairedLoad(EVT /*LoadedType*/,
Align & /*RequiredAlignment*/) const {
return false;
}
/// Return true if the target has a vector blend instruction.
virtual bool hasVectorBlend() const { return false; }
/// Get the maximum supported factor for interleaved memory accesses.
/// Default to be the minimum interleave factor: 2.
virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
/// Lower an interleaved load to target specific intrinsics. Return
/// true on success.
///
/// \p LI is the vector load instruction.
/// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
/// \p Indices is the corresponding indices for each shufflevector.
/// \p Factor is the interleave factor.
virtual bool lowerInterleavedLoad(LoadInst *LI,
ArrayRef<ShuffleVectorInst *> Shuffles,
ArrayRef<unsigned> Indices,
unsigned Factor) const {
return false;
}
/// Lower an interleaved store to target specific intrinsics. Return
/// true on success.
///
/// \p SI is the vector store instruction.
/// \p SVI is the shufflevector to RE-interleave the stored vector.
/// \p Factor is the interleave factor.
virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
unsigned Factor) const {
return false;
}
/// Return true if zero-extending the specific node Val to type VT2 is free
/// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
/// because it's folded such as X86 zero-extending loads).
virtual bool isZExtFree(SDValue Val, EVT VT2) const {
return isZExtFree(Val.getValueType(), VT2);
}
/// Return true if an fpext operation is free (for instance, because
/// single-precision floating-point numbers are implicitly extended to
/// double-precision).
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
"invalid fpext types");
return false;
}
/// Return true if an fpext operation input to an \p Opcode operation is free
/// (for instance, because half-precision floating-point numbers are
/// implicitly extended to float-precision) for an FMA instruction.
virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
LLT DestTy, LLT SrcTy) const {
return false;
}
/// Return true if an fpext operation input to an \p Opcode operation is free
/// (for instance, because half-precision floating-point numbers are
/// implicitly extended to float-precision) for an FMA instruction.
virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
EVT DestVT, EVT SrcVT) const {
assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
"invalid fpext types");
return isFPExtFree(DestVT, SrcVT);
}
/// Return true if folding a vector load into ExtVal (a sign, zero, or any
/// extend node) is profitable.
virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
/// Return true if an fneg operation is free to the point where it is never
/// worthwhile to replace it with a bitwise operation.
virtual bool isFNegFree(EVT VT) const {
assert(VT.isFloatingPoint());
return false;
}
/// Return true if an fabs operation is free to the point where it is never
/// worthwhile to replace it with a bitwise operation.
virtual bool isFAbsFree(EVT VT) const {
assert(VT.isFloatingPoint());
return false;
}
/// Return true if an FMA operation is faster than a pair of fmul and fadd
/// instructions. fmuladd intrinsics will be expanded to FMAs when this method
/// returns true, otherwise fmuladd is expanded to fmul + fadd.
///
/// NOTE: This may be called before legalization on types for which FMAs are
/// not legal, but should return true if those types will eventually legalize
/// to types that support FMAs. After legalization, it will only be called on
/// types that support FMAs (via Legal or Custom actions)
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT) const {
return false;
}
/// Return true if an FMA operation is faster than a pair of fmul and fadd
/// instructions. fmuladd intrinsics will be expanded to FMAs when this method
/// returns true, otherwise fmuladd is expanded to fmul + fadd.
///
/// NOTE: This may be called before legalization on types for which FMAs are
/// not legal, but should return true if those types will eventually legalize
/// to types that support FMAs. After legalization, it will only be called on
/// types that support FMAs (via Legal or Custom actions)
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
LLT) const {
return false;
}
/// IR version
virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
return false;
}
/// Returns true if \p MI can be combined with another instruction to
/// form TargetOpcode::G_FMAD. \p N may be an TargetOpcode::G_FADD,
/// TargetOpcode::G_FSUB, or an TargetOpcode::G_FMUL which will be
/// distributed into an fadd/fsub.
virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const {
assert((MI.getOpcode() == TargetOpcode::G_FADD ||
MI.getOpcode() == TargetOpcode::G_FSUB ||
MI.getOpcode() == TargetOpcode::G_FMUL) &&
"unexpected node in FMAD forming combine");
switch (Ty.getScalarSizeInBits()) {
case 16:
return isOperationLegal(TargetOpcode::G_FMAD, MVT::f16);
case 32:
return isOperationLegal(TargetOpcode::G_FMAD, MVT::f32);
case 64:
return isOperationLegal(TargetOpcode::G_FMAD, MVT::f64);
default:
break;
}
return false;
}
/// Returns true if be combined with to form an ISD::FMAD. \p N may be an
/// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
/// fadd/fsub.
virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
N->getOpcode() == ISD::FMUL) &&
"unexpected node in FMAD forming combine");
return isOperationLegal(ISD::FMAD, N->getValueType(0));
}
// Return true when the decision to generate FMA's (or FMS, FMLA etc) rather
// than FMUL and ADD is delegated to the machine combiner.
virtual bool generateFMAsInMachineCombiner(EVT VT,
CodeGenOpt::Level OptLevel) const {
return false;
}
/// Return true if it's profitable to narrow operations of type VT1 to
/// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
/// i32 to i16.
virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
return false;
}
/// Return true if pulling a binary operation into a select with an identity
/// constant is profitable. This is the inverse of an IR transform.
/// Example: X + (Cond ? Y : 0) --> Cond ? (X + Y) : X
virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
EVT VT) const {
return false;
}
/// Return true if it is beneficial to convert a load of a constant to
/// just the constant itself.
/// On some targets it might be more efficient to use a combination of
/// arithmetic instructions to materialize the constant instead of loading it
/// from a constant pool.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
return false;
}
/// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
/// from this source type with this index. This is needed because
/// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
/// the first element, and only the target knows which lowering is cheap.
virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const {
return false;
}
/// Try to convert an extract element of a vector binary operation into an
/// extract element followed by a scalar operation.
virtual bool shouldScalarizeBinop(SDValue VecOp) const {
return false;
}
/// Return true if extraction of a scalar element from the given vector type
/// at the given index is cheap. For example, if scalar operations occur on
/// the same register file as vector operations, then an extract element may
/// be a sub-register rename rather than an actual instruction.
virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
return false;
}
/// Try to convert math with an overflow comparison into the corresponding DAG
/// node operation. Targets may want to override this independently of whether
/// the operation is legal/custom for the given type because it may obscure
/// matching of other patterns.
virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
bool MathUsed) const {
// TODO: The default logic is inherited from code in CodeGenPrepare.
// The opcode should not make a difference by default?
if (Opcode != ISD::UADDO)
return false;
// Allow the transform as long as we have an integer type that is not
// obviously illegal and unsupported and if the math result is used
// besides the overflow check. On some targets (e.g. SPARC), it is
// not profitable to form on overflow op if the math result has no
// concrete users.
if (VT.isVector())
return false;
return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
}
// Return true if it is profitable to use a scalar input to a BUILD_VECTOR
// even if the vector itself has multiple uses.
virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
return false;
}
// Return true if CodeGenPrepare should consider splitting large offset of a
// GEP to make the GEP fit into the addressing mode and can be sunk into the
// same blocks of its users.
virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
/// Return true if creating a shift of the type by the given
/// amount is not profitable.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
return false;
}
/// Does this target require the clearing of high-order bits in a register
/// passed to the fp16 to fp conversion library function.
virtual bool shouldKeepZExtForFP16Conv() const { return false; }
/// Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT
/// from min(max(fptoi)) saturation patterns.
virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const {
return isOperationLegalOrCustom(Op, VT);
}
/// Does this target support complex deinterleaving
virtual bool isComplexDeinterleavingSupported() const { return false; }
/// Does this target support complex deinterleaving with the given operation
/// and type
virtual bool isComplexDeinterleavingOperationSupported(
ComplexDeinterleavingOperation Operation, Type *Ty) const {
return false;
}
/// Create the IR node for the given complex deinterleaving operation.
/// If one cannot be created using all the given inputs, nullptr should be
/// returned.
virtual Value *createComplexDeinterleavingIR(
Instruction *I, ComplexDeinterleavingOperation OperationType,
ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
Value *Accumulator = nullptr) const {
return nullptr;
}
//===--------------------------------------------------------------------===//
// Runtime Library hooks
//
/// Rename the default libcall routine name for the specified libcall.
void setLibcallName(RTLIB::Libcall Call, const char *Name) {
LibcallRoutineNames[Call] = Name;
}
void setLibcallName(ArrayRef<RTLIB::Libcall> Calls, const char *Name) {
for (auto Call : Calls)
setLibcallName(Call, Name);
}
/// Get the libcall routine name for the specified libcall.
const char *getLibcallName(RTLIB::Libcall Call) const {
return LibcallRoutineNames[Call];
}
/// Override the default CondCode to be used to test the result of the
/// comparison libcall against zero.
void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
CmpLibcallCCs[Call] = CC;
}
/// Get the CondCode that's to be used to test the result of the comparison
/// libcall against zero.
ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
return CmpLibcallCCs[Call];
}
/// Set the CallingConv that should be used for the specified libcall.
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
LibcallCallingConvs[Call] = CC;
}
/// Get the CallingConv that should be used for the specified libcall.
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
return LibcallCallingConvs[Call];
}
/// Execute target specific actions to finalize target lowering.
/// This is used to set extra flags in MachineFrameInformation and freezing
/// the set of reserved registers.
/// The default implementation just freezes the set of reserved registers.
virtual void finalizeLowering(MachineFunction &MF) const;
//===----------------------------------------------------------------------===//
// GlobalISel Hooks
//===----------------------------------------------------------------------===//
/// Check whether or not \p MI needs to be moved close to its uses.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
private:
const TargetMachine &TM;
/// Tells the code generator that the target has multiple (allocatable)
/// condition registers that can be used to store the results of comparisons
/// for use by selects and conditional branches. With multiple condition
/// registers, the code generator will not aggressively sink comparisons into
/// the blocks of their users.
bool HasMultipleConditionRegisters;
/// Tells the code generator that the target has BitExtract instructions.
/// The code generator will aggressively sink "shift"s into the blocks of
/// their users if the users will generate "and" instructions which can be
/// combined with "shift" to BitExtract instructions.
bool HasExtractBitsInsn;
/// Tells the code generator to bypass slow divide or remainder
/// instructions. For example, BypassSlowDivWidths[32,8] tells the code
/// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
/// div/rem when the operands are positive and less than 256.
DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
/// Tells the code generator that it shouldn't generate extra flow control
/// instructions and should attempt to combine flow control instructions via
/// predication.
bool JumpIsExpensive;
/// Information about the contents of the high-bits in boolean values held in
/// a type wider than i1. See getBooleanContents.
BooleanContent BooleanContents;
/// Information about the contents of the high-bits in boolean values held in
/// a type wider than i1. See getBooleanContents.
BooleanContent BooleanFloatContents;
/// Information about the contents of the high-bits in boolean vector values
/// when the element type is wider than i1. See getBooleanContents.
BooleanContent BooleanVectorContents;
/// The target scheduling preference: shortest possible total cycles or lowest
/// register usage.
Sched::Preference SchedPreferenceInfo;
/// The minimum alignment that any argument on the stack needs to have.
Align MinStackArgumentAlignment;
/// The minimum function alignment (used when optimizing for size, and to
/// prevent explicitly provided alignment from leading to incorrect code).
Align MinFunctionAlignment;
/// The preferred function alignment (used when alignment unspecified and
/// optimizing for speed).
Align PrefFunctionAlignment;
/// The preferred loop alignment (in log2 bot in bytes).
Align PrefLoopAlignment;
/// The maximum amount of bytes permitted to be emitted for alignment.
unsigned MaxBytesForAlignment;
/// Size in bits of the maximum atomics size the backend supports.
/// Accesses larger than this will be expanded by AtomicExpandPass.
unsigned MaxAtomicSizeInBitsSupported;
/// Size in bits of the maximum div/rem size the backend supports.
/// Larger operations will be expanded by ExpandLargeDivRem.
unsigned MaxDivRemBitWidthSupported;
/// Size in bits of the maximum larget fp convert size the backend
/// supports. Larger operations will be expanded by ExpandLargeFPConvert.
unsigned MaxLargeFPConvertBitWidthSupported;
/// Size in bits of the minimum cmpxchg or ll/sc operation the
/// backend supports.
unsigned MinCmpXchgSizeInBits;
/// This indicates if the target supports unaligned atomic operations.
bool SupportsUnalignedAtomics;
/// If set to a physical register, this specifies the register that
/// llvm.savestack/llvm.restorestack should save and restore.
Register StackPointerRegisterToSaveRestore;
/// This indicates the default register class to use for each ValueType the
/// target supports natively.
const TargetRegisterClass *RegClassForVT[MVT::VALUETYPE_SIZE];
uint16_t NumRegistersForVT[MVT::VALUETYPE_SIZE];
MVT RegisterTypeForVT[MVT::VALUETYPE_SIZE];
/// This indicates the "representative" register class to use for each
/// ValueType the target supports natively. This information is used by the
/// scheduler to track register pressure. By default, the representative
/// register class is the largest legal super-reg register class of the
/// register class of the specified type. e.g. On x86, i8, i16, and i32's
/// representative class would be GR32.
const TargetRegisterClass *RepRegClassForVT[MVT::VALUETYPE_SIZE];
/// This indicates the "cost" of the "representative" register class for each
/// ValueType. The cost is used by the scheduler to approximate register
/// pressure.
uint8_t RepRegClassCostForVT[MVT::VALUETYPE_SIZE];
/// For any value types we are promoting or expanding, this contains the value
/// type that we are changing to. For Expanded types, this contains one step
/// of the expand (e.g. i64 -> i32), even if there are multiple steps required
/// (e.g. i64 -> i16). For types natively supported by the system, this holds
/// the same type (e.g. i32 -> i32).
MVT TransformToType[MVT::VALUETYPE_SIZE];
/// For each operation and each value type, keep a LegalizeAction that
/// indicates how instruction selection should deal with the operation. Most
/// operations are Legal (aka, supported natively by the target), but
/// operations that are not should be described. Note that operations on
/// non-legal value types are not described here.
LegalizeAction OpActions[MVT::VALUETYPE_SIZE][ISD::BUILTIN_OP_END];
/// For each load extension type and each value type, keep a LegalizeAction
/// that indicates how instruction selection should deal with a load of a
/// specific value type and extension type. Uses 4-bits to store the action
/// for each of the 4 load ext types.
uint16_t LoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
/// For each value type pair keep a LegalizeAction that indicates whether a
/// truncating store of a specific value type and truncating type is legal.
LegalizeAction TruncStoreActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
/// For each indexed mode and each value type, keep a quad of LegalizeAction
/// that indicates how instruction selection should deal with the load /
/// store / maskedload / maskedstore.
///
/// The first dimension is the value_type for the reference. The second
/// dimension represents the various modes for load store.
uint16_t IndexedModeActions[MVT::VALUETYPE_SIZE][ISD::LAST_INDEXED_MODE];
/// For each condition code (ISD::CondCode) keep a LegalizeAction that
/// indicates how instruction selection should deal with the condition code.
///
/// Because each CC action takes up 4 bits, we need to have the array size be
/// large enough to fit all of the value types. This can be done by rounding
/// up the MVT::VALUETYPE_SIZE value to the next multiple of 8.
uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::VALUETYPE_SIZE + 7) / 8];
ValueTypeActionImpl ValueTypeActions;
private:
/// Targets can specify ISD nodes that they would like PerformDAGCombine
/// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
/// array.
unsigned char
TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
/// For operations that must be promoted to a specific type, this holds the
/// destination type. This map should be sparse, so don't hold it as an
/// array.
///
/// Targets add entries to this map with AddPromotedToType(..), clients access
/// this with getTypeToPromoteTo(..).
std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
PromoteToType;
/// Stores the name each libcall.
const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
/// The ISD::CondCode that should be used to test the result of each of the
/// comparison libcall against zero.
ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
/// Stores the CallingConv that should be used for each libcall.
CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
/// Set default libcall names and calling conventions.
void InitLibcalls(const Triple &TT);
/// The bits of IndexedModeActions used to store the legalisation actions
/// We store the data as | ML | MS | L | S | each taking 4 bits.
enum IndexedModeActionsBits {
IMAB_Store = 0,
IMAB_Load = 4,
IMAB_MaskedStore = 8,
IMAB_MaskedLoad = 12
};
void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
LegalizeAction Action) {
assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
(unsigned)Action < 0xf && "Table isn't big enough!");
unsigned Ty = (unsigned)VT.SimpleTy;
IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
}
LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
unsigned Shift) const {
assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
"Table isn't big enough!");
unsigned Ty = (unsigned)VT.SimpleTy;
return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
}
protected:
/// Return true if the extension represented by \p I is free.
/// \pre \p I is a sign, zero, or fp extension and
/// is[Z|FP]ExtFree of the related types is not true.
virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
/// Depth that GatherAllAliases should should continue looking for chain
/// dependencies when trying to find a more preferable chain. As an
/// approximation, this should be more than the number of consecutive stores
/// expected to be merged.
unsigned GatherAllAliasesMaxDepth;
/// \brief Specify maximum number of store instructions per memset call.
///
/// When lowering \@llvm.memset this field specifies the maximum number of
/// store operations that may be substituted for the call to memset. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memset will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
/// with 16-bit alignment would result in four 2-byte stores and one 1-byte
/// store. This only applies to setting a constant array of a constant size.
unsigned MaxStoresPerMemset;
/// Likewise for functions with the OptSize attribute.
unsigned MaxStoresPerMemsetOptSize;
/// \brief Specify maximum number of store instructions per memcpy call.
///
/// When lowering \@llvm.memcpy this field specifies the maximum number of
/// store operations that may be substituted for a call to memcpy. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memcpy will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
/// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
/// and one 1-byte store. This only applies to copying a constant array of
/// constant size.
unsigned MaxStoresPerMemcpy;
/// Likewise for functions with the OptSize attribute.
unsigned MaxStoresPerMemcpyOptSize;
/// \brief Specify max number of store instructions to glue in inlined memcpy.
///
/// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
/// of store instructions to keep together. This helps in pairing and
// vectorization later on.
unsigned MaxGluedStoresPerMemcpy = 0;
/// \brief Specify maximum number of load instructions per memcmp call.
///
/// When lowering \@llvm.memcmp this field specifies the maximum number of
/// pairs of load operations that may be substituted for a call to memcmp.
/// Targets must set this value based on the cost threshold for that target.
/// Targets should assume that the memcmp will be done using as many of the
/// largest load operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
/// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
/// and one 1-byte load. This only applies to copying a constant array of
/// constant size.
unsigned MaxLoadsPerMemcmp;
/// Likewise for functions with the OptSize attribute.
unsigned MaxLoadsPerMemcmpOptSize;
/// \brief Specify maximum number of store instructions per memmove call.
///
/// When lowering \@llvm.memmove this field specifies the maximum number of
/// store instructions that may be substituted for a call to memmove. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memmove will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
/// with 8-bit alignment would result in nine 1-byte stores. This only
/// applies to copying a constant array of constant size.
unsigned MaxStoresPerMemmove;
/// Likewise for functions with the OptSize attribute.
unsigned MaxStoresPerMemmoveOptSize;
/// Tells the code generator that select is more expensive than a branch if
/// the branch is usually predicted right.
bool PredictableSelectIsExpensive;
/// \see enableExtLdPromotion.
bool EnableExtLdPromotion;
/// Return true if the value types that can be represented by the specified
/// register class are all legal.
bool isLegalRC(const TargetRegisterInfo &TRI,
const TargetRegisterClass &RC) const;
/// Replace/modify any TargetFrameIndex operands with a targte-dependent
/// sequence of memory operands that is recognized by PrologEpilogInserter.
MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
MachineBasicBlock *MBB) const;
bool IsStrictFPEnabled;
};
/// This class defines information used to lower LLVM code to legal SelectionDAG
/// operators that the target instruction selector can accept natively.
///
/// This class also defines callbacks that targets must implement to lower
/// target-specific constructs to SelectionDAG operators.
class TargetLowering : public TargetLoweringBase {
public:
struct DAGCombinerInfo;
struct MakeLibCallOptions;
TargetLowering(const TargetLowering &) = delete;
TargetLowering &operator=(const TargetLowering &) = delete;
explicit TargetLowering(const TargetMachine &TM);
bool isPositionIndependent() const;
virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
FunctionLoweringInfo *FLI,
LegacyDivergenceAnalysis *DA) const {
return false;
}
// Lets target to control the following reassociation of operands: (op (op x,
// c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
// default consider profitable any case where N0 has single use. This
// behavior reflects the condition replaced by this target hook call in the
// DAGCombiner. Any particular target can implement its own heuristic to
// restrict common combiner.
virtual bool isReassocProfitable(SelectionDAG &DAG, SDValue N0,
SDValue N1) const {
return N0.hasOneUse();
}
virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
return false;
}
/// Returns true by value, base pointer and offset pointer and addressing mode
/// by reference if the node's address can be legally represented as
/// pre-indexed load / store address.
virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
SDValue &/*Offset*/,
ISD::MemIndexedMode &/*AM*/,
SelectionDAG &/*DAG*/) const {
return false;
}
/// Returns true by value, base pointer and offset pointer and addressing mode
/// by reference if this node can be combined with a load / store to form a
/// post-indexed load / store.
virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
SDValue &/*Base*/,
SDValue &/*Offset*/,
ISD::MemIndexedMode &/*AM*/,
SelectionDAG &/*DAG*/) const {
return false;
}
/// Returns true if the specified base+offset is a legal indexed addressing
/// mode for this target. \p MI is the load or store instruction that is being
/// considered for transformation.
virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset,
bool IsPre, MachineRegisterInfo &MRI) const {
return false;
}
/// Return the entry encoding for a jump table in the current function. The
/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
virtual unsigned getJumpTableEncoding() const;
virtual const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
MCContext &/*Ctx*/) const {
llvm_unreachable("Need to implement this hook if target has custom JTIs");
}
/// Returns relocation base for the given PIC jumptable.
virtual SDValue getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const;
/// This returns the relocation base for the given PIC jumptable, the same as
/// getPICJumpTableRelocBase, but as an MCExpr.
virtual const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
unsigned JTI, MCContext &Ctx) const;
/// Return true if folding a constant offset with the given GlobalAddress is
/// legal. It is frequently not legal in PIC relocation models.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
/// Return true if the operand with index OpNo corresponding to a target
/// branch, for example, in following case
///
/// call void asm "lea r8, $0\0A\09call qword ptr ${1:P}\0A\09ret",
/// "*m,*m,~{r8},~{dirflag},~{fpsr},~{flags}"
/// ([9 x i32]* @Arr), void (...)* @sincos_asm)
///
/// the operand $1 (sincos_asm) is target branch in inline asm, but the
/// operand $0 (Arr) is not.
virtual bool
isInlineAsmTargetBranch(const SmallVectorImpl<StringRef> &AsmStrs,
unsigned OpNo) const {
return false;
}
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
SDValue &Chain) const;
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
SDValue &NewRHS, ISD::CondCode &CCCode,
const SDLoc &DL, const SDValue OldLHS,
const SDValue OldRHS) const;
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
SDValue &NewRHS, ISD::CondCode &CCCode,
const SDLoc &DL, const SDValue OldLHS,
const SDValue OldRHS, SDValue &Chain,
bool IsSignaling = false) const;
/// Returns a pair of (return value, chain).
/// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
EVT RetVT, ArrayRef<SDValue> Ops,
MakeLibCallOptions CallOptions,
const SDLoc &dl,
SDValue Chain = SDValue()) const;
/// Check whether parameters to a call that are passed in callee saved
/// registers are the same as from the calling function. This needs to be
/// checked for tail call eligibility.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
const uint32_t *CallerPreservedMask,
const SmallVectorImpl<CCValAssign> &ArgLocs,
const SmallVectorImpl<SDValue> &OutVals) const;
//===--------------------------------------------------------------------===//
// TargetLowering Optimization Methods
//
/// A convenience struct that encapsulates a DAG, and two SDValues for
/// returning information from TargetLowering to its clients that want to
/// combine.
struct TargetLoweringOpt {
SelectionDAG &DAG;
bool LegalTys;
bool LegalOps;
SDValue Old;
SDValue New;
explicit TargetLoweringOpt(SelectionDAG &InDAG,
bool LT, bool LO) :
DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
bool LegalTypes() const { return LegalTys; }
bool LegalOperations() const { return LegalOps; }
bool CombineTo(SDValue O, SDValue N) {
Old = O;
New = N;
return true;
}
};
/// Determines the optimal series of memory ops to replace the memset / memcpy.
/// Return true if the number of memory ops is below the threshold (Limit).
/// Note that this is always the case when Limit is ~0.
/// It returns the types of the sequence of memory ops to perform
/// memset / memcpy by reference.
virtual bool
findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
const MemOp &Op, unsigned DstAS, unsigned SrcAS,
const AttributeList &FuncAttributes) const;
/// Check to see if the specified operand of the specified instruction is a
/// constant integer. If so, check to see if there are any bits set in the
/// constant that are not demanded. If so, shrink the constant and return
/// true.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
TargetLoweringOpt &TLO) const;
/// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
TargetLoweringOpt &TLO) const;
// Target hook to do target-specific const optimization, which is called by
// ShrinkDemandedConstant. This function should return true if the target
// doesn't want ShrinkDemandedConstant to further optimize the constant.
virtual bool targetShrinkDemandedConstant(SDValue Op,
const APInt &DemandedBits,
const APInt &DemandedElts,
TargetLoweringOpt &TLO) const {
return false;
}
/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This
/// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
/// generalized for targets with other types of implicit widening casts.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
TargetLoweringOpt &TLO) const;
/// Look at Op. At this point, we know that only the DemandedBits bits of the
/// result of Op are ever used downstream. If we can use this information to
/// simplify Op, create a new simplified DAG node and return true, returning
/// the original and new nodes in Old and New. Otherwise, analyze the
/// expression and return a mask of KnownOne and KnownZero bits for the
/// expression (used to simplify the caller). The KnownZero/One bits may only
/// be accurate for those bits in the Demanded masks.
/// \p AssumeSingleUse When this parameter is true, this function will
/// attempt to simplify \p Op even if there are multiple uses.
/// Callers are responsible for correctly updating the DAG based on the
/// results of this function, because simply replacing replacing TLO.Old
/// with TLO.New will be incorrect when this parameter is true and TLO.Old
/// has multiple uses.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts, KnownBits &Known,
TargetLoweringOpt &TLO, unsigned Depth = 0,
bool AssumeSingleUse = false) const;
/// Helper wrapper around SimplifyDemandedBits, demanding all elements.
/// Adds Op back to the worklist upon success.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
KnownBits &Known, TargetLoweringOpt &TLO,
unsigned Depth = 0,
bool AssumeSingleUse = false) const;
/// Helper wrapper around SimplifyDemandedBits.
/// Adds Op back to the worklist upon success.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
DAGCombinerInfo &DCI) const;
/// Helper wrapper around SimplifyDemandedBits.
/// Adds Op back to the worklist upon success.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
DAGCombinerInfo &DCI) const;
/// More limited version of SimplifyDemandedBits that can be used to "look
/// through" ops that don't contribute to the DemandedBits/DemandedElts -
/// bitwise ops etc.
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
SelectionDAG &DAG,
unsigned Depth = 0) const;
/// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
/// elements.
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
SelectionDAG &DAG,
unsigned Depth = 0) const;
/// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
/// bits from only some vector elements.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op,
const APInt &DemandedElts,
SelectionDAG &DAG,
unsigned Depth = 0) const;
/// Look at Vector Op. At this point, we know that only the DemandedElts
/// elements of the result of Op are ever used downstream. If we can use
/// this information to simplify Op, create a new simplified DAG node and
/// return true, storing the original and new nodes in TLO.
/// Otherwise, analyze the expression and return a mask of KnownUndef and
/// KnownZero elements for the expression (used to simplify the caller).
/// The KnownUndef/Zero elements may only be accurate for those bits
/// in the DemandedMask.
/// \p AssumeSingleUse When this parameter is true, this function will
/// attempt to simplify \p Op even if there are multiple uses.
/// Callers are responsible for correctly updating the DAG based on the
/// results of this function, because simply replacing replacing TLO.Old
/// with TLO.New will be incorrect when this parameter is true and TLO.Old
/// has multiple uses.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
APInt &KnownUndef, APInt &KnownZero,
TargetLoweringOpt &TLO, unsigned Depth = 0,
bool AssumeSingleUse = false) const;
/// Helper wrapper around SimplifyDemandedVectorElts.
/// Adds Op back to the worklist upon success.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
DAGCombinerInfo &DCI) const;
/// Return true if the target supports simplifying demanded vector elements by
/// converting them to undefs.
virtual bool
shouldSimplifyDemandedVectorElts(SDValue Op,
const TargetLoweringOpt &TLO) const {
return true;
}
/// Determine which of the bits specified in Mask are known to be either zero
/// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
/// argument allows us to only collect the known bits that are shared by the
/// requested vector elements.
virtual void computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth = 0) const;
/// Determine which of the bits specified in Mask are known to be either zero
/// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
/// argument allows us to only collect the known bits that are shared by the
/// requested vector elements. This is for GISel.
virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis,
Register R, KnownBits &Known,
const APInt &DemandedElts,
const MachineRegisterInfo &MRI,
unsigned Depth = 0) const;
/// Determine the known alignment for the pointer value \p R. This is can
/// typically be inferred from the number of low known 0 bits. However, for a
/// pointer with a non-integral address space, the alignment value may be
/// independent from the known low bits.
virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis,
Register R,
const MachineRegisterInfo &MRI,
unsigned Depth = 0) const;
/// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
/// Default implementation computes low bits based on alignment
/// information. This should preserve known bits passed into it.
virtual void computeKnownBitsForFrameIndex(int FIOp,
KnownBits &Known,
const MachineFunction &MF) const;
/// This method can be implemented by targets that want to expose additional
/// information about sign bits to the DAG Combiner. The DemandedElts
/// argument allows us to only collect the minimum sign bits that are shared
/// by the requested vector elements.
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth = 0) const;
/// This method can be implemented by targets that want to expose additional
/// information about sign bits to GlobalISel combiners. The DemandedElts
/// argument allows us to only collect the minimum sign bits that are shared
/// by the requested vector elements.
virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis,
Register R,
const APInt &DemandedElts,
const MachineRegisterInfo &MRI,
unsigned Depth = 0) const;
/// Attempt to simplify any target nodes based on the demanded vector
/// elements, returning true on success. Otherwise, analyze the expression and
/// return a mask of KnownUndef and KnownZero elements for the expression
/// (used to simplify the caller). The KnownUndef/Zero elements may only be
/// accurate for those bits in the DemandedMask.
virtual bool SimplifyDemandedVectorEltsForTargetNode(
SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
/// Attempt to simplify any target nodes based on the demanded bits/elts,
/// returning true on success. Otherwise, analyze the
/// expression and return a mask of KnownOne and KnownZero bits for the
/// expression (used to simplify the caller). The KnownZero/One bits may only
/// be accurate for those bits in the Demanded masks.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
const APInt &DemandedBits,
const APInt &DemandedElts,
KnownBits &Known,
TargetLoweringOpt &TLO,
unsigned Depth = 0) const;
/// More limited version of SimplifyDemandedBits that can be used to "look
/// through" ops that don't contribute to the DemandedBits/DemandedElts -
/// bitwise ops etc.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
SelectionDAG &DAG, unsigned Depth) const;
/// Return true if this function can prove that \p Op is never poison
/// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
/// argument limits the check to the requested vector elements.
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
bool PoisonOnly, unsigned Depth) const;
/// Return true if Op can create undef or poison from non-undef & non-poison
/// operands. The DemandedElts argument limits the check to the requested
/// vector elements.
virtual bool
canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts,
const SelectionDAG &DAG, bool PoisonOnly,
bool ConsiderFlags, unsigned Depth) const;
/// Tries to build a legal vector shuffle using the provided parameters
/// or equivalent variations. The Mask argument maybe be modified as the
/// function tries different variations.
/// Returns an empty SDValue if the operation fails.
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
SDValue N1, MutableArrayRef<int> Mask,
SelectionDAG &DAG) const;
/// This method returns the constant pool value that will be loaded by LD.
/// NOTE: You must check for implicit extensions of the constant by LD.
virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
/// If \p SNaN is false, \returns true if \p Op is known to never be any
/// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
/// NaN.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
const SelectionDAG &DAG,
bool SNaN = false,
unsigned Depth = 0) const;
/// Return true if vector \p Op has the same value across all \p DemandedElts,
/// indicating any elements which may be undef in the output \p UndefElts.
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts,
APInt &UndefElts,
const SelectionDAG &DAG,
unsigned Depth = 0) const;
/// Returns true if the given Opc is considered a canonical constant for the
/// target, which should not be transformed back into a BUILD_VECTOR.
virtual bool isTargetCanonicalConstantNode(SDValue Op) const {
return Op.getOpcode() == ISD::SPLAT_VECTOR;
}
struct DAGCombinerInfo {
void *DC; // The DAG Combiner object.
CombineLevel Level;
bool CalledByLegalizer;
public:
SelectionDAG &DAG;
DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
: DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
CombineLevel getDAGCombineLevel() { return Level; }
bool isCalledByLegalizer() const { return CalledByLegalizer; }
void AddToWorklist(SDNode *N);
SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
bool recursivelyDeleteUnusedNodes(SDNode *N);
void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
};
/// Return if the N is a constant or constant vector equal to the true value
/// from getBooleanContents().
bool isConstTrueVal(SDValue N) const;
/// Return if the N is a constant or constant vector equal to the false value
/// from getBooleanContents().
bool isConstFalseVal(SDValue N) const;
/// Return if \p N is a True value when extended to \p VT.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
/// Try to simplify a setcc built with the specified operands and cc. If it is
/// unable to simplify it, return a null SDValue.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
bool foldBooleans, DAGCombinerInfo &DCI,
const SDLoc &dl) const;
// For targets which wrap address, unwrap for analysis.
virtual SDValue unwrapAddress(SDValue N) const { return N; }
/// Returns true (and the GlobalValue and the offset) if the node is a
/// GlobalAddress + offset.
virtual bool
isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
/// This method will be invoked for all target nodes and for any
/// target-independent nodes that the target has registered with invoke it
/// for.
///
/// The semantics are as follows:
/// Return Value:
/// SDValue.Val == 0 - No change was made
/// SDValue.Val == N - N was replaced, is dead, and is already handled.
/// otherwise - N should be replaced by the returned Operand.
///
/// In addition, methods provided by DAGCombinerInfo may be used to perform
/// more complex transformations.
///
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
/// Return true if it is profitable to move this shift by a constant amount
/// through its operand, adjusting any immediate operands as necessary to
/// preserve semantics. This transformation may not be desirable if it
/// disrupts a particularly auspicious target-specific tree (e.g. bitfield
/// extraction in AArch64). By default, it returns true.
///
/// @param N the shift node
/// @param Level the current DAGCombine legalization level.
virtual bool isDesirableToCommuteWithShift(const SDNode *N,
CombineLevel Level) const {
return true;
}
/// Return true if it is profitable to combine an XOR of a logical shift
/// to create a logical shift of NOT. This transformation may not be desirable
/// if it disrupts a particularly auspicious target-specific tree (e.g.
/// BIC on ARM/AArch64). By default, it returns true.
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const {
return true;
}
/// Return true if the target has native support for the specified value type
/// and it is 'desirable' to use the type for the given node type. e.g. On x86
/// i16 is legal, but undesirable since i16 instruction encodings are longer
/// and some i16 instructions are slow.
virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
// By default, assume all legal types are desirable.
return isTypeLegal(VT);
}
/// Return true if it is profitable for dag combiner to transform a floating
/// point op of specified opcode to a equivalent op of an integer
/// type. e.g. f32 load -> i32 load can be profitable on ARM.
virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
EVT /*VT*/) const {
return false;
}
/// This method query the target whether it is beneficial for dag combiner to
/// promote the specified node. If true, it should return the desired
/// promotion type by reference.
virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
return false;
}
/// Return true if the target supports swifterror attribute. It optimizes
/// loads and stores to reading and writing a specific register.
virtual bool supportSwiftError() const {
return false;
}
/// Return true if the target supports that a subset of CSRs for the given
/// machine function is handled explicitly via copies.
virtual bool supportSplitCSR(MachineFunction *MF) const {
return false;
}
/// Return true if the target supports kcfi operand bundles.
virtual bool supportKCFIBundles() const { return false; }
/// Perform necessary initialization to handle a subset of CSRs explicitly
/// via copies. This function is called at the beginning of instruction
/// selection.
virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
llvm_unreachable("Not Implemented");
}
/// Insert explicit copies in entry and exit blocks. We copy a subset of
/// CSRs to virtual registers in the entry block, and copy them back to
/// physical registers in the exit blocks. This function is called at the end
/// of instruction selection.
virtual void insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
llvm_unreachable("Not Implemented");
}
/// Return the newly negated expression if the cost is not expensive and
/// set the cost in \p Cost to indicate that if it is cheaper or neutral to
/// do the negation.
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
bool LegalOps, bool OptForSize,
NegatibleCost &Cost,
unsigned Depth = 0) const;
SDValue getCheaperOrNeutralNegatedExpression(
SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize,
const NegatibleCost CostThreshold = NegatibleCost::Neutral,
unsigned Depth = 0) const {
NegatibleCost Cost = NegatibleCost::Expensive;
SDValue Neg =
getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
if (!Neg)
return SDValue();
if (Cost <= CostThreshold)
return Neg;
// Remove the new created node to avoid the side effect to the DAG.
if (Neg->use_empty())
DAG.RemoveDeadNode(Neg.getNode());
return SDValue();
}
/// This is the helper function to return the newly negated expression only
/// when the cost is cheaper.
SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG,
bool LegalOps, bool OptForSize,
unsigned Depth = 0) const {
return getCheaperOrNeutralNegatedExpression(Op, DAG, LegalOps, OptForSize,
NegatibleCost::Cheaper, Depth);
}
/// This is the helper function to return the newly negated expression if
/// the cost is not expensive.
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
bool OptForSize, unsigned Depth = 0) const {
NegatibleCost Cost = NegatibleCost::Expensive;
return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
}
//===--------------------------------------------------------------------===//
// Lowering methods - These methods must be implemented by targets so that
// the SelectionDAGBuilder code knows how to lower these.
//
/// Target-specific splitting of values into parts that fit a register
/// storing a legal type
virtual bool splitValueIntoRegisterParts(
SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
return false;
}
/// Allows the target to handle physreg-carried dependency
/// in target-specific way. Used from the ScheduleDAGSDNodes to decide whether
/// to add the edge to the dependency graph.
/// Def - input: Selection DAG node defininfg physical register
/// User - input: Selection DAG node using physical register
/// Op - input: Number of User operand
/// PhysReg - inout: set to the physical register if the edge is
/// necessary, unchanged otherwise
/// Cost - inout: physical register copy cost.
/// Returns 'true' is the edge is necessary, 'false' otherwise
virtual bool checkForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
const TargetRegisterInfo *TRI,
const TargetInstrInfo *TII,
unsigned &PhysReg, int &Cost) const {
return false;
}
/// Target-specific combining of register parts into its original value
virtual SDValue
joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL,
const SDValue *Parts, unsigned NumParts,
MVT PartVT, EVT ValueVT,
std::optional<CallingConv::ID> CC) const {
return SDValue();
}
/// This hook must be implemented to lower the incoming (formal) arguments,
/// described by the Ins array, into the specified DAG. The implementation
/// should fill in the InVals array with legal-type argument values, and
/// return the resulting token chain value.
virtual SDValue LowerFormalArguments(
SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
llvm_unreachable("Not Implemented");
}
/// This structure contains all information that is necessary for lowering
/// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
/// needs to lower a call, and targets will see this struct in their LowerCall
/// implementation.
struct CallLoweringInfo {
SDValue Chain;
Type *RetTy = nullptr;
bool RetSExt : 1;
bool RetZExt : 1;
bool IsVarArg : 1;
bool IsInReg : 1;
bool DoesNotReturn : 1;
bool IsReturnValueUsed : 1;
bool IsConvergent : 1;
bool IsPatchPoint : 1;
bool IsPreallocated : 1;
bool NoMerge : 1;
// IsTailCall should be modified by implementations of
// TargetLowering::LowerCall that perform tail call conversions.
bool IsTailCall = false;
// Is Call lowering done post SelectionDAG type legalization.
bool IsPostTypeLegalization = false;
unsigned NumFixedArgs = -1;
CallingConv::ID CallConv = CallingConv::C;
SDValue Callee;
ArgListTy Args;
SelectionDAG &DAG;
SDLoc DL;
const CallBase *CB = nullptr;
SmallVector<ISD::OutputArg, 32> Outs;
SmallVector<SDValue, 32> OutVals;
SmallVector<ISD::InputArg, 32> Ins;
SmallVector<SDValue, 4> InVals;
const ConstantInt *CFIType = nullptr;
CallLoweringInfo(SelectionDAG &DAG)
: RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
IsPatchPoint(false), IsPreallocated(false), NoMerge(false),
DAG(DAG) {}
CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
DL = dl;
return *this;
}
CallLoweringInfo &setChain(SDValue InChain) {
Chain = InChain;
return *this;
}
// setCallee with target/module-specific attributes
CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
SDValue Target, ArgListTy &&ArgsList) {
RetTy = ResultType;
Callee = Target;
CallConv = CC;
NumFixedArgs = ArgsList.size();
Args = std::move(ArgsList);
DAG.getTargetLoweringInfo().markLibCallAttributes(
&(DAG.getMachineFunction()), CC, Args);
return *this;
}
CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
SDValue Target, ArgListTy &&ArgsList) {
RetTy = ResultType;
Callee = Target;
CallConv = CC;
NumFixedArgs = ArgsList.size();
Args = std::move(ArgsList);
return *this;
}
CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
SDValue Target, ArgListTy &&ArgsList,
const CallBase &Call) {
RetTy = ResultType;
IsInReg = Call.hasRetAttr(Attribute::InReg);
DoesNotReturn =
Call.doesNotReturn() ||
(!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
IsVarArg = FTy->isVarArg();
IsReturnValueUsed = !Call.use_empty();
RetSExt = Call.hasRetAttr(Attribute::SExt);
RetZExt = Call.hasRetAttr(Attribute::ZExt);
NoMerge = Call.hasFnAttr(Attribute::NoMerge);
Callee = Target;
CallConv = Call.getCallingConv();
NumFixedArgs = FTy->getNumParams();
Args = std::move(ArgsList);
CB = &Call;
return *this;
}
CallLoweringInfo &setInRegister(bool Value = true) {
IsInReg = Value;
return *this;
}
CallLoweringInfo &setNoReturn(bool Value = true) {
DoesNotReturn = Value;
return *this;
}
CallLoweringInfo &setVarArg(bool Value = true) {
IsVarArg = Value;
return *this;
}
CallLoweringInfo &setTailCall(bool Value = true) {
IsTailCall = Value;
return *this;
}
CallLoweringInfo &setDiscardResult(bool Value = true) {
IsReturnValueUsed = !Value;
return *this;
}
CallLoweringInfo &setConvergent(bool Value = true) {
IsConvergent = Value;
return *this;
}
CallLoweringInfo &setSExtResult(bool Value = true) {
RetSExt = Value;
return *this;
}
CallLoweringInfo &setZExtResult(bool Value = true) {
RetZExt = Value;
return *this;
}
CallLoweringInfo &setIsPatchPoint(bool Value = true) {
IsPatchPoint = Value;
return *this;
}
CallLoweringInfo &setIsPreallocated(bool Value = true) {
IsPreallocated = Value;
return *this;
}
CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
IsPostTypeLegalization = Value;
return *this;
}
CallLoweringInfo &setCFIType(const ConstantInt *Type) {
CFIType = Type;
return *this;
}
ArgListTy &getArgs() {
return Args;
}
};
/// This structure is used to pass arguments to makeLibCall function.
struct MakeLibCallOptions {
// By passing type list before soften to makeLibCall, the target hook
// shouldExtendTypeInLibCall can get the original type before soften.
ArrayRef<EVT> OpsVTBeforeSoften;
EVT RetVTBeforeSoften;
bool IsSExt : 1;
bool DoesNotReturn : 1;
bool IsReturnValueUsed : 1;
bool IsPostTypeLegalization : 1;
bool IsSoften : 1;
MakeLibCallOptions()
: IsSExt(false), DoesNotReturn(false), IsReturnValueUsed(true),
IsPostTypeLegalization(false), IsSoften(false) {}
MakeLibCallOptions &setSExt(bool Value = true) {
IsSExt = Value;
return *this;
}
MakeLibCallOptions &setNoReturn(bool Value = true) {
DoesNotReturn = Value;
return *this;
}
MakeLibCallOptions &setDiscardResult(bool Value = true) {
IsReturnValueUsed = !Value;
return *this;
}
MakeLibCallOptions &setIsPostTypeLegalization(bool Value = true) {
IsPostTypeLegalization = Value;
return *this;
}
MakeLibCallOptions &setTypeListBeforeSoften(ArrayRef<EVT> OpsVT, EVT RetVT,
bool Value = true) {
OpsVTBeforeSoften = OpsVT;
RetVTBeforeSoften = RetVT;
IsSoften = Value;
return *this;
}
};
/// This function lowers an abstract call to a function into an actual call.
/// This returns a pair of operands. The first element is the return value
/// for the function (if RetTy is not VoidTy). The second element is the
/// outgoing token chain. It calls LowerCall to do the actual lowering.
std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
/// This hook must be implemented to lower calls into the specified
/// DAG. The outgoing arguments to the call are described by the Outs array,
/// and the values to be returned by the call are described by the Ins
/// array. The implementation should fill in the InVals array with legal-type
/// return values from the call, and return the resulting token chain value.
virtual SDValue
LowerCall(CallLoweringInfo &/*CLI*/,
SmallVectorImpl<SDValue> &/*InVals*/) const {
llvm_unreachable("Not Implemented");
}
/// Target-specific cleanup for formal ByVal parameters.
virtual void HandleByVal(CCState *, unsigned &, Align) const {}
/// This hook should be implemented to check whether the return values
/// described by the Outs array can fit into the return registers. If false
/// is returned, an sret-demotion is performed.
virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
MachineFunction &/*MF*/, bool /*isVarArg*/,
const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
LLVMContext &/*Context*/) const
{
// Return true by default to get preexisting behavior.
return true;
}
/// This hook must be implemented to lower outgoing return values, described
/// by the Outs array, into the specified DAG. The implementation should
/// return the resulting token chain value.
virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
bool /*isVarArg*/,
const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
const SmallVectorImpl<SDValue> & /*OutVals*/,
const SDLoc & /*dl*/,
SelectionDAG & /*DAG*/) const {
llvm_unreachable("Not Implemented");
}
/// Return true if result of the specified node is used by a return node
/// only. It also compute and return the input chain for the tail call.
///
/// This is used to determine whether it is possible to codegen a libcall as
/// tail call at legalization time.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
return false;
}
/// Return true if the target may be able emit the call instruction as a tail
/// call. This is used by optimization passes to determine if it's profitable
/// to duplicate return instructions to enable tailcall optimization.
virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
return false;
}
/// Return the builtin name for the __builtin___clear_cache intrinsic
/// Default is to invoke the clear cache library call
virtual const char * getClearCacheBuiltinName() const {
return "__clear_cache";
}
/// Return the register ID of the name passed in. Used by named register
/// global variables extension. There is no target-independent behaviour
/// so the default action is to bail.
virtual Register getRegisterByName(const char* RegName, LLT Ty,
const MachineFunction &MF) const {
report_fatal_error("Named registers not implemented for this target");
}
/// Return the type that should be used to zero or sign extend a
/// zeroext/signext integer return value. FIXME: Some C calling conventions
/// require the return type to be promoted, but this is not true all the time,
/// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
/// conventions. The frontend should handle this and include all of the
/// necessary information.
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
ISD::NodeType /*ExtendKind*/) const {
EVT MinVT = getRegisterType(Context, MVT::i32);
return VT.bitsLT(MinVT) ? MinVT : VT;
}
/// For some targets, an LLVM struct type must be broken down into multiple
/// simple types, but the calling convention specifies that the entire struct
/// must be passed in a block of consecutive registers.
virtual bool
functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
bool isVarArg,
const DataLayout &DL) const {
return false;
}
/// For most targets, an LLVM type must be broken down into multiple
/// smaller types. Usually the halves are ordered according to the endianness
/// but for some platform that would break. So this method will default to
/// matching the endianness but can be overridden.
virtual bool
shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const {
return DL.isLittleEndian();
}
/// Returns a 0 terminated array of registers that can be safely used as
/// scratch registers.
virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
return nullptr;
}
/// This callback is used to prepare for a volatile or atomic load.
/// It takes a chain node as input and returns the chain for the load itself.
///
/// Having a callback like this is necessary for targets like SystemZ,
/// which allows a CPU to reuse the result of a previous load indefinitely,
/// even if a cache-coherent store is performed by another CPU. The default
/// implementation does nothing.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
SelectionDAG &DAG) const {
return Chain;
}
/// Should SelectionDAG lower an atomic store of the given kind as a normal
/// StoreSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
/// eventually migrate all targets to the using StoreSDNodes, but porting is
/// being done target at a time.
virtual bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const {
assert(SI.isAtomic() && "violated precondition");
return false;
}
/// Should SelectionDAG lower an atomic load of the given kind as a normal
/// LoadSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
/// eventually migrate all targets to the using LoadSDNodes, but porting is
/// being done target at a time.
virtual bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const {
assert(LI.isAtomic() && "violated precondition");
return false;
}
/// This callback is invoked by the type legalizer to legalize nodes with an
/// illegal operand type but legal result types. It replaces the
/// LowerOperation callback in the type Legalizer. The reason we can not do
/// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
/// use this callback.
///
/// TODO: Consider merging with ReplaceNodeResults.
///
/// The target places new result values for the node in Results (their number
/// and types must exactly match those of the original return values of
/// the node), or leaves Results empty, which indicates that the node is not
/// to be custom lowered after all.
/// The default implementation calls LowerOperation.
virtual void LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
/// This callback is invoked for operations that are unsupported by the
/// target, which are registered to use 'custom' lowering, and whose defined
/// values are all legal. If the target has no operations that require custom
/// lowering, it need not implement this. The default implementation of this
/// aborts.
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
/// This callback is invoked when a node result type is illegal for the
/// target, and the operation was registered to use 'custom' lowering for that
/// result type. The target places new result values for the node in Results
/// (their number and types must exactly match those of the original return
/// values of the node), or leaves Results empty, which indicates that the
/// node is not to be custom lowered after all.
///
/// If the target has no operations that require custom lowering, it need not
/// implement this. The default implementation aborts.
virtual void ReplaceNodeResults(SDNode * /*N*/,
SmallVectorImpl<SDValue> &/*Results*/,
SelectionDAG &/*DAG*/) const {
llvm_unreachable("ReplaceNodeResults not implemented for this target!");
}
/// This method returns the name of a target specific DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// This method returns a target specific FastISel object, or null if the
/// target does not support "fast" ISel.
virtual FastISel *createFastISel(FunctionLoweringInfo &,
const TargetLibraryInfo *) const {
return nullptr;
}
bool verifyReturnAddressArgumentIsConstant(SDValue Op,
SelectionDAG &DAG) const;
//===--------------------------------------------------------------------===//
// Inline Asm Support hooks
//
/// This hook allows the target to expand an inline asm call to be explicit
/// llvm code if it wants to. This is useful for turning simple inline asms
/// into LLVM intrinsics, which gives the compiler more information about the
/// behavior of the code.
virtual bool ExpandInlineAsm(CallInst *) const {
return false;
}
enum ConstraintType {
C_Register, // Constraint represents specific register(s).
C_RegisterClass, // Constraint represents any of register(s) in class.
C_Memory, // Memory constraint.
C_Address, // Address constraint.
C_Immediate, // Requires an immediate.
C_Other, // Something else.
C_Unknown // Unsupported constraint.
};
enum ConstraintWeight {
// Generic weights.
CW_Invalid = -1, // No match.
CW_Okay = 0, // Acceptable.
CW_Good = 1, // Good weight.
CW_Better = 2, // Better weight.
CW_Best = 3, // Best weight.
// Well-known weights.
CW_SpecificReg = CW_Okay, // Specific register operands.
CW_Register = CW_Good, // Register operands.
CW_Memory = CW_Better, // Memory operands.
CW_Constant = CW_Best, // Constant operand.
CW_Default = CW_Okay // Default or don't know type.
};
/// This contains information for each constraint that we are lowering.
struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
/// This contains the actual string for the code, like "m". TargetLowering
/// picks the 'best' code from ConstraintInfo::Codes that most closely
/// matches the operand.
std::string ConstraintCode;
/// Information about the constraint code, e.g. Register, RegisterClass,
/// Memory, Other, Unknown.
TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
/// If this is the result output operand or a clobber, this is null,
/// otherwise it is the incoming operand to the CallInst. This gets
/// modified as the asm is processed.
Value *CallOperandVal = nullptr;
/// The ValueType for the operand value.
MVT ConstraintVT = MVT::Other;
/// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfo(InlineAsm::ConstraintInfo Info)
: InlineAsm::ConstraintInfo(std::move(Info)) {}
/// Return true of this is an input operand that is a matching constraint
/// like "4".
bool isMatchingInputConstraint() const;
/// If this is an input matching constraint, this method returns the output
/// operand it matches.
unsigned getMatchedOperand() const;
};
using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
/// Split up the constraint string from the inline assembly value into the
/// specific constraints and their prefixes, and also tie in the associated
/// operand values. If this returns an empty vector, and if the constraint
/// string itself isn't empty, there was an error parsing.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
const TargetRegisterInfo *TRI,
const CallBase &Call) const;
/// Examine constraint type and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
virtual ConstraintWeight getMultipleConstraintMatchWeight(
AsmOperandInfo &info, int maIndex) const;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
virtual ConstraintWeight getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const;
/// Determines the constraint code and constraint type to use for the specific
/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
/// If the actual operand being passed in is available, it can be passed in as
/// Op, otherwise an empty SDValue can be passed.
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
SDValue Op,
SelectionDAG *DAG = nullptr) const;
/// Given a constraint, return the type of constraint it is for this target.
virtual ConstraintType getConstraintType(StringRef Constraint) const;
/// Given a physical register constraint (e.g. {edx}), return the register
/// number and the register class for the register.
///
/// Given a register class constraint, like 'r', if this corresponds directly
/// to an LLVM register class, return a register of 0 and the register class
/// pointer.
///
/// This should only be used for C_Register constraints. On error, this
/// returns a register number of 0 and a null register class pointer.
virtual std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint, MVT VT) const;
virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
if (ConstraintCode == "m")
return InlineAsm::Constraint_m;
if (ConstraintCode == "o")
return InlineAsm::Constraint_o;
if (ConstraintCode == "X")
return InlineAsm::Constraint_X;
if (ConstraintCode == "p")
return InlineAsm::Constraint_p;
return InlineAsm::Constraint_Unknown;
}
/// Try to replace an X constraint, which matches anything, with another that
/// has more specific requirements based on the type of the corresponding
/// operand. This returns null if there is no replacement to make.
virtual const char *LowerXConstraint(EVT ConstraintVT) const;
/// Lower the specified operand into the Ops vector. If it is invalid, don't
/// add anything to Ops.
virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const;
// Lower custom output constraints. If invalid, return SDValue().
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag,
const SDLoc &DL,
const AsmOperandInfo &OpInfo,
SelectionDAG &DAG) const;
// Targets may override this function to collect operands from the CallInst
// and for example, lower them into the SelectionDAG operands.
virtual void CollectTargetIntrinsicOperands(const CallInst &I,
SmallVectorImpl<SDValue> &Ops,
SelectionDAG &DAG) const;
//===--------------------------------------------------------------------===//
// Div utility functions
//
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
SmallVectorImpl<SDNode *> &Created) const;
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
SmallVectorImpl<SDNode *> &Created) const;
/// Targets may override this function to provide custom SDIV lowering for
/// power-of-2 denominators. If the target returns an empty SDValue, LLVM
/// assumes SDIV is expensive and replaces it with a series of other integer
/// operations.
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const;
/// Targets may override this function to provide custom SREM lowering for
/// power-of-2 denominators. If the target returns an empty SDValue, LLVM
/// assumes SREM is expensive and replaces it with a series of other integer
/// operations.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const;
/// Indicate whether this target prefers to combine FDIVs with the same
/// divisor. If the transform should never be done, return zero. If the
/// transform should be done, return the minimum number of divisor uses
/// that must exist.
virtual unsigned combineRepeatedFPDivisors() const {
return 0;
}
/// Hooks for building estimates in place of slower divisions and square
/// roots.
/// Return either a square root or its reciprocal estimate value for the input
/// operand.
/// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
/// 'Enabled' as set by a potential default override attribute.
/// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
/// refinement iterations required to generate a sufficient (though not
/// necessarily IEEE-754 compliant) estimate is returned in that parameter.
/// The boolean UseOneConstNR output is used to select a Newton-Raphson
/// algorithm implementation that uses either one or two constants.
/// The boolean Reciprocal is used to select whether the estimate is for the
/// square root of the input operand or the reciprocal of its square root.
/// A target may choose to implement its own refinement within this function.
/// If that's true, then return '0' as the number of RefinementSteps to avoid
/// any further refinement of the estimate.
/// An empty SDValue return means no estimate sequence can be created.
virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
int Enabled, int &RefinementSteps,
bool &UseOneConstNR, bool Reciprocal) const {
return SDValue();
}
/// Try to convert the fminnum/fmaxnum to a compare/select sequence. This is
/// required for correctness since InstCombine might have canonicalized a
/// fcmp+select sequence to a FMINNUM/FMAXNUM intrinsic. If we were to fall
/// through to the default expansion/soften to libcall, we might introduce a
/// link-time dependency on libm into a file that originally did not have one.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const;
/// Return a reciprocal estimate value for the input operand.
/// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
/// 'Enabled' as set by a potential default override attribute.
/// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
/// refinement iterations required to generate a sufficient (though not
/// necessarily IEEE-754 compliant) estimate is returned in that parameter.
/// A target may choose to implement its own refinement within this function.
/// If that's true, then return '0' as the number of RefinementSteps to avoid
/// any further refinement of the estimate.
/// An empty SDValue return means no estimate sequence can be created.
virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
int Enabled, int &RefinementSteps) const {
return SDValue();
}
/// Return a target-dependent comparison result if the input operand is
/// suitable for use with a square root estimate calculation. For example, the
/// comparison may check if the operand is NAN, INF, zero, normal, etc. The
/// result should be used as the condition operand for a select or branch.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
const DenormalMode &Mode) const;
/// Return a target-dependent result if the input operand is not suitable for
/// use with a square root estimate calculation.
virtual SDValue getSqrtResultForDenormInput(SDValue Operand,
SelectionDAG &DAG) const {
return DAG.getConstantFP(0.0, SDLoc(Operand), Operand.getValueType());
}
//===--------------------------------------------------------------------===//
// Legalization utility functions
//
/// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
/// respectively, each computing an n/2-bit part of the result.
/// \param Result A vector that will be filled with the parts of the result
/// in little-endian order.
/// \param LL Low bits of the LHS of the MUL. You can use this parameter
/// if you want to control how low bits are extracted from the LHS.
/// \param LH High bits of the LHS of the MUL. See LL for meaning.
/// \param RL Low bits of the RHS of the MUL. See LL for meaning
/// \param RH High bits of the RHS of the MUL. See LL for meaning.
/// \returns true if the node has been expanded, false if it has not
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS,
SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
SelectionDAG &DAG, MulExpansionKind Kind,
SDValue LL = SDValue(), SDValue LH = SDValue(),
SDValue RL = SDValue(), SDValue RH = SDValue()) const;
/// Expand a MUL into two nodes. One that computes the high bits of
/// the result and one that computes the low bits.
/// \param HiLoVT The value type to use for the Lo and Hi nodes.
/// \param LL Low bits of the LHS of the MUL. You can use this parameter
/// if you want to control how low bits are extracted from the LHS.
/// \param LH High bits of the LHS of the MUL. See LL for meaning.
/// \param RL Low bits of the RHS of the MUL. See LL for meaning
/// \param RH High bits of the RHS of the MUL. See LL for meaning.
/// \returns true if the node has been expanded. false if it has not
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
SelectionDAG &DAG, MulExpansionKind Kind,
SDValue LL = SDValue(), SDValue LH = SDValue(),
SDValue RL = SDValue(), SDValue RH = SDValue()) const;
/// Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit
/// urem by constant and other arithmetic ops. The n/2-bit urem by constant
/// will be expanded by DAGCombiner. This is not possible for all constant
/// divisors.
/// \param N Node to expand
/// \param Result A vector that will be filled with the lo and high parts of
/// the results. For *DIVREM, this will be the quotient parts followed
/// by the remainder parts.
/// \param HiLoVT The value type to use for the Lo and Hi parts. Should be
/// half of VT.
/// \param LL Low bits of the LHS of the operation. You can use this
/// parameter if you want to control how low bits are extracted from
/// the LHS.
/// \param LH High bits of the LHS of the operation. See LL for meaning.
/// \returns true if the node has been expanded, false if it has not.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl<SDValue> &Result,
EVT HiLoVT, SelectionDAG &DAG,
SDValue LL = SDValue(),
SDValue LH = SDValue()) const;
/// Expand funnel shift.
/// \param N Node to expand
/// \returns The expansion if successful, SDValue() otherwise
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const;
/// Expand rotations.
/// \param N Node to expand
/// \param AllowVectorOps expand vector rotate, this should only be performed
/// if the legalization is happening outside of LegalizeVectorOps
/// \returns The expansion if successful, SDValue() otherwise
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const;
/// Expand shift-by-parts.
/// \param N Node to expand
/// \param Lo lower-output-part after conversion
/// \param Hi upper-output-part after conversion
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi,
SelectionDAG &DAG) const;
/// Expand float(f32) to SINT(i64) conversion
/// \param N Node to expand
/// \param Result output after conversion
/// \returns True, if the expansion was successful, false otherwise
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
/// Expand float to UINT conversion
/// \param N Node to expand
/// \param Result output after conversion
/// \param Chain output chain after conversion
/// \returns True, if the expansion was successful, false otherwise
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
SelectionDAG &DAG) const;
/// Expand UINT(i64) to double(f64) conversion
/// \param N Node to expand
/// \param Result output after conversion
/// \param Chain output chain after conversion
/// \returns True, if the expansion was successful, false otherwise
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
SelectionDAG &DAG) const;
/// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
/// Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
/// \param N Node to expand
/// \returns The expansion result
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const;
/// Expand check for floating point class.
/// \param ResultVT The type of intrinsic call result.
/// \param Op The tested value.
/// \param Test The test to perform.
/// \param Flags The optimization flags.
/// \returns The expansion result or SDValue() if it fails.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, unsigned Test,
SDNodeFlags Flags, const SDLoc &DL,
SelectionDAG &DAG) const;
/// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
/// vector nodes can only succeed if all operations are legal/custom.
/// \param N Node to expand
/// \returns The expansion result or SDValue() if it fails.
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const;
/// Expand VP_CTPOP nodes.
/// \returns The expansion result or SDValue() if it fails.
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const;
/// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
/// vector nodes can only succeed if all operations are legal/custom.
/// \param N Node to expand
/// \returns The expansion result or SDValue() if it fails.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const;
/// Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
/// \param N Node to expand
/// \returns The expansion result or SDValue() if it fails.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const;
/// Expand CTTZ via Table Lookup.
/// \param N Node to expand
/// \returns The expansion result or SDValue() if it fails.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT,
SDValue Op, unsigned NumBitsPerElt) const;
/// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
/// vector nodes can only succeed if all operations are legal/custom.
/// \param N Node to expand
/// \returns The expansion result or SDValue() if it fails.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const;
/// Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
/// \param N Node to expand
/// \returns The expansion result or SDValue() if it fails.
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const;
/// Expand ABS nodes. Expands vector/scalar ABS nodes,
/// vector nodes can only succeed if all operations are legal/custom.
/// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
/// \param N Node to expand
/// \param IsNegative indicate negated abs
/// \returns The expansion result or SDValue() if it fails.
SDValue expandABS(SDNode *N, SelectionDAG &DAG,
bool IsNegative = false) const;
/// Expand BSWAP nodes. Expands scalar/vector BSWAP nodes with i16/i32/i64
/// scalar types. Returns SDValue() if expand fails.
/// \param N Node to expand
/// \returns The expansion result or SDValue() if it fails.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const;
/// Expand VP_BSWAP nodes. Expands VP_BSWAP nodes with
/// i16/i32/i64 scalar types. Returns SDValue() if expand fails. \param N Node
/// to expand \returns The expansion result or SDValue() if it fails.
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const;
/// Expand BITREVERSE nodes. Expands scalar/vector BITREVERSE nodes.
/// Returns SDValue() if expand fails.
/// \param N Node to expand
/// \returns The expansion result or SDValue() if it fails.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
/// Expand VP_BITREVERSE nodes. Expands VP_BITREVERSE nodes with
/// i8/i16/i32/i64 scalar types. \param N Node to expand \returns The
/// expansion result or SDValue() if it fails.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
/// Turn load of vector type into a load of the individual elements.
/// \param LD load to expand
/// \returns BUILD_VECTOR and TokenFactor nodes.
std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
SelectionDAG &DAG) const;
// Turn a store of a vector type into stores of the individual elements.
/// \param ST Store with a vector value type
/// \returns TokenFactor of the individual store chains.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
/// Expands an unaligned load to 2 half-size loads for an integer, and
/// possibly more for vectors.
std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
SelectionDAG &DAG) const;
/// Expands an unaligned store to 2 half-size stores for integer values, and
/// possibly more for vectors.
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
/// Increments memory address \p Addr according to the type of the value
/// \p DataVT that should be stored. If the data is stored in compressed
/// form, the memory address should be incremented according to the number of
/// the stored elements. This number is equal to the number of '1's bits
/// in the \p Mask.
/// \p DataVT is a vector type. \p Mask is a vector value.
/// \p DataVT and \p Mask have the same number of vector elements.
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
EVT DataVT, SelectionDAG &DAG,
bool IsCompressedMemory) const;
/// Get a pointer to vector element \p Idx located in memory for a vector of
/// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
/// bounds the returned pointer is unspecified, but will be within the vector
/// bounds.
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
SDValue Index) const;
/// Get a pointer to a sub-vector of type \p SubVecVT at index \p Idx located
/// in memory for a vector of type \p VecVT starting at a base address of
/// \p VecPtr. If \p Idx plus the size of \p SubVecVT is out of bounds the
/// returned pointer is unspecified, but the value returned will be such that
/// the entire subvector would be within the vector bounds.
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
EVT SubVecVT, SDValue Index) const;
/// Method for building the DAG expansion of ISD::[US][MIN|MAX]. This
/// method accepts integers as its arguments.
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
/// method accepts integers as its arguments.
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::[US]SHLSAT. This
/// method accepts integers as its arguments.
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
/// method accepts integers as its arguments.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
/// method accepts integers as its arguments.
/// Note: This method may fail if the division could not be performed
/// within the type. Clients must retry with a wider type if this happens.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
SDValue LHS, SDValue RHS,
unsigned Scale, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
/// always suceeds and populates the Result and Overflow arguments.
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
/// always suceeds and populates the Result and Overflow arguments.
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
/// expansion was successful and populates the Result and Overflow arguments.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
SelectionDAG &DAG) const;
/// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
/// only the first Count elements of the vector are used.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
/// Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const;
/// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
/// Returns true if the expansion was successful.
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::VECTOR_SPLICE. This
/// method accepts vectors as its arguments.
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const;
/// Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC
/// on the current target. A VP_SETCC will additionally be given a Mask
/// and/or EVL not equal to SDValue().
///
/// If the SETCC has been legalized using AND / OR, then the legalized node
/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
/// will be set to false. This will also hold if the VP_SETCC has been
/// legalized using VP_AND / VP_OR.
///
/// If the SETCC / VP_SETCC has been legalized by using
/// getSetCCSwappedOperands(), then the values of LHS and RHS will be
/// swapped, CC will be set to the new condition, and NeedInvert will be set
/// to false.
///
/// If the SETCC / VP_SETCC has been legalized using the inverse condcode,
/// then LHS and RHS will be unchanged, CC will set to the inverted condcode,
/// and NeedInvert will be set to true. The caller must invert the result of
/// the SETCC with SelectionDAG::getLogicalNOT() or take equivalent action to
/// swap the effect of a true/false result.
///
/// \returns true if the SETCC / VP_SETCC has been legalized, false if it
/// hasn't.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS,
SDValue &RHS, SDValue &CC, SDValue Mask,
SDValue EVL, bool &NeedInvert, const SDLoc &dl,
SDValue &Chain, bool IsSignaling = false) const;
//===--------------------------------------------------------------------===//
// Instruction Emitting Hooks
//
/// This method should be implemented by targets that mark instructions with
/// the 'usesCustomInserter' flag. These instructions are special in various
/// ways, which require special support to insert. The specified MachineInstr
/// is created but not inserted into any basic blocks, and this method is
/// called to expand it into a sequence of instructions, potentially also
/// creating new basic blocks and control flow.
/// As long as the returned basic block is different (i.e., we created a new
/// one), the custom inserter is free to modify the rest of \p MBB.
virtual MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
/// This method should be implemented by targets that mark instructions with
/// the 'hasPostISelHook' flag. These instructions must be adjusted after
/// instruction selection by target hooks. e.g. To fill in optional defs for
/// ARM 's' setting instructions.
virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const;
/// If this function returns true, SelectionDAGBuilder emits a
/// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
virtual bool useLoadStackGuardNode() const {
return false;
}
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
const SDLoc &DL) const {
llvm_unreachable("not implemented for this target");
}
/// Lower TLS global address SDNode for target independent emulated TLS model.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
SelectionDAG &DAG) const;
/// Expands target specific indirect branch for the case of JumpTable
/// expanasion.
virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr,
SelectionDAG &DAG) const {
return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr);
}
// seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
// If we're comparing for equality to zero and isCtlzFast is true, expose the
// fact that this can be implemented as a ctlz/srl pair, so that the dag
// combiner can fold the new nodes.
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
private:
SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
const SDLoc &DL, DAGCombinerInfo &DCI) const;
SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
const SDLoc &DL, DAGCombinerInfo &DCI) const;
SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
SDValue N1, ISD::CondCode Cond,
DAGCombinerInfo &DCI,
const SDLoc &DL) const;
// (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
DAGCombinerInfo &DCI, const SDLoc &DL) const;
SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
SDValue CompTargetNode, ISD::CondCode Cond,
DAGCombinerInfo &DCI, const SDLoc &DL,
SmallVectorImpl<SDNode *> &Created) const;
SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
ISD::CondCode Cond, DAGCombinerInfo &DCI,
const SDLoc &DL) const;
SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
SDValue CompTargetNode, ISD::CondCode Cond,
DAGCombinerInfo &DCI, const SDLoc &DL,
SmallVectorImpl<SDNode *> &Created) const;
SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
ISD::CondCode Cond, DAGCombinerInfo &DCI,
const SDLoc &DL) const;
};
/// Given an LLVM IR type and return type attributes, compute the return value
/// EVTs and flags, and optionally also the offsets, if the return value is
/// being lowered to memory.
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
SmallVectorImpl<ISD::OutputArg> &Outs,
const TargetLowering &TLI, const DataLayout &DL);
} // end namespace llvm
#endif // LLVM_CODEGEN_TARGETLOWERING_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|