aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/include/llvm/CodeGen/TargetInstrInfo.h
blob: 1b32edff409520dd759dcc4ed0391af062bb1fe0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the target machine instruction set to the code generator.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
#define LLVM_CODEGEN_TARGETINSTRINFO_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Uniformity.h"
#include "llvm/CodeGen/MIRFormatter.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOutliner.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <utility>
#include <vector>

namespace llvm {

class DFAPacketizer;
class InstrItineraryData;
class LiveIntervals;
class LiveVariables;
class MachineLoop;
class MachineMemOperand;
class MachineRegisterInfo;
class MCAsmInfo;
class MCInst;
struct MCSchedModel;
class Module;
class ScheduleDAG;
class ScheduleDAGMI;
class ScheduleHazardRecognizer;
class SDNode;
class SelectionDAG;
class SMSchedule;
class SwingSchedulerDAG;
class RegScavenger;
class TargetRegisterClass;
class TargetRegisterInfo;
class TargetSchedModel;
class TargetSubtargetInfo;
enum class MachineCombinerPattern;

template <class T> class SmallVectorImpl;

using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;

struct DestSourcePair {
  const MachineOperand *Destination;
  const MachineOperand *Source;

  DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
      : Destination(&Dest), Source(&Src) {}
};

/// Used to describe a register and immediate addition.
struct RegImmPair {
  Register Reg;
  int64_t Imm;

  RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
};

/// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
/// It holds the register values, the scale value and the displacement.
struct ExtAddrMode {
  Register BaseReg;
  Register ScaledReg;
  int64_t Scale;
  int64_t Displacement;
};

//---------------------------------------------------------------------------
///
/// TargetInstrInfo - Interface to description of machine instruction set
///
class TargetInstrInfo : public MCInstrInfo {
public:
  TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
                  unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
      : CallFrameSetupOpcode(CFSetupOpcode),
        CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
        ReturnOpcode(ReturnOpcode) {}
  TargetInstrInfo(const TargetInstrInfo &) = delete;
  TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
  virtual ~TargetInstrInfo();

  static bool isGenericOpcode(unsigned Opc) {
    return Opc <= TargetOpcode::GENERIC_OP_END;
  }

  static bool isGenericAtomicRMWOpcode(unsigned Opc) {
    return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
           Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
  }

  /// Given a machine instruction descriptor, returns the register
  /// class constraint for OpNum, or NULL.
  virtual
  const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
                                         const TargetRegisterInfo *TRI,
                                         const MachineFunction &MF) const;

  /// Return true if the instruction is trivially rematerializable, meaning it
  /// has no side effects and requires no operands that aren't always available.
  /// This means the only allowed uses are constants and unallocatable physical
  /// registers so that the instructions result is independent of the place
  /// in the function.
  bool isTriviallyReMaterializable(const MachineInstr &MI) const {
    return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
           (MI.getDesc().isRematerializable() &&
            (isReallyTriviallyReMaterializable(MI) ||
             isReallyTriviallyReMaterializableGeneric(MI)));
  }

  /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
  /// of instruction rematerialization or sinking.
  virtual bool isIgnorableUse(const MachineOperand &MO) const {
    return false;
  }

protected:
  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
  /// set, this hook lets the target specify whether the instruction is actually
  /// trivially rematerializable, taking into consideration its operands. This
  /// predicate must return false if the instruction has any side effects other
  /// than producing a value, or if it requres any address registers that are
  /// not always available.
  /// Requirements must be check as stated in isTriviallyReMaterializable() .
  virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const {
    return false;
  }

  /// This method commutes the operands of the given machine instruction MI.
  /// The operands to be commuted are specified by their indices OpIdx1 and
  /// OpIdx2.
  ///
  /// If a target has any instructions that are commutable but require
  /// converting to different instructions or making non-trivial changes
  /// to commute them, this method can be overloaded to do that.
  /// The default implementation simply swaps the commutable operands.
  ///
  /// If NewMI is false, MI is modified in place and returned; otherwise, a
  /// new machine instruction is created and returned.
  ///
  /// Do not call this method for a non-commutable instruction.
  /// Even though the instruction is commutable, the method may still
  /// fail to commute the operands, null pointer is returned in such cases.
  virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
                                               unsigned OpIdx1,
                                               unsigned OpIdx2) const;

  /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
  /// operand indices to (ResultIdx1, ResultIdx2).
  /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
  /// predefined to some indices or be undefined (designated by the special
  /// value 'CommuteAnyOperandIndex').
  /// The predefined result indices cannot be re-defined.
  /// The function returns true iff after the result pair redefinition
  /// the fixed result pair is equal to or equivalent to the source pair of
  /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
  /// the pairs (x,y) and (y,x) are equivalent.
  static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
                                   unsigned CommutableOpIdx1,
                                   unsigned CommutableOpIdx2);

private:
  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
  /// set and the target hook isReallyTriviallyReMaterializable returns false,
  /// this function does target-independent tests to determine if the
  /// instruction is really trivially rematerializable.
  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI) const;

public:
  /// These methods return the opcode of the frame setup/destroy instructions
  /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
  /// order to abstract away the difference between operating with a frame
  /// pointer and operating without, through the use of these two instructions.
  ///
  unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
  unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }

  /// Returns true if the argument is a frame pseudo instruction.
  bool isFrameInstr(const MachineInstr &I) const {
    return I.getOpcode() == getCallFrameSetupOpcode() ||
           I.getOpcode() == getCallFrameDestroyOpcode();
  }

  /// Returns true if the argument is a frame setup pseudo instruction.
  bool isFrameSetup(const MachineInstr &I) const {
    return I.getOpcode() == getCallFrameSetupOpcode();
  }

  /// Returns size of the frame associated with the given frame instruction.
  /// For frame setup instruction this is frame that is set up space set up
  /// after the instruction. For frame destroy instruction this is the frame
  /// freed by the caller.
  /// Note, in some cases a call frame (or a part of it) may be prepared prior
  /// to the frame setup instruction. It occurs in the calls that involve
  /// inalloca arguments. This function reports only the size of the frame part
  /// that is set up between the frame setup and destroy pseudo instructions.
  int64_t getFrameSize(const MachineInstr &I) const {
    assert(isFrameInstr(I) && "Not a frame instruction");
    assert(I.getOperand(0).getImm() >= 0);
    return I.getOperand(0).getImm();
  }

  /// Returns the total frame size, which is made up of the space set up inside
  /// the pair of frame start-stop instructions and the space that is set up
  /// prior to the pair.
  int64_t getFrameTotalSize(const MachineInstr &I) const {
    if (isFrameSetup(I)) {
      assert(I.getOperand(1).getImm() >= 0 &&
             "Frame size must not be negative");
      return getFrameSize(I) + I.getOperand(1).getImm();
    }
    return getFrameSize(I);
  }

  unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
  unsigned getReturnOpcode() const { return ReturnOpcode; }

  /// Returns the actual stack pointer adjustment made by an instruction
  /// as part of a call sequence. By default, only call frame setup/destroy
  /// instructions adjust the stack, but targets may want to override this
  /// to enable more fine-grained adjustment, or adjust by a different value.
  virtual int getSPAdjust(const MachineInstr &MI) const;

  /// Return true if the instruction is a "coalescable" extension instruction.
  /// That is, it's like a copy where it's legal for the source to overlap the
  /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
  /// expected the pre-extension value is available as a subreg of the result
  /// register. This also returns the sub-register index in SubIdx.
  virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
                                     Register &DstReg, unsigned &SubIdx) const {
    return false;
  }

  /// If the specified machine instruction is a direct
  /// load from a stack slot, return the virtual or physical register number of
  /// the destination along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than loading from the stack slot.
  virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
                                       int &FrameIndex) const {
    return 0;
  }

  /// Optional extension of isLoadFromStackSlot that returns the number of
  /// bytes loaded from the stack. This must be implemented if a backend
  /// supports partial stack slot spills/loads to further disambiguate
  /// what the load does.
  virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
                                       int &FrameIndex,
                                       unsigned &MemBytes) const {
    MemBytes = 0;
    return isLoadFromStackSlot(MI, FrameIndex);
  }

  /// Check for post-frame ptr elimination stack locations as well.
  /// This uses a heuristic so it isn't reliable for correctness.
  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
                                             int &FrameIndex) const {
    return 0;
  }

  /// If the specified machine instruction has a load from a stack slot,
  /// return true along with the FrameIndices of the loaded stack slot and the
  /// machine mem operands containing the reference.
  /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
  /// any instructions that loads from the stack.  This is just a hint, as some
  /// cases may be missed.
  virtual bool hasLoadFromStackSlot(
      const MachineInstr &MI,
      SmallVectorImpl<const MachineMemOperand *> &Accesses) const;

  /// If the specified machine instruction is a direct
  /// store to a stack slot, return the virtual or physical register number of
  /// the source reg along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than storing to the stack slot.
  virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
                                      int &FrameIndex) const {
    return 0;
  }

  /// Optional extension of isStoreToStackSlot that returns the number of
  /// bytes stored to the stack. This must be implemented if a backend
  /// supports partial stack slot spills/loads to further disambiguate
  /// what the store does.
  virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
                                      int &FrameIndex,
                                      unsigned &MemBytes) const {
    MemBytes = 0;
    return isStoreToStackSlot(MI, FrameIndex);
  }

  /// Check for post-frame ptr elimination stack locations as well.
  /// This uses a heuristic, so it isn't reliable for correctness.
  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
                                            int &FrameIndex) const {
    return 0;
  }

  /// If the specified machine instruction has a store to a stack slot,
  /// return true along with the FrameIndices of the loaded stack slot and the
  /// machine mem operands containing the reference.
  /// If not, return false.  Unlike isStoreToStackSlot,
  /// this returns true for any instructions that stores to the
  /// stack.  This is just a hint, as some cases may be missed.
  virtual bool hasStoreToStackSlot(
      const MachineInstr &MI,
      SmallVectorImpl<const MachineMemOperand *> &Accesses) const;

  /// Return true if the specified machine instruction
  /// is a copy of one stack slot to another and has no other effect.
  /// Provide the identity of the two frame indices.
  virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
                               int &SrcFrameIndex) const {
    return false;
  }

  /// Compute the size in bytes and offset within a stack slot of a spilled
  /// register or subregister.
  ///
  /// \param [out] Size in bytes of the spilled value.
  /// \param [out] Offset in bytes within the stack slot.
  /// \returns true if both Size and Offset are successfully computed.
  ///
  /// Not all subregisters have computable spill slots. For example,
  /// subregisters registers may not be byte-sized, and a pair of discontiguous
  /// subregisters has no single offset.
  ///
  /// Targets with nontrivial bigendian implementations may need to override
  /// this, particularly to support spilled vector registers.
  virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
                                 unsigned &Size, unsigned &Offset,
                                 const MachineFunction &MF) const;

  /// Return true if the given instruction is terminator that is unspillable,
  /// according to isUnspillableTerminatorImpl.
  bool isUnspillableTerminator(const MachineInstr *MI) const {
    return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
  }

  /// Returns the size in bytes of the specified MachineInstr, or ~0U
  /// when this function is not implemented by a target.
  virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
    return ~0U;
  }

  /// Return true if the instruction is as cheap as a move instruction.
  ///
  /// Targets for different archs need to override this, and different
  /// micro-architectures can also be finely tuned inside.
  virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
    return MI.isAsCheapAsAMove();
  }

  /// Return true if the instruction should be sunk by MachineSink.
  ///
  /// MachineSink determines on its own whether the instruction is safe to sink;
  /// this gives the target a hook to override the default behavior with regards
  /// to which instructions should be sunk.
  virtual bool shouldSink(const MachineInstr &MI) const { return true; }

  /// Return false if the instruction should not be hoisted by MachineLICM.
  ///
  /// MachineLICM determines on its own whether the instruction is safe to
  /// hoist; this gives the target a hook to extend this assessment and prevent
  /// an instruction being hoisted from a given loop for target specific
  /// reasons.
  virtual bool shouldHoist(const MachineInstr &MI,
                           const MachineLoop *FromLoop) const {
    return true;
  }

  /// Re-issue the specified 'original' instruction at the
  /// specific location targeting a new destination register.
  /// The register in Orig->getOperand(0).getReg() will be substituted by
  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
  /// SubIdx.
  virtual void reMaterialize(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator MI, Register DestReg,
                             unsigned SubIdx, const MachineInstr &Orig,
                             const TargetRegisterInfo &TRI) const;

  /// Clones instruction or the whole instruction bundle \p Orig and
  /// insert into \p MBB before \p InsertBefore. The target may update operands
  /// that are required to be unique.
  ///
  /// \p Orig must not return true for MachineInstr::isNotDuplicable().
  virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator InsertBefore,
                                  const MachineInstr &Orig) const;

  /// This method must be implemented by targets that
  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
  /// may be able to convert a two-address instruction into one or more true
  /// three-address instructions on demand.  This allows the X86 target (for
  /// example) to convert ADD and SHL instructions into LEA instructions if they
  /// would require register copies due to two-addressness.
  ///
  /// This method returns a null pointer if the transformation cannot be
  /// performed, otherwise it returns the last new instruction.
  ///
  /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
  /// replacing \p MI with new instructions, even though this function does not
  /// remove MI.
  virtual MachineInstr *convertToThreeAddress(MachineInstr &MI,
                                              LiveVariables *LV,
                                              LiveIntervals *LIS) const {
    return nullptr;
  }

  // This constant can be used as an input value of operand index passed to
  // the method findCommutedOpIndices() to tell the method that the
  // corresponding operand index is not pre-defined and that the method
  // can pick any commutable operand.
  static const unsigned CommuteAnyOperandIndex = ~0U;

  /// This method commutes the operands of the given machine instruction MI.
  ///
  /// The operands to be commuted are specified by their indices OpIdx1 and
  /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
  /// 'CommuteAnyOperandIndex', which means that the method is free to choose
  /// any arbitrarily chosen commutable operand. If both arguments are set to
  /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
  /// operands; then commutes them if such operands could be found.
  ///
  /// If NewMI is false, MI is modified in place and returned; otherwise, a
  /// new machine instruction is created and returned.
  ///
  /// Do not call this method for a non-commutable instruction or
  /// for non-commuable operands.
  /// Even though the instruction is commutable, the method may still
  /// fail to commute the operands, null pointer is returned in such cases.
  MachineInstr *
  commuteInstruction(MachineInstr &MI, bool NewMI = false,
                     unsigned OpIdx1 = CommuteAnyOperandIndex,
                     unsigned OpIdx2 = CommuteAnyOperandIndex) const;

  /// Returns true iff the routine could find two commutable operands in the
  /// given machine instruction.
  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
  /// If any of the INPUT values is set to the special value
  /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
  /// operand, then returns its index in the corresponding argument.
  /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
  /// looks for 2 commutable operands.
  /// If INPUT values refer to some operands of MI, then the method simply
  /// returns true if the corresponding operands are commutable and returns
  /// false otherwise.
  ///
  /// For example, calling this method this way:
  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
  ///     findCommutedOpIndices(MI, Op1, Op2);
  /// can be interpreted as a query asking to find an operand that would be
  /// commutable with the operand#1.
  virtual bool findCommutedOpIndices(const MachineInstr &MI,
                                     unsigned &SrcOpIdx1,
                                     unsigned &SrcOpIdx2) const;

  /// Returns true if the target has a preference on the operands order of
  /// the given machine instruction. And specify if \p Commute is required to
  /// get the desired operands order.
  virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
    return false;
  }

  /// A pair composed of a register and a sub-register index.
  /// Used to give some type checking when modeling Reg:SubReg.
  struct RegSubRegPair {
    Register Reg;
    unsigned SubReg;

    RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
        : Reg(Reg), SubReg(SubReg) {}

    bool operator==(const RegSubRegPair& P) const {
      return Reg == P.Reg && SubReg == P.SubReg;
    }
    bool operator!=(const RegSubRegPair& P) const {
      return !(*this == P);
    }
  };

  /// A pair composed of a pair of a register and a sub-register index,
  /// and another sub-register index.
  /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
  struct RegSubRegPairAndIdx : RegSubRegPair {
    unsigned SubIdx;

    RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
                        unsigned SubIdx = 0)
        : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
  };

  /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
  /// and \p DefIdx.
  /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
  /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
  /// flag are not added to this list.
  /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
  /// two elements:
  /// - %1:sub1, sub0
  /// - %2<:0>, sub1
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
  ///
  /// \note The generic implementation does not provide any support for
  /// MI.isRegSequenceLike(). In other words, one has to override
  /// getRegSequenceLikeInputs for target specific instructions.
  bool
  getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
                       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;

  /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
  /// and \p DefIdx.
  /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
  /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
  /// - %1:sub1, sub0
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
  /// False otherwise.
  ///
  /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
  ///
  /// \note The generic implementation does not provide any support for
  /// MI.isExtractSubregLike(). In other words, one has to override
  /// getExtractSubregLikeInputs for target specific instructions.
  bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
                              RegSubRegPairAndIdx &InputReg) const;

  /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
  /// and \p DefIdx.
  /// \p [out] BaseReg and \p [out] InsertedReg contain
  /// the equivalent inputs of INSERT_SUBREG.
  /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
  /// - BaseReg: %0:sub0
  /// - InsertedReg: %1:sub1, sub3
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
  /// False otherwise.
  ///
  /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
  ///
  /// \note The generic implementation does not provide any support for
  /// MI.isInsertSubregLike(). In other words, one has to override
  /// getInsertSubregLikeInputs for target specific instructions.
  bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
                             RegSubRegPair &BaseReg,
                             RegSubRegPairAndIdx &InsertedReg) const;

  /// Return true if two machine instructions would produce identical values.
  /// By default, this is only true when the two instructions
  /// are deemed identical except for defs. If this function is called when the
  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
  /// aggressive checks.
  virtual bool produceSameValue(const MachineInstr &MI0,
                                const MachineInstr &MI1,
                                const MachineRegisterInfo *MRI = nullptr) const;

  /// \returns true if a branch from an instruction with opcode \p BranchOpc
  ///  bytes is capable of jumping to a position \p BrOffset bytes away.
  virtual bool isBranchOffsetInRange(unsigned BranchOpc,
                                     int64_t BrOffset) const {
    llvm_unreachable("target did not implement");
  }

  /// \returns The block that branch instruction \p MI jumps to.
  virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
    llvm_unreachable("target did not implement");
  }

  /// Insert an unconditional indirect branch at the end of \p MBB to \p
  /// NewDestBB. Optionally, insert the clobbered register restoring in \p
  /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
  /// the offset of the position to insert the new branch.
  virtual void insertIndirectBranch(MachineBasicBlock &MBB,
                                    MachineBasicBlock &NewDestBB,
                                    MachineBasicBlock &RestoreBB,
                                    const DebugLoc &DL, int64_t BrOffset = 0,
                                    RegScavenger *RS = nullptr) const {
    llvm_unreachable("target did not implement");
  }

  /// Analyze the branching code at the end of MBB, returning
  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
  /// implemented for a target).  Upon success, this returns false and returns
  /// with the following information in various cases:
  ///
  /// 1. If this block ends with no branches (it just falls through to its succ)
  ///    just return false, leaving TBB/FBB null.
  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
  ///    the destination block.
  /// 3. If this block ends with a conditional branch and it falls through to a
  ///    successor block, it sets TBB to be the branch destination block and a
  ///    list of operands that evaluate the condition. These operands can be
  ///    passed to other TargetInstrInfo methods to create new branches.
  /// 4. If this block ends with a conditional branch followed by an
  ///    unconditional branch, it returns the 'true' destination in TBB, the
  ///    'false' destination in FBB, and a list of operands that evaluate the
  ///    condition.  These operands can be passed to other TargetInstrInfo
  ///    methods to create new branches.
  ///
  /// Note that removeBranch and insertBranch must be implemented to support
  /// cases where this method returns success.
  ///
  /// If AllowModify is true, then this routine is allowed to modify the basic
  /// block (e.g. delete instructions after the unconditional branch).
  ///
  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
  /// before calling this function.
  virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                             MachineBasicBlock *&FBB,
                             SmallVectorImpl<MachineOperand> &Cond,
                             bool AllowModify = false) const {
    return true;
  }

  /// Represents a predicate at the MachineFunction level.  The control flow a
  /// MachineBranchPredicate represents is:
  ///
  ///  Reg = LHS `Predicate` RHS         == ConditionDef
  ///  if Reg then goto TrueDest else goto FalseDest
  ///
  struct MachineBranchPredicate {
    enum ComparePredicate {
      PRED_EQ,     // True if two values are equal
      PRED_NE,     // True if two values are not equal
      PRED_INVALID // Sentinel value
    };

    ComparePredicate Predicate = PRED_INVALID;
    MachineOperand LHS = MachineOperand::CreateImm(0);
    MachineOperand RHS = MachineOperand::CreateImm(0);
    MachineBasicBlock *TrueDest = nullptr;
    MachineBasicBlock *FalseDest = nullptr;
    MachineInstr *ConditionDef = nullptr;

    /// SingleUseCondition is true if ConditionDef is dead except for the
    /// branch(es) at the end of the basic block.
    ///
    bool SingleUseCondition = false;

    explicit MachineBranchPredicate() = default;
  };

  /// Analyze the branching code at the end of MBB and parse it into the
  /// MachineBranchPredicate structure if possible.  Returns false on success
  /// and true on failure.
  ///
  /// If AllowModify is true, then this routine is allowed to modify the basic
  /// block (e.g. delete instructions after the unconditional branch).
  ///
  virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
                                      MachineBranchPredicate &MBP,
                                      bool AllowModify = false) const {
    return true;
  }

  /// Remove the branching code at the end of the specific MBB.
  /// This is only invoked in cases where analyzeBranch returns success. It
  /// returns the number of instructions that were removed.
  /// If \p BytesRemoved is non-null, report the change in code size from the
  /// removed instructions.
  virtual unsigned removeBranch(MachineBasicBlock &MBB,
                                int *BytesRemoved = nullptr) const {
    llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
  }

  /// Insert branch code into the end of the specified MachineBasicBlock. The
  /// operands to this method are the same as those returned by analyzeBranch.
  /// This is only invoked in cases where analyzeBranch returns success. It
  /// returns the number of instructions inserted. If \p BytesAdded is non-null,
  /// report the change in code size from the added instructions.
  ///
  /// It is also invoked by tail merging to add unconditional branches in
  /// cases where analyzeBranch doesn't apply because there was no original
  /// branch to analyze.  At least this much must be implemented, else tail
  /// merging needs to be disabled.
  ///
  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
  /// before calling this function.
  virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                                MachineBasicBlock *FBB,
                                ArrayRef<MachineOperand> Cond,
                                const DebugLoc &DL,
                                int *BytesAdded = nullptr) const {
    llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
  }

  unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
                                     MachineBasicBlock *DestBB,
                                     const DebugLoc &DL,
                                     int *BytesAdded = nullptr) const {
    return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
                        BytesAdded);
  }

  /// Object returned by analyzeLoopForPipelining. Allows software pipelining
  /// implementations to query attributes of the loop being pipelined and to
  /// apply target-specific updates to the loop once pipelining is complete.
  class PipelinerLoopInfo {
  public:
    virtual ~PipelinerLoopInfo();
    /// Return true if the given instruction should not be pipelined and should
    /// be ignored. An example could be a loop comparison, or induction variable
    /// update with no users being pipelined.
    virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;

    /// Return true if the proposed schedule should used.  Otherwise return
    /// false to not pipeline the loop. This function should be used to ensure
    /// that pipelined loops meet target-specific quality heuristics.
    virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) {
      return true;
    }

    /// Create a condition to determine if the trip count of the loop is greater
    /// than TC, where TC is always one more than for the previous prologue or
    /// 0 if this is being called for the outermost prologue.
    ///
    /// If the trip count is statically known to be greater than TC, return
    /// true. If the trip count is statically known to be not greater than TC,
    /// return false. Otherwise return nullopt and fill out Cond with the test
    /// condition.
    ///
    /// Note: This hook is guaranteed to be called from the innermost to the
    /// outermost prologue of the loop being software pipelined.
    virtual std::optional<bool>
    createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
                                    SmallVectorImpl<MachineOperand> &Cond) = 0;

    /// Modify the loop such that the trip count is
    /// OriginalTC + TripCountAdjust.
    virtual void adjustTripCount(int TripCountAdjust) = 0;

    /// Called when the loop's preheader has been modified to NewPreheader.
    virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;

    /// Called when the loop is being removed. Any instructions in the preheader
    /// should be removed.
    ///
    /// Once this function is called, no other functions on this object are
    /// valid; the loop has been removed.
    virtual void disposed() = 0;
  };

  /// Analyze loop L, which must be a single-basic-block loop, and if the
  /// conditions can be understood enough produce a PipelinerLoopInfo object.
  virtual std::unique_ptr<PipelinerLoopInfo>
  analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
    return nullptr;
  }

  /// Analyze the loop code, return true if it cannot be understood. Upon
  /// success, this function returns false and returns information about the
  /// induction variable and compare instruction used at the end.
  virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
                           MachineInstr *&CmpInst) const {
    return true;
  }

  /// Generate code to reduce the loop iteration by one and check if the loop
  /// is finished.  Return the value/register of the new loop count.  We need
  /// this function when peeling off one or more iterations of a loop. This
  /// function assumes the nth iteration is peeled first.
  virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
                                   MachineBasicBlock &PreHeader,
                                   MachineInstr *IndVar, MachineInstr &Cmp,
                                   SmallVectorImpl<MachineOperand> &Cond,
                                   SmallVectorImpl<MachineInstr *> &PrevInsts,
                                   unsigned Iter, unsigned MaxIter) const {
    llvm_unreachable("Target didn't implement ReduceLoopCount");
  }

  /// Delete the instruction OldInst and everything after it, replacing it with
  /// an unconditional branch to NewDest. This is used by the tail merging pass.
  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
                                       MachineBasicBlock *NewDest) const;

  /// Return true if it's legal to split the given basic
  /// block at the specified instruction (i.e. instruction would be the start
  /// of a new basic block).
  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator MBBI) const {
    return true;
  }

  /// Return true if it's profitable to predicate
  /// instructions with accumulated instruction latency of "NumCycles"
  /// of the specified basic block, where the probability of the instructions
  /// being executed is given by Probability, and Confidence is a measure
  /// of our confidence that it will be properly predicted.
  virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
                                   unsigned ExtraPredCycles,
                                   BranchProbability Probability) const {
    return false;
  }

  /// Second variant of isProfitableToIfCvt. This one
  /// checks for the case where two basic blocks from true and false path
  /// of a if-then-else (diamond) are predicated on mutually exclusive
  /// predicates, where the probability of the true path being taken is given
  /// by Probability, and Confidence is a measure of our confidence that it
  /// will be properly predicted.
  virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
                                   unsigned ExtraTCycles,
                                   MachineBasicBlock &FMBB, unsigned NumFCycles,
                                   unsigned ExtraFCycles,
                                   BranchProbability Probability) const {
    return false;
  }

  /// Return true if it's profitable for if-converter to duplicate instructions
  /// of specified accumulated instruction latencies in the specified MBB to
  /// enable if-conversion.
  /// The probability of the instructions being executed is given by
  /// Probability, and Confidence is a measure of our confidence that it
  /// will be properly predicted.
  virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
                                         unsigned NumCycles,
                                         BranchProbability Probability) const {
    return false;
  }

  /// Return the increase in code size needed to predicate a contiguous run of
  /// NumInsts instructions.
  virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
                                                    unsigned NumInsts) const {
    return 0;
  }

  /// Return an estimate for the code size reduction (in bytes) which will be
  /// caused by removing the given branch instruction during if-conversion.
  virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
    return getInstSizeInBytes(MI);
  }

  /// Return true if it's profitable to unpredicate
  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
  /// exclusive predicates.
  /// e.g.
  ///   subeq  r0, r1, #1
  ///   addne  r0, r1, #1
  /// =>
  ///   sub    r0, r1, #1
  ///   addne  r0, r1, #1
  ///
  /// This may be profitable is conditional instructions are always executed.
  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
                                         MachineBasicBlock &FMBB) const {
    return false;
  }

  /// Return true if it is possible to insert a select
  /// instruction that chooses between TrueReg and FalseReg based on the
  /// condition code in Cond.
  ///
  /// When successful, also return the latency in cycles from TrueReg,
  /// FalseReg, and Cond to the destination register. In most cases, a select
  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
  ///
  /// Some x86 implementations have 2-cycle cmov instructions.
  ///
  /// @param MBB         Block where select instruction would be inserted.
  /// @param Cond        Condition returned by analyzeBranch.
  /// @param DstReg      Virtual dest register that the result should write to.
  /// @param TrueReg     Virtual register to select when Cond is true.
  /// @param FalseReg    Virtual register to select when Cond is false.
  /// @param CondCycles  Latency from Cond+Branch to select output.
  /// @param TrueCycles  Latency from TrueReg to select output.
  /// @param FalseCycles Latency from FalseReg to select output.
  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
                               ArrayRef<MachineOperand> Cond, Register DstReg,
                               Register TrueReg, Register FalseReg,
                               int &CondCycles, int &TrueCycles,
                               int &FalseCycles) const {
    return false;
  }

  /// Insert a select instruction into MBB before I that will copy TrueReg to
  /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
  ///
  /// This function can only be called after canInsertSelect() returned true.
  /// The condition in Cond comes from analyzeBranch, and it can be assumed
  /// that the same flags or registers required by Cond are available at the
  /// insertion point.
  ///
  /// @param MBB      Block where select instruction should be inserted.
  /// @param I        Insertion point.
  /// @param DL       Source location for debugging.
  /// @param DstReg   Virtual register to be defined by select instruction.
  /// @param Cond     Condition as computed by analyzeBranch.
  /// @param TrueReg  Virtual register to copy when Cond is true.
  /// @param FalseReg Virtual register to copy when Cons is false.
  virtual void insertSelect(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator I, const DebugLoc &DL,
                            Register DstReg, ArrayRef<MachineOperand> Cond,
                            Register TrueReg, Register FalseReg) const {
    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
  }

  /// Analyze the given select instruction, returning true if
  /// it cannot be understood. It is assumed that MI->isSelect() is true.
  ///
  /// When successful, return the controlling condition and the operands that
  /// determine the true and false result values.
  ///
  ///   Result = SELECT Cond, TrueOp, FalseOp
  ///
  /// Some targets can optimize select instructions, for example by predicating
  /// the instruction defining one of the operands. Such targets should set
  /// Optimizable.
  ///
  /// @param         MI Select instruction to analyze.
  /// @param Cond    Condition controlling the select.
  /// @param TrueOp  Operand number of the value selected when Cond is true.
  /// @param FalseOp Operand number of the value selected when Cond is false.
  /// @param Optimizable Returned as true if MI is optimizable.
  /// @returns False on success.
  virtual bool analyzeSelect(const MachineInstr &MI,
                             SmallVectorImpl<MachineOperand> &Cond,
                             unsigned &TrueOp, unsigned &FalseOp,
                             bool &Optimizable) const {
    assert(MI.getDesc().isSelect() && "MI must be a select instruction");
    return true;
  }

  /// Given a select instruction that was understood by
  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
  /// merging it with one of its operands. Returns NULL on failure.
  ///
  /// When successful, returns the new select instruction. The client is
  /// responsible for deleting MI.
  ///
  /// If both sides of the select can be optimized, PreferFalse is used to pick
  /// a side.
  ///
  /// @param MI          Optimizable select instruction.
  /// @param NewMIs     Set that record all MIs in the basic block up to \p
  /// MI. Has to be updated with any newly created MI or deleted ones.
  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
  /// @returns Optimized instruction or NULL.
  virtual MachineInstr *optimizeSelect(MachineInstr &MI,
                                       SmallPtrSetImpl<MachineInstr *> &NewMIs,
                                       bool PreferFalse = false) const {
    // This function must be implemented if Optimizable is ever set.
    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
  }

  /// Emit instructions to copy a pair of physical registers.
  ///
  /// This function should support copies within any legal register class as
  /// well as any cross-class copies created during instruction selection.
  ///
  /// The source and destination registers may overlap, which may require a
  /// careful implementation when multiple copy instructions are required for
  /// large registers. See for example the ARM target.
  virtual void copyPhysReg(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MI, const DebugLoc &DL,
                           MCRegister DestReg, MCRegister SrcReg,
                           bool KillSrc) const {
    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
  }

  /// Allow targets to tell MachineVerifier whether a specific register
  /// MachineOperand can be used as part of PC-relative addressing.
  /// PC-relative addressing modes in many CISC architectures contain
  /// (non-PC) registers as offsets or scaling values, which inherently
  /// tags the corresponding MachineOperand with OPERAND_PCREL.
  ///
  /// @param MO The MachineOperand in question. MO.isReg() should always
  /// be true.
  /// @return Whether this operand is allowed to be used PC-relatively.
  virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
    return false;
  }

protected:
  /// Target-dependent implementation for IsCopyInstr.
  /// If the specific machine instruction is a instruction that moves/copies
  /// value from one register to another register return destination and source
  /// registers as machine operands.
  virtual std::optional<DestSourcePair>
  isCopyInstrImpl(const MachineInstr &MI) const {
    return std::nullopt;
  }

  /// Return true if the given terminator MI is not expected to spill. This
  /// sets the live interval as not spillable and adjusts phi node lowering to
  /// not introduce copies after the terminator. Use with care, these are
  /// currently used for hardware loop intrinsics in very controlled situations,
  /// created prior to registry allocation in loops that only have single phi
  /// users for the terminators value. They may run out of registers if not used
  /// carefully.
  virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
    return false;
  }

public:
  /// If the specific machine instruction is a instruction that moves/copies
  /// value from one register to another register return destination and source
  /// registers as machine operands.
  /// For COPY-instruction the method naturally returns destination and source
  /// registers as machine operands, for all other instructions the method calls
  /// target-dependent implementation.
  std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
    if (MI.isCopy()) {
      return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
    }
    return isCopyInstrImpl(MI);
  }

  /// If the specific machine instruction is an instruction that adds an
  /// immediate value and a physical register, and stores the result in
  /// the given physical register \c Reg, return a pair of the source
  /// register and the offset which has been added.
  virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
                                                   Register Reg) const {
    return std::nullopt;
  }

  /// Returns true if MI is an instruction that defines Reg to have a constant
  /// value and the value is recorded in ImmVal. The ImmVal is a result that
  /// should be interpreted as modulo size of Reg.
  virtual bool getConstValDefinedInReg(const MachineInstr &MI,
                                       const Register Reg,
                                       int64_t &ImmVal) const {
    return false;
  }

  /// Store the specified register of the given register class to the specified
  /// stack frame index. The store instruction is to be added to the given
  /// machine basic block before the specified machine instruction. If isKill
  /// is true, the register operand is the last use and must be marked kill. If
  /// \p SrcReg is being directly spilled as part of assigning a virtual
  /// register, \p VReg is the register being assigned. This additional register
  /// argument is needed for certain targets when invoked from RegAllocFast to
  /// map the spilled physical register to its virtual register. A null register
  /// can be passed elsewhere.
  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator MI,
                                   Register SrcReg, bool isKill, int FrameIndex,
                                   const TargetRegisterClass *RC,
                                   const TargetRegisterInfo *TRI,
                                   Register VReg) const {
    llvm_unreachable("Target didn't implement "
                     "TargetInstrInfo::storeRegToStackSlot!");
  }

  /// Load the specified register of the given register class from the specified
  /// stack frame index. The load instruction is to be added to the given
  /// machine basic block before the specified machine instruction. If \p
  /// DestReg is being directly reloaded as part of assigning a virtual
  /// register, \p VReg is the register being assigned. This additional register
  /// argument is needed for certain targets when invoked from RegAllocFast to
  /// map the loaded physical register to its virtual register. A null register
  /// can be passed elsewhere.
  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator MI,
                                    Register DestReg, int FrameIndex,
                                    const TargetRegisterClass *RC,
                                    const TargetRegisterInfo *TRI,
                                    Register VReg) const {
    llvm_unreachable("Target didn't implement "
                     "TargetInstrInfo::loadRegFromStackSlot!");
  }

  /// This function is called for all pseudo instructions
  /// that remain after register allocation. Many pseudo instructions are
  /// created to help register allocation. This is the place to convert them
  /// into real instructions. The target can edit MI in place, or it can insert
  /// new instructions and erase MI. The function should return true if
  /// anything was changed.
  virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }

  /// Check whether the target can fold a load that feeds a subreg operand
  /// (or a subreg operand that feeds a store).
  /// For example, X86 may want to return true if it can fold
  /// movl (%esp), %eax
  /// subb, %al, ...
  /// Into:
  /// subb (%esp), ...
  ///
  /// Ideally, we'd like the target implementation of foldMemoryOperand() to
  /// reject subregs - but since this behavior used to be enforced in the
  /// target-independent code, moving this responsibility to the targets
  /// has the potential of causing nasty silent breakage in out-of-tree targets.
  virtual bool isSubregFoldable() const { return false; }

  /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
  /// operands which can't be folded into stack references. Operands outside
  /// of the range are most likely foldable but it is not guaranteed.
  /// These instructions are unique in that stack references for some operands
  /// have the same execution cost (e.g. none) as the unfolded register forms.
  /// The ranged return is guaranteed to include all operands which can't be
  /// folded at zero cost.
  virtual std::pair<unsigned, unsigned>
  getPatchpointUnfoldableRange(const MachineInstr &MI) const;

  /// Attempt to fold a load or store of the specified stack
  /// slot into the specified machine instruction for the specified operand(s).
  /// If this is possible, a new instruction is returned with the specified
  /// operand folded, otherwise NULL is returned.
  /// The new instruction is inserted before MI, and the client is responsible
  /// for removing the old instruction.
  /// If VRM is passed, the assigned physregs can be inspected by target to
  /// decide on using an opcode (note that those assignments can still change).
  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
                                  int FI,
                                  LiveIntervals *LIS = nullptr,
                                  VirtRegMap *VRM = nullptr) const;

  /// Same as the previous version except it allows folding of any load and
  /// store from / to any address, not just from a specific stack slot.
  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
                                  MachineInstr &LoadMI,
                                  LiveIntervals *LIS = nullptr) const;

  /// Return true when there is potentially a faster code sequence
  /// for an instruction chain ending in \p Root. All potential patterns are
  /// returned in the \p Pattern vector. Pattern should be sorted in priority
  /// order since the pattern evaluator stops checking as soon as it finds a
  /// faster sequence.
  /// \param Root - Instruction that could be combined with one of its operands
  /// \param Patterns - Vector of possible combination patterns
  virtual bool
  getMachineCombinerPatterns(MachineInstr &Root,
                             SmallVectorImpl<MachineCombinerPattern> &Patterns,
                             bool DoRegPressureReduce) const;

  /// Return true if target supports reassociation of instructions in machine
  /// combiner pass to reduce register pressure for a given BB.
  virtual bool
  shouldReduceRegisterPressure(const MachineBasicBlock *MBB,
                               const RegisterClassInfo *RegClassInfo) const {
    return false;
  }

  /// Fix up the placeholder we may add in genAlternativeCodeSequence().
  virtual void
  finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
                    SmallVectorImpl<MachineInstr *> &InsInstrs) const {}

  /// Return true when a code sequence can improve throughput. It
  /// should be called only for instructions in loops.
  /// \param Pattern - combiner pattern
  virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;

  /// Return true if the input \P Inst is part of a chain of dependent ops
  /// that are suitable for reassociation, otherwise return false.
  /// If the instruction's operands must be commuted to have a previous
  /// instruction of the same type define the first source operand, \P Commuted
  /// will be set to true.
  bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;

  /// Return true when \P Inst is both associative and commutative. If \P Invert
  /// is true, then the inverse of \P Inst operation must be tested.
  virtual bool isAssociativeAndCommutative(const MachineInstr &Inst,
                                           bool Invert = false) const {
    return false;
  }

  /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
  /// for sub and vice versa).
  virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
    return std::nullopt;
  }

  /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
  bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;

  /// Return true when \P Inst has reassociable operands in the same \P MBB.
  virtual bool hasReassociableOperands(const MachineInstr &Inst,
                                       const MachineBasicBlock *MBB) const;

  /// Return true when \P Inst has reassociable sibling.
  virtual bool hasReassociableSibling(const MachineInstr &Inst,
                                      bool &Commuted) const;

  /// When getMachineCombinerPatterns() finds patterns, this function generates
  /// the instructions that could replace the original code sequence. The client
  /// has to decide whether the actual replacement is beneficial or not.
  /// \param Root - Instruction that could be combined with one of its operands
  /// \param Pattern - Combination pattern for Root
  /// \param InsInstrs - Vector of new instructions that implement P
  /// \param DelInstrs - Old instructions, including Root, that could be
  /// replaced by InsInstr
  /// \param InstIdxForVirtReg - map of virtual register to instruction in
  /// InsInstr that defines it
  virtual void genAlternativeCodeSequence(
      MachineInstr &Root, MachineCombinerPattern Pattern,
      SmallVectorImpl<MachineInstr *> &InsInstrs,
      SmallVectorImpl<MachineInstr *> &DelInstrs,
      DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;

  /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
  /// reduce critical path length.
  void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
                      MachineCombinerPattern Pattern,
                      SmallVectorImpl<MachineInstr *> &InsInstrs,
                      SmallVectorImpl<MachineInstr *> &DelInstrs,
                      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;

  /// Reassociation of some instructions requires inverse operations (e.g.
  /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
  /// (new root opcode, new prev opcode) that must be used to reassociate \P
  /// Root and \P Prev accoring to \P Pattern.
  std::pair<unsigned, unsigned>
  getReassociationOpcodes(MachineCombinerPattern Pattern,
                          const MachineInstr &Root,
                          const MachineInstr &Prev) const;

  /// The limit on resource length extension we accept in MachineCombiner Pass.
  virtual int getExtendResourceLenLimit() const { return 0; }

  /// This is an architecture-specific helper function of reassociateOps.
  /// Set special operand attributes for new instructions after reassociation.
  virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
                                     MachineInstr &NewMI1,
                                     MachineInstr &NewMI2) const {}

  /// Return true when a target supports MachineCombiner.
  virtual bool useMachineCombiner() const { return false; }

  /// Return true if the given SDNode can be copied during scheduling
  /// even if it has glue.
  virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }

protected:
  /// Target-dependent implementation for foldMemoryOperand.
  /// Target-independent code in foldMemoryOperand will
  /// take care of adding a MachineMemOperand to the newly created instruction.
  /// The instruction and any auxiliary instructions necessary will be inserted
  /// at InsertPt.
  virtual MachineInstr *
  foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
                        ArrayRef<unsigned> Ops,
                        MachineBasicBlock::iterator InsertPt, int FrameIndex,
                        LiveIntervals *LIS = nullptr,
                        VirtRegMap *VRM = nullptr) const {
    return nullptr;
  }

  /// Target-dependent implementation for foldMemoryOperand.
  /// Target-independent code in foldMemoryOperand will
  /// take care of adding a MachineMemOperand to the newly created instruction.
  /// The instruction and any auxiliary instructions necessary will be inserted
  /// at InsertPt.
  virtual MachineInstr *foldMemoryOperandImpl(
      MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
      MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
      LiveIntervals *LIS = nullptr) const {
    return nullptr;
  }

  /// Target-dependent implementation of getRegSequenceInputs.
  ///
  /// \returns true if it is possible to build the equivalent
  /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isRegSequenceLike().
  ///
  /// \see TargetInstrInfo::getRegSequenceInputs.
  virtual bool getRegSequenceLikeInputs(
      const MachineInstr &MI, unsigned DefIdx,
      SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
    return false;
  }

  /// Target-dependent implementation of getExtractSubregInputs.
  ///
  /// \returns true if it is possible to build the equivalent
  /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isExtractSubregLike().
  ///
  /// \see TargetInstrInfo::getExtractSubregInputs.
  virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
                                          unsigned DefIdx,
                                          RegSubRegPairAndIdx &InputReg) const {
    return false;
  }

  /// Target-dependent implementation of getInsertSubregInputs.
  ///
  /// \returns true if it is possible to build the equivalent
  /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isInsertSubregLike().
  ///
  /// \see TargetInstrInfo::getInsertSubregInputs.
  virtual bool
  getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
                            RegSubRegPair &BaseReg,
                            RegSubRegPairAndIdx &InsertedReg) const {
    return false;
  }

public:
  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
  /// a store or a load and a store into two or more instruction. If this is
  /// possible, returns true as well as the new instructions by reference.
  virtual bool
  unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
                      bool UnfoldLoad, bool UnfoldStore,
                      SmallVectorImpl<MachineInstr *> &NewMIs) const {
    return false;
  }

  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
                                   SmallVectorImpl<SDNode *> &NewNodes) const {
    return false;
  }

  /// Returns the opcode of the would be new
  /// instruction after load / store are unfolded from an instruction of the
  /// specified opcode. It returns zero if the specified unfolding is not
  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
  /// index of the operand which will hold the register holding the loaded
  /// value.
  virtual unsigned
  getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
                             unsigned *LoadRegIndex = nullptr) const {
    return 0;
  }

  /// This is used by the pre-regalloc scheduler to determine if two loads are
  /// loading from the same base address. It should only return true if the base
  /// pointers are the same and the only differences between the two addresses
  /// are the offset. It also returns the offsets by reference.
  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
                                       int64_t &Offset1,
                                       int64_t &Offset2) const {
    return false;
  }

  /// This is a used by the pre-regalloc scheduler to determine (in conjunction
  /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
  /// On some targets if two loads are loading from
  /// addresses in the same cache line, it's better if they are scheduled
  /// together. This function takes two integers that represent the load offsets
  /// from the common base address. It returns true if it decides it's desirable
  /// to schedule the two loads together. "NumLoads" is the number of loads that
  /// have already been scheduled after Load1.
  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
                                       int64_t Offset1, int64_t Offset2,
                                       unsigned NumLoads) const {
    return false;
  }

  /// Get the base operand and byte offset of an instruction that reads/writes
  /// memory. This is a convenience function for callers that are only prepared
  /// to handle a single base operand.
  bool getMemOperandWithOffset(const MachineInstr &MI,
                               const MachineOperand *&BaseOp, int64_t &Offset,
                               bool &OffsetIsScalable,
                               const TargetRegisterInfo *TRI) const;

  /// Get zero or more base operands and the byte offset of an instruction that
  /// reads/writes memory. Note that there may be zero base operands if the
  /// instruction accesses a constant address.
  /// It returns false if MI does not read/write memory.
  /// It returns false if base operands and offset could not be determined.
  /// It is not guaranteed to always recognize base operands and offsets in all
  /// cases.
  virtual bool getMemOperandsWithOffsetWidth(
      const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
      int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
      const TargetRegisterInfo *TRI) const {
    return false;
  }

  /// Return true if the instruction contains a base register and offset. If
  /// true, the function also sets the operand position in the instruction
  /// for the base register and offset.
  virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
                                        unsigned &BasePos,
                                        unsigned &OffsetPos) const {
    return false;
  }

  /// Target dependent implementation to get the values constituting the address
  /// MachineInstr that is accessing memory. These values are returned as a
  /// struct ExtAddrMode which contains all relevant information to make up the
  /// address.
  virtual std::optional<ExtAddrMode>
  getAddrModeFromMemoryOp(const MachineInstr &MemI,
                          const TargetRegisterInfo *TRI) const {
    return std::nullopt;
  }

  /// Returns true if MI's Def is NullValueReg, and the MI
  /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
  /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
  /// function can return true even if becomes zero. Specifically cases such as
  /// NullValueReg = shl NullValueReg, 63.
  virtual bool preservesZeroValueInReg(const MachineInstr *MI,
                                       const Register NullValueReg,
                                       const TargetRegisterInfo *TRI) const {
    return false;
  }

  /// If the instruction is an increment of a constant value, return the amount.
  virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
    return false;
  }

  /// Returns true if the two given memory operations should be scheduled
  /// adjacent. Note that you have to add:
  ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
  /// or
  ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
  /// to TargetPassConfig::createMachineScheduler() to have an effect.
  ///
  /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
  /// \p NumLoads is the number of loads that will be in the cluster if this
  /// hook returns true.
  /// \p NumBytes is the number of bytes that will be loaded from all the
  /// clustered loads if this hook returns true.
  virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
                                   ArrayRef<const MachineOperand *> BaseOps2,
                                   unsigned NumLoads, unsigned NumBytes) const {
    llvm_unreachable("target did not implement shouldClusterMemOps()");
  }

  /// Reverses the branch condition of the specified condition list,
  /// returning false on success and true if it cannot be reversed.
  virtual bool
  reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    return true;
  }

  /// Insert a noop into the instruction stream at the specified point.
  virtual void insertNoop(MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator MI) const;

  /// Insert noops into the instruction stream at the specified point.
  virtual void insertNoops(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MI,
                           unsigned Quantity) const;

  /// Return the noop instruction to use for a noop.
  virtual MCInst getNop() const;

  /// Return true for post-incremented instructions.
  virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }

  /// Returns true if the instruction is already predicated.
  virtual bool isPredicated(const MachineInstr &MI) const { return false; }

  /// Assumes the instruction is already predicated and returns true if the
  /// instruction can be predicated again.
  virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
    assert(isPredicated(MI) && "Instruction is not predicated");
    return false;
  }

  // Returns a MIRPrinter comment for this machine operand.
  virtual std::string
  createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
                          unsigned OpIdx, const TargetRegisterInfo *TRI) const;

  /// Returns true if the instruction is a
  /// terminator instruction that has not been predicated.
  bool isUnpredicatedTerminator(const MachineInstr &MI) const;

  /// Returns true if MI is an unconditional tail call.
  virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
    return false;
  }

  /// Returns true if the tail call can be made conditional on BranchCond.
  virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
                                          const MachineInstr &TailCall) const {
    return false;
  }

  /// Replace the conditional branch in MBB with a conditional tail call.
  virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
                                         SmallVectorImpl<MachineOperand> &Cond,
                                         const MachineInstr &TailCall) const {
    llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
  }

  /// Convert the instruction into a predicated instruction.
  /// It returns true if the operation was successful.
  virtual bool PredicateInstruction(MachineInstr &MI,
                                    ArrayRef<MachineOperand> Pred) const;

  /// Returns true if the first specified predicate
  /// subsumes the second, e.g. GE subsumes GT.
  virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
                                 ArrayRef<MachineOperand> Pred2) const {
    return false;
  }

  /// If the specified instruction defines any predicate
  /// or condition code register(s) used for predication, returns true as well
  /// as the definition predicate(s) by reference.
  /// SkipDead should be set to false at any point that dead
  /// predicate instructions should be considered as being defined.
  /// A dead predicate instruction is one that is guaranteed to be removed
  /// after a call to PredicateInstruction.
  virtual bool ClobbersPredicate(MachineInstr &MI,
                                 std::vector<MachineOperand> &Pred,
                                 bool SkipDead) const {
    return false;
  }

  /// Return true if the specified instruction can be predicated.
  /// By default, this returns true for every instruction with a
  /// PredicateOperand.
  virtual bool isPredicable(const MachineInstr &MI) const {
    return MI.getDesc().isPredicable();
  }

  /// Return true if it's safe to move a machine
  /// instruction that defines the specified register class.
  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
    return true;
  }

  /// Test if the given instruction should be considered a scheduling boundary.
  /// This primarily includes labels and terminators.
  virtual bool isSchedulingBoundary(const MachineInstr &MI,
                                    const MachineBasicBlock *MBB,
                                    const MachineFunction &MF) const;

  /// Measure the specified inline asm to determine an approximation of its
  /// length.
  virtual unsigned getInlineAsmLength(
    const char *Str, const MCAsmInfo &MAI,
    const TargetSubtargetInfo *STI = nullptr) const;

  /// Allocate and return a hazard recognizer to use for this target when
  /// scheduling the machine instructions before register allocation.
  virtual ScheduleHazardRecognizer *
  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
                               const ScheduleDAG *DAG) const;

  /// Allocate and return a hazard recognizer to use for this target when
  /// scheduling the machine instructions before register allocation.
  virtual ScheduleHazardRecognizer *
  CreateTargetMIHazardRecognizer(const InstrItineraryData *,
                                 const ScheduleDAGMI *DAG) const;

  /// Allocate and return a hazard recognizer to use for this target when
  /// scheduling the machine instructions after register allocation.
  virtual ScheduleHazardRecognizer *
  CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
                                     const ScheduleDAG *DAG) const;

  /// Allocate and return a hazard recognizer to use for by non-scheduling
  /// passes.
  virtual ScheduleHazardRecognizer *
  CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
    return nullptr;
  }

  /// Provide a global flag for disabling the PreRA hazard recognizer that
  /// targets may choose to honor.
  bool usePreRAHazardRecognizer() const;

  /// For a comparison instruction, return the source registers
  /// in SrcReg and SrcReg2 if having two register operands, and the value it
  /// compares against in CmpValue. Return true if the comparison instruction
  /// can be analyzed.
  virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
                              Register &SrcReg2, int64_t &Mask,
                              int64_t &Value) const {
    return false;
  }

  /// See if the comparison instruction can be converted
  /// into something more efficient. E.g., on ARM most instructions can set the
  /// flags register, obviating the need for a separate CMP.
  virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
                                    Register SrcReg2, int64_t Mask,
                                    int64_t Value,
                                    const MachineRegisterInfo *MRI) const {
    return false;
  }
  virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }

  /// Try to remove the load by folding it to a register operand at the use.
  /// We fold the load instructions if and only if the
  /// def and use are in the same BB. We only look at one load and see
  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
  /// defined by the load we are trying to fold. DefMI returns the machine
  /// instruction that defines FoldAsLoadDefReg, and the function returns
  /// the machine instruction generated due to folding.
  virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
                                          const MachineRegisterInfo *MRI,
                                          Register &FoldAsLoadDefReg,
                                          MachineInstr *&DefMI) const {
    return nullptr;
  }

  /// 'Reg' is known to be defined by a move immediate instruction,
  /// try to fold the immediate into the use instruction.
  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
  /// then the caller may assume that DefMI has been erased from its parent
  /// block. The caller may assume that it will not be erased by this
  /// function otherwise.
  virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
                             Register Reg, MachineRegisterInfo *MRI) const {
    return false;
  }

  /// Return the number of u-operations the given machine
  /// instruction will be decoded to on the target cpu. The itinerary's
  /// IssueWidth is the number of microops that can be dispatched each
  /// cycle. An instruction with zero microops takes no dispatch resources.
  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
                                  const MachineInstr &MI) const;

  /// Return true for pseudo instructions that don't consume any
  /// machine resources in their current form. These are common cases that the
  /// scheduler should consider free, rather than conservatively handling them
  /// as instructions with no itinerary.
  bool isZeroCost(unsigned Opcode) const {
    return Opcode <= TargetOpcode::COPY;
  }

  virtual int getOperandLatency(const InstrItineraryData *ItinData,
                                SDNode *DefNode, unsigned DefIdx,
                                SDNode *UseNode, unsigned UseIdx) const;

  /// Compute and return the use operand latency of a given pair of def and use.
  /// In most cases, the static scheduling itinerary was enough to determine the
  /// operand latency. But it may not be possible for instructions with variable
  /// number of defs / uses.
  ///
  /// This is a raw interface to the itinerary that may be directly overridden
  /// by a target. Use computeOperandLatency to get the best estimate of
  /// latency.
  virtual int getOperandLatency(const InstrItineraryData *ItinData,
                                const MachineInstr &DefMI, unsigned DefIdx,
                                const MachineInstr &UseMI,
                                unsigned UseIdx) const;

  /// Compute the instruction latency of a given instruction.
  /// If the instruction has higher cost when predicated, it's returned via
  /// PredCost.
  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
                                   const MachineInstr &MI,
                                   unsigned *PredCost = nullptr) const;

  virtual unsigned getPredicationCost(const MachineInstr &MI) const;

  virtual int getInstrLatency(const InstrItineraryData *ItinData,
                              SDNode *Node) const;

  /// Return the default expected latency for a def based on its opcode.
  unsigned defaultDefLatency(const MCSchedModel &SchedModel,
                             const MachineInstr &DefMI) const;

  /// Return true if this opcode has high latency to its result.
  virtual bool isHighLatencyDef(int opc) const { return false; }

  /// Compute operand latency between a def of 'Reg'
  /// and a use in the current loop. Return true if the target considered
  /// it 'high'. This is used by optimization passes such as machine LICM to
  /// determine whether it makes sense to hoist an instruction out even in a
  /// high register pressure situation.
  virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
                                     const MachineRegisterInfo *MRI,
                                     const MachineInstr &DefMI, unsigned DefIdx,
                                     const MachineInstr &UseMI,
                                     unsigned UseIdx) const {
    return false;
  }

  /// Compute operand latency of a def of 'Reg'. Return true
  /// if the target considered it 'low'.
  virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
                                const MachineInstr &DefMI,
                                unsigned DefIdx) const;

  /// Perform target-specific instruction verification.
  virtual bool verifyInstruction(const MachineInstr &MI,
                                 StringRef &ErrInfo) const {
    return true;
  }

  /// Return the current execution domain and bit mask of
  /// possible domains for instruction.
  ///
  /// Some micro-architectures have multiple execution domains, and multiple
  /// opcodes that perform the same operation in different domains.  For
  /// example, the x86 architecture provides the por, orps, and orpd
  /// instructions that all do the same thing.  There is a latency penalty if a
  /// register is written in one domain and read in another.
  ///
  /// This function returns a pair (domain, mask) containing the execution
  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
  /// function can be used to change the opcode to one of the domains in the
  /// bit mask.  Instructions whose execution domain can't be changed should
  /// return a 0 mask.
  ///
  /// The execution domain numbers don't have any special meaning except domain
  /// 0 is used for instructions that are not associated with any interesting
  /// execution domain.
  ///
  virtual std::pair<uint16_t, uint16_t>
  getExecutionDomain(const MachineInstr &MI) const {
    return std::make_pair(0, 0);
  }

  /// Change the opcode of MI to execute in Domain.
  ///
  /// The bit (1 << Domain) must be set in the mask returned from
  /// getExecutionDomain(MI).
  virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}

  /// Returns the preferred minimum clearance
  /// before an instruction with an unwanted partial register update.
  ///
  /// Some instructions only write part of a register, and implicitly need to
  /// read the other parts of the register.  This may cause unwanted stalls
  /// preventing otherwise unrelated instructions from executing in parallel in
  /// an out-of-order CPU.
  ///
  /// For example, the x86 instruction cvtsi2ss writes its result to bits
  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
  /// the instruction needs to wait for the old value of the register to become
  /// available:
  ///
  ///   addps %xmm1, %xmm0
  ///   movaps %xmm0, (%rax)
  ///   cvtsi2ss %rbx, %xmm0
  ///
  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
  /// instruction before it can issue, even though the high bits of %xmm0
  /// probably aren't needed.
  ///
  /// This hook returns the preferred clearance before MI, measured in
  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
  /// instructions before MI.  It should only return a positive value for
  /// unwanted dependencies.  If the old bits of the defined register have
  /// useful values, or if MI is determined to otherwise read the dependency,
  /// the hook should return 0.
  ///
  /// The unwanted dependency may be handled by:
  ///
  /// 1. Allocating the same register for an MI def and use.  That makes the
  ///    unwanted dependency identical to a required dependency.
  ///
  /// 2. Allocating a register for the def that has no defs in the previous N
  ///    instructions.
  ///
  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
  ///    allows the target to insert a dependency breaking instruction.
  ///
  virtual unsigned
  getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
                               const TargetRegisterInfo *TRI) const {
    // The default implementation returns 0 for no partial register dependency.
    return 0;
  }

  /// Return the minimum clearance before an instruction that reads an
  /// unused register.
  ///
  /// For example, AVX instructions may copy part of a register operand into
  /// the unused high bits of the destination register.
  ///
  /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
  ///
  /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
  /// false dependence on any previous write to %xmm0.
  ///
  /// This hook works similarly to getPartialRegUpdateClearance, except that it
  /// does not take an operand index. Instead sets \p OpNum to the index of the
  /// unused register.
  virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
                                        const TargetRegisterInfo *TRI) const {
    // The default implementation returns 0 for no undef register dependency.
    return 0;
  }

  /// Insert a dependency-breaking instruction
  /// before MI to eliminate an unwanted dependency on OpNum.
  ///
  /// If it wasn't possible to avoid a def in the last N instructions before MI
  /// (see getPartialRegUpdateClearance), this hook will be called to break the
  /// unwanted dependency.
  ///
  /// On x86, an xorps instruction can be used as a dependency breaker:
  ///
  ///   addps %xmm1, %xmm0
  ///   movaps %xmm0, (%rax)
  ///   xorps %xmm0, %xmm0
  ///   cvtsi2ss %rbx, %xmm0
  ///
  /// An <imp-kill> operand should be added to MI if an instruction was
  /// inserted.  This ties the instructions together in the post-ra scheduler.
  ///
  virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
                                         const TargetRegisterInfo *TRI) const {}

  /// Create machine specific model for scheduling.
  virtual DFAPacketizer *
  CreateTargetScheduleState(const TargetSubtargetInfo &) const {
    return nullptr;
  }

  /// Sometimes, it is possible for the target
  /// to tell, even without aliasing information, that two MIs access different
  /// memory addresses. This function returns true if two MIs access different
  /// memory addresses and false otherwise.
  ///
  /// Assumes any physical registers used to compute addresses have the same
  /// value for both instructions. (This is the most useful assumption for
  /// post-RA scheduling.)
  ///
  /// See also MachineInstr::mayAlias, which is implemented on top of this
  /// function.
  virtual bool
  areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
                                  const MachineInstr &MIb) const {
    assert(MIa.mayLoadOrStore() &&
           "MIa must load from or modify a memory location");
    assert(MIb.mayLoadOrStore() &&
           "MIb must load from or modify a memory location");
    return false;
  }

  /// Return the value to use for the MachineCSE's LookAheadLimit,
  /// which is a heuristic used for CSE'ing phys reg defs.
  virtual unsigned getMachineCSELookAheadLimit() const {
    // The default lookahead is small to prevent unprofitable quadratic
    // behavior.
    return 5;
  }

  /// Return the maximal number of alias checks on memory operands. For
  /// instructions with more than one memory operands, the alias check on a
  /// single MachineInstr pair has quadratic overhead and results in
  /// unacceptable performance in the worst case. The limit here is to clamp
  /// that maximal checks performed. Usually, that's the product of memory
  /// operand numbers from that pair of MachineInstr to be checked. For
  /// instance, with two MachineInstrs with 4 and 5 memory operands
  /// correspondingly, a total of 20 checks are required. With this limit set to
  /// 16, their alias check is skipped. We choose to limit the product instead
  /// of the individual instruction as targets may have special MachineInstrs
  /// with a considerably high number of memory operands, such as `ldm` in ARM.
  /// Setting this limit per MachineInstr would result in either too high
  /// overhead or too rigid restriction.
  virtual unsigned getMemOperandAACheckLimit() const { return 16; }

  /// Return an array that contains the ids of the target indices (used for the
  /// TargetIndex machine operand) and their names.
  ///
  /// MIR Serialization is able to serialize only the target indices that are
  /// defined by this method.
  virtual ArrayRef<std::pair<int, const char *>>
  getSerializableTargetIndices() const {
    return std::nullopt;
  }

  /// Decompose the machine operand's target flags into two values - the direct
  /// target flag value and any of bit flags that are applied.
  virtual std::pair<unsigned, unsigned>
  decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
    return std::make_pair(0u, 0u);
  }

  /// Return an array that contains the direct target flag values and their
  /// names.
  ///
  /// MIR Serialization is able to serialize only the target flags that are
  /// defined by this method.
  virtual ArrayRef<std::pair<unsigned, const char *>>
  getSerializableDirectMachineOperandTargetFlags() const {
    return std::nullopt;
  }

  /// Return an array that contains the bitmask target flag values and their
  /// names.
  ///
  /// MIR Serialization is able to serialize only the target flags that are
  /// defined by this method.
  virtual ArrayRef<std::pair<unsigned, const char *>>
  getSerializableBitmaskMachineOperandTargetFlags() const {
    return std::nullopt;
  }

  /// Return an array that contains the MMO target flag values and their
  /// names.
  ///
  /// MIR Serialization is able to serialize only the MMO target flags that are
  /// defined by this method.
  virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
  getSerializableMachineMemOperandTargetFlags() const {
    return std::nullopt;
  }

  /// Determines whether \p Inst is a tail call instruction. Override this
  /// method on targets that do not properly set MCID::Return and MCID::Call on
  /// tail call instructions."
  virtual bool isTailCall(const MachineInstr &Inst) const {
    return Inst.isReturn() && Inst.isCall();
  }

  /// True if the instruction is bound to the top of its basic block and no
  /// other instructions shall be inserted before it. This can be implemented
  /// to prevent register allocator to insert spills before such instructions.
  virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
    return false;
  }

  /// During PHI eleimination lets target to make necessary checks and
  /// insert the copy to the PHI destination register in a target specific
  /// manner.
  virtual MachineInstr *createPHIDestinationCopy(
      MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
      const DebugLoc &DL, Register Src, Register Dst) const {
    return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
        .addReg(Src);
  }

  /// During PHI eleimination lets target to make necessary checks and
  /// insert the copy to the PHI destination register in a target specific
  /// manner.
  virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
                                            MachineBasicBlock::iterator InsPt,
                                            const DebugLoc &DL, Register Src,
                                            unsigned SrcSubReg,
                                            Register Dst) const {
    return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
        .addReg(Src, 0, SrcSubReg);
  }

  /// Returns a \p outliner::OutlinedFunction struct containing target-specific
  /// information for a set of outlining candidates.
  virtual outliner::OutlinedFunction getOutliningCandidateInfo(
      std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
    llvm_unreachable(
        "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
  }

  /// Optional target hook to create the LLVM IR attributes for the outlined
  /// function. If overridden, the overriding function must call the default
  /// implementation.
  virtual void mergeOutliningCandidateAttributes(
      Function &F, std::vector<outliner::Candidate> &Candidates) const;

  /// Returns how or if \p MI should be outlined.
  virtual outliner::InstrType
  getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
    llvm_unreachable(
        "Target didn't implement TargetInstrInfo::getOutliningType!");
  }

  /// Optional target hook that returns true if \p MBB is safe to outline from,
  /// and returns any target-specific information in \p Flags.
  virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
                                      unsigned &Flags) const;

  /// Insert a custom frame for outlined functions.
  virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
                                  const outliner::OutlinedFunction &OF) const {
    llvm_unreachable(
        "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
  }

  /// Insert a call to an outlined function into the program.
  /// Returns an iterator to the spot where we inserted the call. This must be
  /// implemented by the target.
  virtual MachineBasicBlock::iterator
  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
                     MachineBasicBlock::iterator &It, MachineFunction &MF,
                     outliner::Candidate &C) const {
    llvm_unreachable(
        "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
  }

  /// Return true if the function can safely be outlined from.
  /// A function \p MF is considered safe for outlining if an outlined function
  /// produced from instructions in F will produce a program which produces the
  /// same output for any set of given inputs.
  virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
                                           bool OutlineFromLinkOnceODRs) const {
    llvm_unreachable("Target didn't implement "
                     "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
  }

  /// Return true if the function should be outlined from by default.
  virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
    return false;
  }

  /// Produce the expression describing the \p MI loading a value into
  /// the physical register \p Reg. This hook should only be used with
  /// \p MIs belonging to VReg-less functions.
  virtual std::optional<ParamLoadedValue>
  describeLoadedValue(const MachineInstr &MI, Register Reg) const;

  /// Given the generic extension instruction \p ExtMI, returns true if this
  /// extension is a likely candidate for being folded into an another
  /// instruction.
  virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
                                        MachineRegisterInfo &MRI) const {
    return false;
  }

  /// Return MIR formatter to format/parse MIR operands.  Target can override
  /// this virtual function and return target specific MIR formatter.
  virtual const MIRFormatter *getMIRFormatter() const {
    if (!Formatter.get())
      Formatter = std::make_unique<MIRFormatter>();
    return Formatter.get();
  }

  /// Returns the target-specific default value for tail duplication.
  /// This value will be used if the tail-dup-placement-threshold argument is
  /// not provided.
  virtual unsigned getTailDuplicateSize(CodeGenOpt::Level OptLevel) const {
    return OptLevel >= CodeGenOpt::Aggressive ? 4 : 2;
  }

  /// Returns the callee operand from the given \p MI.
  virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
    return MI.getOperand(0);
  }

  /// Return the uniformity behavior of the given instruction.
  virtual InstructionUniformity
  getInstructionUniformity(const MachineInstr &MI) const {
    return InstructionUniformity::Default;
  }

  /// Returns true if the given \p MI defines a TargetIndex operand that can be
  /// tracked by their offset, can have values, and can have debug info
  /// associated with it. If so, sets \p Index and \p Offset of the target index
  /// operand.
  virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index,
                                        int64_t &Offset) const {
    return false;
  }

private:
  mutable std::unique_ptr<MIRFormatter> Formatter;
  unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
  unsigned CatchRetOpcode;
  unsigned ReturnOpcode;
};

/// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
  using RegInfo = DenseMapInfo<unsigned>;

  static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
    return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
                                          RegInfo::getEmptyKey());
  }

  static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
    return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
                                          RegInfo::getTombstoneKey());
  }

  /// Reuse getHashValue implementation from
  /// std::pair<unsigned, unsigned>.
  static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
    std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
    return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
  }

  static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
                      const TargetInstrInfo::RegSubRegPair &RHS) {
    return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
           RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
  }
};

} // end namespace llvm

#endif // LLVM_CODEGEN_TARGETINSTRINFO_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif