aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/include/llvm/CodeGen/MachinePipeliner.h
blob: 682a23f3394ec0b569ee242637d955f53848d483 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- MachinePipeliner.h - Machine Software Pipeliner Pass -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
//
// Software pipelining (SWP) is an instruction scheduling technique for loops
// that overlap loop iterations and exploits ILP via a compiler transformation.
//
// Swing Modulo Scheduling is an implementation of software pipelining
// that generates schedules that are near optimal in terms of initiation
// interval, register requirements, and stage count. See the papers:
//
// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
// Conference on Parallel Architectures and Compilation Techiniques.
//
// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
// Transactions on Computers, Vol. 50, No. 3, 2001.
//
// "An Implementation of Swing Modulo Scheduling With Extensions for
// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
// Urbana-Champaign, 2005.
//
//
// The SMS algorithm consists of three main steps after computing the minimal
// initiation interval (MII).
// 1) Analyze the dependence graph and compute information about each
//    instruction in the graph.
// 2) Order the nodes (instructions) by priority based upon the heuristics
//    described in the algorithm.
// 3) Attempt to schedule the nodes in the specified order using the MII.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEPIPELINER_H
#define LLVM_CODEGEN_MACHINEPIPELINER_H

#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/InitializePasses.h"

#include <deque>

namespace llvm {

class AAResults;
class NodeSet;
class SMSchedule;

extern cl::opt<bool> SwpEnableCopyToPhi;
extern cl::opt<int> SwpForceIssueWidth;

/// The main class in the implementation of the target independent
/// software pipeliner pass.
class MachinePipeliner : public MachineFunctionPass {
public:
  MachineFunction *MF = nullptr;
  MachineOptimizationRemarkEmitter *ORE = nullptr;
  const MachineLoopInfo *MLI = nullptr;
  const MachineDominatorTree *MDT = nullptr;
  const InstrItineraryData *InstrItins;
  const TargetInstrInfo *TII = nullptr;
  RegisterClassInfo RegClassInfo;
  bool disabledByPragma = false;
  unsigned II_setByPragma = 0;

#ifndef NDEBUG
  static int NumTries;
#endif

  /// Cache the target analysis information about the loop.
  struct LoopInfo {
    MachineBasicBlock *TBB = nullptr;
    MachineBasicBlock *FBB = nullptr;
    SmallVector<MachineOperand, 4> BrCond;
    MachineInstr *LoopInductionVar = nullptr;
    MachineInstr *LoopCompare = nullptr;
    std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopPipelinerInfo =
        nullptr;
  };
  LoopInfo LI;

  static char ID;

  MachinePipeliner() : MachineFunctionPass(ID) {
    initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;

private:
  void preprocessPhiNodes(MachineBasicBlock &B);
  bool canPipelineLoop(MachineLoop &L);
  bool scheduleLoop(MachineLoop &L);
  bool swingModuloScheduler(MachineLoop &L);
  void setPragmaPipelineOptions(MachineLoop &L);
};

/// This class builds the dependence graph for the instructions in a loop,
/// and attempts to schedule the instructions using the SMS algorithm.
class SwingSchedulerDAG : public ScheduleDAGInstrs {
  MachinePipeliner &Pass;
  /// The minimum initiation interval between iterations for this schedule.
  unsigned MII = 0;
  /// The maximum initiation interval between iterations for this schedule.
  unsigned MAX_II = 0;
  /// Set to true if a valid pipelined schedule is found for the loop.
  bool Scheduled = false;
  MachineLoop &Loop;
  LiveIntervals &LIS;
  const RegisterClassInfo &RegClassInfo;
  unsigned II_setByPragma = 0;
  TargetInstrInfo::PipelinerLoopInfo *LoopPipelinerInfo = nullptr;

  /// A toplogical ordering of the SUnits, which is needed for changing
  /// dependences and iterating over the SUnits.
  ScheduleDAGTopologicalSort Topo;

  struct NodeInfo {
    int ASAP = 0;
    int ALAP = 0;
    int ZeroLatencyDepth = 0;
    int ZeroLatencyHeight = 0;

    NodeInfo() = default;
  };
  /// Computed properties for each node in the graph.
  std::vector<NodeInfo> ScheduleInfo;

  enum OrderKind { BottomUp = 0, TopDown = 1 };
  /// Computed node ordering for scheduling.
  SetVector<SUnit *> NodeOrder;

  using NodeSetType = SmallVector<NodeSet, 8>;
  using ValueMapTy = DenseMap<unsigned, unsigned>;
  using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
  using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;

  /// Instructions to change when emitting the final schedule.
  DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;

  /// We may create a new instruction, so remember it because it
  /// must be deleted when the pass is finished.
  DenseMap<MachineInstr*, MachineInstr *> NewMIs;

  /// Ordered list of DAG postprocessing steps.
  std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;

  /// Helper class to implement Johnson's circuit finding algorithm.
  class Circuits {
    std::vector<SUnit> &SUnits;
    SetVector<SUnit *> Stack;
    BitVector Blocked;
    SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
    SmallVector<SmallVector<int, 4>, 16> AdjK;
    // Node to Index from ScheduleDAGTopologicalSort
    std::vector<int> *Node2Idx;
    unsigned NumPaths;
    static unsigned MaxPaths;

  public:
    Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo)
        : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
      Node2Idx = new std::vector<int>(SUs.size());
      unsigned Idx = 0;
      for (const auto &NodeNum : Topo)
        Node2Idx->at(NodeNum) = Idx++;
    }

    ~Circuits() { delete Node2Idx; }

    /// Reset the data structures used in the circuit algorithm.
    void reset() {
      Stack.clear();
      Blocked.reset();
      B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
      NumPaths = 0;
    }

    void createAdjacencyStructure(SwingSchedulerDAG *DAG);
    bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
    void unblock(int U);
  };

  struct CopyToPhiMutation : public ScheduleDAGMutation {
    void apply(ScheduleDAGInstrs *DAG) override;
  };

public:
  SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
                    const RegisterClassInfo &rci, unsigned II,
                    TargetInstrInfo::PipelinerLoopInfo *PLI)
      : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
        RegClassInfo(rci), II_setByPragma(II), LoopPipelinerInfo(PLI),
        Topo(SUnits, &ExitSU) {
    P.MF->getSubtarget().getSMSMutations(Mutations);
    if (SwpEnableCopyToPhi)
      Mutations.push_back(std::make_unique<CopyToPhiMutation>());
  }

  void schedule() override;
  void finishBlock() override;

  /// Return true if the loop kernel has been scheduled.
  bool hasNewSchedule() { return Scheduled; }

  /// Return the earliest time an instruction may be scheduled.
  int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }

  /// Return the latest time an instruction my be scheduled.
  int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }

  /// The mobility function, which the number of slots in which
  /// an instruction may be scheduled.
  int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }

  /// The depth, in the dependence graph, for a node.
  unsigned getDepth(SUnit *Node) { return Node->getDepth(); }

  /// The maximum unweighted length of a path from an arbitrary node to the
  /// given node in which each edge has latency 0
  int getZeroLatencyDepth(SUnit *Node) {
    return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
  }

  /// The height, in the dependence graph, for a node.
  unsigned getHeight(SUnit *Node) { return Node->getHeight(); }

  /// The maximum unweighted length of a path from the given node to an
  /// arbitrary node in which each edge has latency 0
  int getZeroLatencyHeight(SUnit *Node) {
    return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
  }

  /// Return true if the dependence is a back-edge in the data dependence graph.
  /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
  /// using an anti dependence from a Phi to an instruction.
  bool isBackedge(SUnit *Source, const SDep &Dep) {
    if (Dep.getKind() != SDep::Anti)
      return false;
    return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
  }

  bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);

  /// The distance function, which indicates that operation V of iteration I
  /// depends on operations U of iteration I-distance.
  unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
    // Instructions that feed a Phi have a distance of 1. Computing larger
    // values for arrays requires data dependence information.
    if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
      return 1;
    return 0;
  }

  void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);

  void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);

  /// Return the new base register that was stored away for the changed
  /// instruction.
  unsigned getInstrBaseReg(SUnit *SU) {
    DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
        InstrChanges.find(SU);
    if (It != InstrChanges.end())
      return It->second.first;
    return 0;
  }

  void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
    Mutations.push_back(std::move(Mutation));
  }

  static bool classof(const ScheduleDAGInstrs *DAG) { return true; }

private:
  void addLoopCarriedDependences(AAResults *AA);
  void updatePhiDependences();
  void changeDependences();
  unsigned calculateResMII();
  unsigned calculateRecMII(NodeSetType &RecNodeSets);
  void findCircuits(NodeSetType &NodeSets);
  void fuseRecs(NodeSetType &NodeSets);
  void removeDuplicateNodes(NodeSetType &NodeSets);
  void computeNodeFunctions(NodeSetType &NodeSets);
  void registerPressureFilter(NodeSetType &NodeSets);
  void colocateNodeSets(NodeSetType &NodeSets);
  void checkNodeSets(NodeSetType &NodeSets);
  void groupRemainingNodes(NodeSetType &NodeSets);
  void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
                         SetVector<SUnit *> &NodesAdded);
  void computeNodeOrder(NodeSetType &NodeSets);
  void checkValidNodeOrder(const NodeSetType &Circuits) const;
  bool schedulePipeline(SMSchedule &Schedule);
  bool computeDelta(MachineInstr &MI, unsigned &Delta);
  MachineInstr *findDefInLoop(Register Reg);
  bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
                             unsigned &OffsetPos, unsigned &NewBase,
                             int64_t &NewOffset);
  void postprocessDAG();
  /// Set the Minimum Initiation Interval for this schedule attempt.
  void setMII(unsigned ResMII, unsigned RecMII);
  /// Set the Maximum Initiation Interval for this schedule attempt.
  void setMAX_II();
};

/// A NodeSet contains a set of SUnit DAG nodes with additional information
/// that assigns a priority to the set.
class NodeSet {
  SetVector<SUnit *> Nodes;
  bool HasRecurrence = false;
  unsigned RecMII = 0;
  int MaxMOV = 0;
  unsigned MaxDepth = 0;
  unsigned Colocate = 0;
  SUnit *ExceedPressure = nullptr;
  unsigned Latency = 0;

public:
  using iterator = SetVector<SUnit *>::const_iterator;

  NodeSet() = default;
  NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
    Latency = 0;
    for (const SUnit *Node : Nodes) {
      DenseMap<SUnit *, unsigned> SuccSUnitLatency;
      for (const SDep &Succ : Node->Succs) {
        auto SuccSUnit = Succ.getSUnit();
        if (!Nodes.count(SuccSUnit))
          continue;
        unsigned CurLatency = Succ.getLatency();
        unsigned MaxLatency = 0;
        if (SuccSUnitLatency.count(SuccSUnit))
          MaxLatency = SuccSUnitLatency[SuccSUnit];
        if (CurLatency > MaxLatency)
          SuccSUnitLatency[SuccSUnit] = CurLatency;
      }
      for (auto SUnitLatency : SuccSUnitLatency)
        Latency += SUnitLatency.second;
    }
  }

  bool insert(SUnit *SU) { return Nodes.insert(SU); }

  void insert(iterator S, iterator E) { Nodes.insert(S, E); }

  template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
    return Nodes.remove_if(P);
  }

  unsigned count(SUnit *SU) const { return Nodes.count(SU); }

  bool hasRecurrence() { return HasRecurrence; };

  unsigned size() const { return Nodes.size(); }

  bool empty() const { return Nodes.empty(); }

  SUnit *getNode(unsigned i) const { return Nodes[i]; };

  void setRecMII(unsigned mii) { RecMII = mii; };

  void setColocate(unsigned c) { Colocate = c; };

  void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }

  bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }

  int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }

  int getRecMII() { return RecMII; }

  /// Summarize node functions for the entire node set.
  void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
    for (SUnit *SU : *this) {
      MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
      MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
    }
  }

  unsigned getLatency() { return Latency; }

  unsigned getMaxDepth() { return MaxDepth; }

  void clear() {
    Nodes.clear();
    RecMII = 0;
    HasRecurrence = false;
    MaxMOV = 0;
    MaxDepth = 0;
    Colocate = 0;
    ExceedPressure = nullptr;
  }

  operator SetVector<SUnit *> &() { return Nodes; }

  /// Sort the node sets by importance. First, rank them by recurrence MII,
  /// then by mobility (least mobile done first), and finally by depth.
  /// Each node set may contain a colocate value which is used as the first
  /// tie breaker, if it's set.
  bool operator>(const NodeSet &RHS) const {
    if (RecMII == RHS.RecMII) {
      if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
        return Colocate < RHS.Colocate;
      if (MaxMOV == RHS.MaxMOV)
        return MaxDepth > RHS.MaxDepth;
      return MaxMOV < RHS.MaxMOV;
    }
    return RecMII > RHS.RecMII;
  }

  bool operator==(const NodeSet &RHS) const {
    return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
           MaxDepth == RHS.MaxDepth;
  }

  bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }

  iterator begin() { return Nodes.begin(); }
  iterator end() { return Nodes.end(); }
  void print(raw_ostream &os) const;

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void dump() const;
#endif
};

// 16 was selected based on the number of ProcResource kinds for all
// existing Subtargets, so that SmallVector don't need to resize too often.
static const int DefaultProcResSize = 16;

class ResourceManager {
private:
  const MCSubtargetInfo *STI;
  const MCSchedModel &SM;
  const TargetSubtargetInfo *ST;
  const TargetInstrInfo *TII;
  SwingSchedulerDAG *DAG;
  const bool UseDFA;
  /// DFA resources for each slot
  llvm::SmallVector<std::unique_ptr<DFAPacketizer>> DFAResources;
  /// Modulo Reservation Table. When a resource with ID R is consumed in cycle
  /// C, it is counted in MRT[C mod II][R]. (Used when UseDFA == F)
  llvm::SmallVector<llvm::SmallVector<uint64_t, DefaultProcResSize>> MRT;
  /// The number of scheduled micro operations for each slot. Micro operations
  /// are assumed to be scheduled one per cycle, starting with the cycle in
  /// which the instruction is scheduled.
  llvm::SmallVector<int> NumScheduledMops;
  /// Each processor resource is associated with a so-called processor resource
  /// mask. This vector allows to correlate processor resource IDs with
  /// processor resource masks. There is exactly one element per each processor
  /// resource declared by the scheduling model.
  llvm::SmallVector<uint64_t, DefaultProcResSize> ProcResourceMasks;
  int InitiationInterval;
  /// The number of micro operations that can be scheduled at a cycle.
  int IssueWidth;

  int calculateResMIIDFA() const;
  /// Check if MRT is overbooked
  bool isOverbooked() const;
  /// Reserve resources on MRT
  void reserveResources(const MCSchedClassDesc *SCDesc, int Cycle);
  /// Unreserve resources on MRT
  void unreserveResources(const MCSchedClassDesc *SCDesc, int Cycle);

  /// Return M satisfying Dividend = Divisor * X + M, 0 < M < Divisor.
  /// The slot on MRT to reserve a resource for the cycle C is positiveModulo(C,
  /// II).
  int positiveModulo(int Dividend, int Divisor) const {
    assert(Divisor > 0);
    int R = Dividend % Divisor;
    if (R < 0)
      R += Divisor;
    return R;
  }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void dumpMRT() const;
#endif

public:
  ResourceManager(const TargetSubtargetInfo *ST, SwingSchedulerDAG *DAG)
      : STI(ST), SM(ST->getSchedModel()), ST(ST), TII(ST->getInstrInfo()),
        DAG(DAG), UseDFA(ST->useDFAforSMS()),
        ProcResourceMasks(SM.getNumProcResourceKinds(), 0),
        IssueWidth(SM.IssueWidth) {
    initProcResourceVectors(SM, ProcResourceMasks);
    if (IssueWidth <= 0)
      // If IssueWidth is not specified, set a sufficiently large value
      IssueWidth = 100;
    if (SwpForceIssueWidth > 0)
      IssueWidth = SwpForceIssueWidth;
  }

  void initProcResourceVectors(const MCSchedModel &SM,
                               SmallVectorImpl<uint64_t> &Masks);

  /// Check if the resources occupied by a machine instruction are available
  /// in the current state.
  bool canReserveResources(SUnit &SU, int Cycle);

  /// Reserve the resources occupied by a machine instruction and change the
  /// current state to reflect that change.
  void reserveResources(SUnit &SU, int Cycle);

  int calculateResMII() const;

  /// Initialize resources with the initiation interval II.
  void init(int II);
};

/// This class represents the scheduled code.  The main data structure is a
/// map from scheduled cycle to instructions.  During scheduling, the
/// data structure explicitly represents all stages/iterations.   When
/// the algorithm finshes, the schedule is collapsed into a single stage,
/// which represents instructions from different loop iterations.
///
/// The SMS algorithm allows negative values for cycles, so the first cycle
/// in the schedule is the smallest cycle value.
class SMSchedule {
private:
  /// Map from execution cycle to instructions.
  DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;

  /// Map from instruction to execution cycle.
  std::map<SUnit *, int> InstrToCycle;

  /// Keep track of the first cycle value in the schedule.  It starts
  /// as zero, but the algorithm allows negative values.
  int FirstCycle = 0;

  /// Keep track of the last cycle value in the schedule.
  int LastCycle = 0;

  /// The initiation interval (II) for the schedule.
  int InitiationInterval = 0;

  /// Target machine information.
  const TargetSubtargetInfo &ST;

  /// Virtual register information.
  MachineRegisterInfo &MRI;

  ResourceManager ProcItinResources;

public:
  SMSchedule(MachineFunction *mf, SwingSchedulerDAG *DAG)
      : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
        ProcItinResources(&ST, DAG) {}

  void reset() {
    ScheduledInstrs.clear();
    InstrToCycle.clear();
    FirstCycle = 0;
    LastCycle = 0;
    InitiationInterval = 0;
  }

  /// Set the initiation interval for this schedule.
  void setInitiationInterval(int ii) {
    InitiationInterval = ii;
    ProcItinResources.init(ii);
  }

  /// Return the initiation interval for this schedule.
  int getInitiationInterval() const { return InitiationInterval; }

  /// Return the first cycle in the completed schedule.  This
  /// can be a negative value.
  int getFirstCycle() const { return FirstCycle; }

  /// Return the last cycle in the finalized schedule.
  int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }

  /// Return the cycle of the earliest scheduled instruction in the dependence
  /// chain.
  int earliestCycleInChain(const SDep &Dep);

  /// Return the cycle of the latest scheduled instruction in the dependence
  /// chain.
  int latestCycleInChain(const SDep &Dep);

  void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
                    int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
  bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);

  /// Iterators for the cycle to instruction map.
  using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
  using const_sched_iterator =
      DenseMap<int, std::deque<SUnit *>>::const_iterator;

  /// Return true if the instruction is scheduled at the specified stage.
  bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
    return (stageScheduled(SU) == (int)StageNum);
  }

  /// Return the stage for a scheduled instruction.  Return -1 if
  /// the instruction has not been scheduled.
  int stageScheduled(SUnit *SU) const {
    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
    if (it == InstrToCycle.end())
      return -1;
    return (it->second - FirstCycle) / InitiationInterval;
  }

  /// Return the cycle for a scheduled instruction. This function normalizes
  /// the first cycle to be 0.
  unsigned cycleScheduled(SUnit *SU) const {
    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
    assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
    return (it->second - FirstCycle) % InitiationInterval;
  }

  /// Return the maximum stage count needed for this schedule.
  unsigned getMaxStageCount() {
    return (LastCycle - FirstCycle) / InitiationInterval;
  }

  /// Return the instructions that are scheduled at the specified cycle.
  std::deque<SUnit *> &getInstructions(int cycle) {
    return ScheduledInstrs[cycle];
  }

  SmallSet<SUnit *, 8>
  computeUnpipelineableNodes(SwingSchedulerDAG *SSD,
                             TargetInstrInfo::PipelinerLoopInfo *PLI);

  bool
  normalizeNonPipelinedInstructions(SwingSchedulerDAG *SSD,
                                    TargetInstrInfo::PipelinerLoopInfo *PLI);
  bool isValidSchedule(SwingSchedulerDAG *SSD);
  void finalizeSchedule(SwingSchedulerDAG *SSD);
  void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
                       std::deque<SUnit *> &Insts);
  bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
  bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
                             MachineOperand &MO);
  void print(raw_ostream &os) const;
  void dump() const;
};

} // end namespace llvm

#endif // LLVM_CODEGEN_MACHINEPIPELINER_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif