1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the MachineInstr class, which is the
// basic representation for all target dependent machine instructions used by
// the back end.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
#define LLVM_CODEGEN_MACHINEINSTR_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/PointerSumType.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Support/TrailingObjects.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
namespace llvm {
class DILabel;
class Instruction;
class MDNode;
class AAResults;
template <typename T> class ArrayRef;
class DIExpression;
class DILocalVariable;
class MachineBasicBlock;
class MachineFunction;
class MachineRegisterInfo;
class ModuleSlotTracker;
class raw_ostream;
template <typename T> class SmallVectorImpl;
class SmallBitVector;
class StringRef;
class TargetInstrInfo;
class TargetRegisterClass;
class TargetRegisterInfo;
//===----------------------------------------------------------------------===//
/// Representation of each machine instruction.
///
/// This class isn't a POD type, but it must have a trivial destructor. When a
/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
/// without having their destructor called.
///
class MachineInstr
: public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
ilist_sentinel_tracking<true>> {
public:
using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
/// Flags to specify different kinds of comments to output in
/// assembly code. These flags carry semantic information not
/// otherwise easily derivable from the IR text.
///
enum CommentFlag {
ReloadReuse = 0x1, // higher bits are reserved for target dep comments.
NoSchedComment = 0x2,
TAsmComments = 0x4 // Target Asm comments should start from this value.
};
enum MIFlag {
NoFlags = 0,
FrameSetup = 1 << 0, // Instruction is used as a part of
// function frame setup code.
FrameDestroy = 1 << 1, // Instruction is used as a part of
// function frame destruction code.
BundledPred = 1 << 2, // Instruction has bundled predecessors.
BundledSucc = 1 << 3, // Instruction has bundled successors.
FmNoNans = 1 << 4, // Instruction does not support Fast
// math nan values.
FmNoInfs = 1 << 5, // Instruction does not support Fast
// math infinity values.
FmNsz = 1 << 6, // Instruction is not required to retain
// signed zero values.
FmArcp = 1 << 7, // Instruction supports Fast math
// reciprocal approximations.
FmContract = 1 << 8, // Instruction supports Fast math
// contraction operations like fma.
FmAfn = 1 << 9, // Instruction may map to Fast math
// intrinsic approximation.
FmReassoc = 1 << 10, // Instruction supports Fast math
// reassociation of operand order.
NoUWrap = 1 << 11, // Instruction supports binary operator
// no unsigned wrap.
NoSWrap = 1 << 12, // Instruction supports binary operator
// no signed wrap.
IsExact = 1 << 13, // Instruction supports division is
// known to be exact.
NoFPExcept = 1 << 14, // Instruction does not raise
// floatint-point exceptions.
NoMerge = 1 << 15, // Passes that drop source location info
// (e.g. branch folding) should skip
// this instruction.
};
private:
const MCInstrDesc *MCID; // Instruction descriptor.
MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
// Operands are allocated by an ArrayRecycler.
MachineOperand *Operands = nullptr; // Pointer to the first operand.
unsigned NumOperands = 0; // Number of operands on instruction.
uint16_t Flags = 0; // Various bits of additional
// information about machine
// instruction.
uint8_t AsmPrinterFlags = 0; // Various bits of information used by
// the AsmPrinter to emit helpful
// comments. This is *not* semantic
// information. Do not use this for
// anything other than to convey comment
// information to AsmPrinter.
// OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
// to properly pack.
using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
OperandCapacity CapOperands; // Capacity of the Operands array.
/// Internal implementation detail class that provides out-of-line storage for
/// extra info used by the machine instruction when this info cannot be stored
/// in-line within the instruction itself.
///
/// This has to be defined eagerly due to the implementation constraints of
/// `PointerSumType` where it is used.
class ExtraInfo final : TrailingObjects<ExtraInfo, MachineMemOperand *,
MCSymbol *, MDNode *, uint32_t> {
public:
static ExtraInfo *create(BumpPtrAllocator &Allocator,
ArrayRef<MachineMemOperand *> MMOs,
MCSymbol *PreInstrSymbol = nullptr,
MCSymbol *PostInstrSymbol = nullptr,
MDNode *HeapAllocMarker = nullptr,
MDNode *PCSections = nullptr,
uint32_t CFIType = 0) {
bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
bool HasCFIType = CFIType != 0;
bool HasPCSections = PCSections != nullptr;
auto *Result = new (Allocator.Allocate(
totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t>(
MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
HasHeapAllocMarker + HasPCSections, HasCFIType),
alignof(ExtraInfo)))
ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
HasHeapAllocMarker, HasPCSections, HasCFIType);
// Copy the actual data into the trailing objects.
std::copy(MMOs.begin(), MMOs.end(),
Result->getTrailingObjects<MachineMemOperand *>());
if (HasPreInstrSymbol)
Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
if (HasPostInstrSymbol)
Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
PostInstrSymbol;
if (HasHeapAllocMarker)
Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
if (HasPCSections)
Result->getTrailingObjects<MDNode *>()[HasHeapAllocMarker] =
PCSections;
if (HasCFIType)
Result->getTrailingObjects<uint32_t>()[0] = CFIType;
return Result;
}
ArrayRef<MachineMemOperand *> getMMOs() const {
return ArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
}
MCSymbol *getPreInstrSymbol() const {
return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
}
MCSymbol *getPostInstrSymbol() const {
return HasPostInstrSymbol
? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
: nullptr;
}
MDNode *getHeapAllocMarker() const {
return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
}
MDNode *getPCSections() const {
return HasPCSections
? getTrailingObjects<MDNode *>()[HasHeapAllocMarker]
: nullptr;
}
uint32_t getCFIType() const {
return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0;
}
private:
friend TrailingObjects;
// Description of the extra info, used to interpret the actual optional
// data appended.
//
// Note that this is not terribly space optimized. This leaves a great deal
// of flexibility to fit more in here later.
const int NumMMOs;
const bool HasPreInstrSymbol;
const bool HasPostInstrSymbol;
const bool HasHeapAllocMarker;
const bool HasPCSections;
const bool HasCFIType;
// Implement the `TrailingObjects` internal API.
size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
return NumMMOs;
}
size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
return HasPreInstrSymbol + HasPostInstrSymbol;
}
size_t numTrailingObjects(OverloadToken<MDNode *>) const {
return HasHeapAllocMarker + HasPCSections;
}
size_t numTrailingObjects(OverloadToken<uint32_t>) const {
return HasCFIType;
}
// Just a boring constructor to allow us to initialize the sizes. Always use
// the `create` routine above.
ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType)
: NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
HasPostInstrSymbol(HasPostInstrSymbol),
HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections),
HasCFIType(HasCFIType) {}
};
/// Enumeration of the kinds of inline extra info available. It is important
/// that the `MachineMemOperand` inline kind has a tag value of zero to make
/// it accessible as an `ArrayRef`.
enum ExtraInfoInlineKinds {
EIIK_MMO = 0,
EIIK_PreInstrSymbol,
EIIK_PostInstrSymbol,
EIIK_OutOfLine
};
// We store extra information about the instruction here. The common case is
// expected to be nothing or a single pointer (typically a MMO or a symbol).
// We work to optimize this common case by storing it inline here rather than
// requiring a separate allocation, but we fall back to an allocation when
// multiple pointers are needed.
PointerSumType<ExtraInfoInlineKinds,
PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
Info;
DebugLoc DbgLoc; // Source line information.
/// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
/// defined by this instruction.
unsigned DebugInstrNum;
// Intrusive list support
friend struct ilist_traits<MachineInstr>;
friend struct ilist_callback_traits<MachineBasicBlock>;
void setParent(MachineBasicBlock *P) { Parent = P; }
/// This constructor creates a copy of the given
/// MachineInstr in the given MachineFunction.
MachineInstr(MachineFunction &, const MachineInstr &);
/// This constructor create a MachineInstr and add the implicit operands.
/// It reserves space for number of operands specified by
/// MCInstrDesc. An explicit DebugLoc is supplied.
MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL,
bool NoImp = false);
// MachineInstrs are pool-allocated and owned by MachineFunction.
friend class MachineFunction;
void
dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
public:
MachineInstr(const MachineInstr &) = delete;
MachineInstr &operator=(const MachineInstr &) = delete;
// Use MachineFunction::DeleteMachineInstr() instead.
~MachineInstr() = delete;
const MachineBasicBlock* getParent() const { return Parent; }
MachineBasicBlock* getParent() { return Parent; }
/// Move the instruction before \p MovePos.
void moveBefore(MachineInstr *MovePos);
/// Return the function that contains the basic block that this instruction
/// belongs to.
///
/// Note: this is undefined behaviour if the instruction does not have a
/// parent.
const MachineFunction *getMF() const;
MachineFunction *getMF() {
return const_cast<MachineFunction *>(
static_cast<const MachineInstr *>(this)->getMF());
}
/// Return the asm printer flags bitvector.
uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
/// Clear the AsmPrinter bitvector.
void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
/// Return whether an AsmPrinter flag is set.
bool getAsmPrinterFlag(CommentFlag Flag) const {
return AsmPrinterFlags & Flag;
}
/// Set a flag for the AsmPrinter.
void setAsmPrinterFlag(uint8_t Flag) {
AsmPrinterFlags |= Flag;
}
/// Clear specific AsmPrinter flags.
void clearAsmPrinterFlag(CommentFlag Flag) {
AsmPrinterFlags &= ~Flag;
}
/// Return the MI flags bitvector.
uint16_t getFlags() const {
return Flags;
}
/// Return whether an MI flag is set.
bool getFlag(MIFlag Flag) const {
return Flags & Flag;
}
/// Set a MI flag.
void setFlag(MIFlag Flag) {
Flags |= (uint16_t)Flag;
}
void setFlags(unsigned flags) {
// Filter out the automatically maintained flags.
unsigned Mask = BundledPred | BundledSucc;
Flags = (Flags & Mask) | (flags & ~Mask);
}
/// clearFlag - Clear a MI flag.
void clearFlag(MIFlag Flag) {
Flags &= ~((uint16_t)Flag);
}
/// Return true if MI is in a bundle (but not the first MI in a bundle).
///
/// A bundle looks like this before it's finalized:
/// ----------------
/// | MI |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// In this case, the first MI starts a bundle but is not inside a bundle, the
/// next 2 MIs are considered "inside" the bundle.
///
/// After a bundle is finalized, it looks like this:
/// ----------------
/// | Bundle |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// The first instruction has the special opcode "BUNDLE". It's not "inside"
/// a bundle, but the next three MIs are.
bool isInsideBundle() const {
return getFlag(BundledPred);
}
/// Return true if this instruction part of a bundle. This is true
/// if either itself or its following instruction is marked "InsideBundle".
bool isBundled() const {
return isBundledWithPred() || isBundledWithSucc();
}
/// Return true if this instruction is part of a bundle, and it is not the
/// first instruction in the bundle.
bool isBundledWithPred() const { return getFlag(BundledPred); }
/// Return true if this instruction is part of a bundle, and it is not the
/// last instruction in the bundle.
bool isBundledWithSucc() const { return getFlag(BundledSucc); }
/// Bundle this instruction with its predecessor. This can be an unbundled
/// instruction, or it can be the first instruction in a bundle.
void bundleWithPred();
/// Bundle this instruction with its successor. This can be an unbundled
/// instruction, or it can be the last instruction in a bundle.
void bundleWithSucc();
/// Break bundle above this instruction.
void unbundleFromPred();
/// Break bundle below this instruction.
void unbundleFromSucc();
/// Returns the debug location id of this MachineInstr.
const DebugLoc &getDebugLoc() const { return DbgLoc; }
/// Return the operand containing the offset to be used if this DBG_VALUE
/// instruction is indirect; will be an invalid register if this value is
/// not indirect, and an immediate with value 0 otherwise.
const MachineOperand &getDebugOffset() const {
assert(isNonListDebugValue() && "not a DBG_VALUE");
return getOperand(1);
}
MachineOperand &getDebugOffset() {
assert(isNonListDebugValue() && "not a DBG_VALUE");
return getOperand(1);
}
/// Return the operand for the debug variable referenced by
/// this DBG_VALUE instruction.
const MachineOperand &getDebugVariableOp() const;
MachineOperand &getDebugVariableOp();
/// Return the debug variable referenced by
/// this DBG_VALUE instruction.
const DILocalVariable *getDebugVariable() const;
/// Return the operand for the complex address expression referenced by
/// this DBG_VALUE instruction.
const MachineOperand &getDebugExpressionOp() const;
MachineOperand &getDebugExpressionOp();
/// Return the complex address expression referenced by
/// this DBG_VALUE instruction.
const DIExpression *getDebugExpression() const;
/// Return the debug label referenced by
/// this DBG_LABEL instruction.
const DILabel *getDebugLabel() const;
/// Fetch the instruction number of this MachineInstr. If it does not have
/// one already, a new and unique number will be assigned.
unsigned getDebugInstrNum();
/// Fetch instruction number of this MachineInstr -- but before it's inserted
/// into \p MF. Needed for transformations that create an instruction but
/// don't immediately insert them.
unsigned getDebugInstrNum(MachineFunction &MF);
/// Examine the instruction number of this MachineInstr. May be zero if
/// it hasn't been assigned a number yet.
unsigned peekDebugInstrNum() const { return DebugInstrNum; }
/// Set instruction number of this MachineInstr. Avoid using unless you're
/// deserializing this information.
void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
/// Drop any variable location debugging information associated with this
/// instruction. Use when an instruction is modified in such a way that it no
/// longer defines the value it used to. Variable locations using that value
/// will be dropped.
void dropDebugNumber() { DebugInstrNum = 0; }
/// Emit an error referring to the source location of this instruction.
/// This should only be used for inline assembly that is somehow
/// impossible to compile. Other errors should have been handled much
/// earlier.
///
/// If this method returns, the caller should try to recover from the error.
void emitError(StringRef Msg) const;
/// Returns the target instruction descriptor of this MachineInstr.
const MCInstrDesc &getDesc() const { return *MCID; }
/// Returns the opcode of this MachineInstr.
unsigned getOpcode() const { return MCID->Opcode; }
/// Retuns the total number of operands.
unsigned getNumOperands() const { return NumOperands; }
/// Returns the total number of operands which are debug locations.
unsigned getNumDebugOperands() const {
return std::distance(debug_operands().begin(), debug_operands().end());
}
const MachineOperand& getOperand(unsigned i) const {
assert(i < getNumOperands() && "getOperand() out of range!");
return Operands[i];
}
MachineOperand& getOperand(unsigned i) {
assert(i < getNumOperands() && "getOperand() out of range!");
return Operands[i];
}
MachineOperand &getDebugOperand(unsigned Index) {
assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
return *(debug_operands().begin() + Index);
}
const MachineOperand &getDebugOperand(unsigned Index) const {
assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
return *(debug_operands().begin() + Index);
}
SmallSet<Register, 4> getUsedDebugRegs() const {
assert(isDebugValue() && "not a DBG_VALUE*");
SmallSet<Register, 4> UsedRegs;
for (const auto &MO : debug_operands())
if (MO.isReg() && MO.getReg())
UsedRegs.insert(MO.getReg());
return UsedRegs;
}
/// Returns whether this debug value has at least one debug operand with the
/// register \p Reg.
bool hasDebugOperandForReg(Register Reg) const {
return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
return Op.isReg() && Op.getReg() == Reg;
});
}
/// Returns a range of all of the operands that correspond to a debug use of
/// \p Reg.
template <typename Operand, typename Instruction>
static iterator_range<
filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
getDebugOperandsForReg(Instruction *MI, Register Reg) {
std::function<bool(Operand & Op)> OpUsesReg(
[Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
return make_filter_range(MI->debug_operands(), OpUsesReg);
}
iterator_range<filter_iterator<const MachineOperand *,
std::function<bool(const MachineOperand &Op)>>>
getDebugOperandsForReg(Register Reg) const {
return MachineInstr::getDebugOperandsForReg<const MachineOperand,
const MachineInstr>(this, Reg);
}
iterator_range<filter_iterator<MachineOperand *,
std::function<bool(MachineOperand &Op)>>>
getDebugOperandsForReg(Register Reg) {
return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
this, Reg);
}
bool isDebugOperand(const MachineOperand *Op) const {
return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
}
unsigned getDebugOperandIndex(const MachineOperand *Op) const {
assert(isDebugOperand(Op) && "Expected a debug operand.");
return std::distance(adl_begin(debug_operands()), Op);
}
/// Returns the total number of definitions.
unsigned getNumDefs() const {
return getNumExplicitDefs() + MCID->implicit_defs().size();
}
/// Returns true if the instruction has implicit definition.
bool hasImplicitDef() const {
for (const MachineOperand &MO : implicit_operands())
if (MO.isDef() && MO.isImplicit())
return true;
return false;
}
/// Returns the implicit operands number.
unsigned getNumImplicitOperands() const {
return getNumOperands() - getNumExplicitOperands();
}
/// Return true if operand \p OpIdx is a subregister index.
bool isOperandSubregIdx(unsigned OpIdx) const {
assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type.");
if (isExtractSubreg() && OpIdx == 2)
return true;
if (isInsertSubreg() && OpIdx == 3)
return true;
if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
return true;
if (isSubregToReg() && OpIdx == 3)
return true;
return false;
}
/// Returns the number of non-implicit operands.
unsigned getNumExplicitOperands() const;
/// Returns the number of non-implicit definitions.
unsigned getNumExplicitDefs() const;
/// iterator/begin/end - Iterate over all operands of a machine instruction.
using mop_iterator = MachineOperand *;
using const_mop_iterator = const MachineOperand *;
mop_iterator operands_begin() { return Operands; }
mop_iterator operands_end() { return Operands + NumOperands; }
const_mop_iterator operands_begin() const { return Operands; }
const_mop_iterator operands_end() const { return Operands + NumOperands; }
iterator_range<mop_iterator> operands() {
return make_range(operands_begin(), operands_end());
}
iterator_range<const_mop_iterator> operands() const {
return make_range(operands_begin(), operands_end());
}
iterator_range<mop_iterator> explicit_operands() {
return make_range(operands_begin(),
operands_begin() + getNumExplicitOperands());
}
iterator_range<const_mop_iterator> explicit_operands() const {
return make_range(operands_begin(),
operands_begin() + getNumExplicitOperands());
}
iterator_range<mop_iterator> implicit_operands() {
return make_range(explicit_operands().end(), operands_end());
}
iterator_range<const_mop_iterator> implicit_operands() const {
return make_range(explicit_operands().end(), operands_end());
}
/// Returns a range over all operands that are used to determine the variable
/// location for this DBG_VALUE instruction.
iterator_range<mop_iterator> debug_operands() {
assert((isDebugValueLike()) && "Must be a debug value instruction.");
return isNonListDebugValue()
? make_range(operands_begin(), operands_begin() + 1)
: make_range(operands_begin() + 2, operands_end());
}
/// \copydoc debug_operands()
iterator_range<const_mop_iterator> debug_operands() const {
assert((isDebugValueLike()) && "Must be a debug value instruction.");
return isNonListDebugValue()
? make_range(operands_begin(), operands_begin() + 1)
: make_range(operands_begin() + 2, operands_end());
}
/// Returns a range over all explicit operands that are register definitions.
/// Implicit definition are not included!
iterator_range<mop_iterator> defs() {
return make_range(operands_begin(),
operands_begin() + getNumExplicitDefs());
}
/// \copydoc defs()
iterator_range<const_mop_iterator> defs() const {
return make_range(operands_begin(),
operands_begin() + getNumExplicitDefs());
}
/// Returns a range that includes all operands that are register uses.
/// This may include unrelated operands which are not register uses.
iterator_range<mop_iterator> uses() {
return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
}
/// \copydoc uses()
iterator_range<const_mop_iterator> uses() const {
return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
}
iterator_range<mop_iterator> explicit_uses() {
return make_range(operands_begin() + getNumExplicitDefs(),
operands_begin() + getNumExplicitOperands());
}
iterator_range<const_mop_iterator> explicit_uses() const {
return make_range(operands_begin() + getNumExplicitDefs(),
operands_begin() + getNumExplicitOperands());
}
/// Returns the number of the operand iterator \p I points to.
unsigned getOperandNo(const_mop_iterator I) const {
return I - operands_begin();
}
/// Access to memory operands of the instruction. If there are none, that does
/// not imply anything about whether the function accesses memory. Instead,
/// the caller must behave conservatively.
ArrayRef<MachineMemOperand *> memoperands() const {
if (!Info)
return {};
if (Info.is<EIIK_MMO>())
return ArrayRef(Info.getAddrOfZeroTagPointer(), 1);
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
return EI->getMMOs();
return {};
}
/// Access to memory operands of the instruction.
///
/// If `memoperands_begin() == memoperands_end()`, that does not imply
/// anything about whether the function accesses memory. Instead, the caller
/// must behave conservatively.
mmo_iterator memoperands_begin() const { return memoperands().begin(); }
/// Access to memory operands of the instruction.
///
/// If `memoperands_begin() == memoperands_end()`, that does not imply
/// anything about whether the function accesses memory. Instead, the caller
/// must behave conservatively.
mmo_iterator memoperands_end() const { return memoperands().end(); }
/// Return true if we don't have any memory operands which described the
/// memory access done by this instruction. If this is true, calling code
/// must be conservative.
bool memoperands_empty() const { return memoperands().empty(); }
/// Return true if this instruction has exactly one MachineMemOperand.
bool hasOneMemOperand() const { return memoperands().size() == 1; }
/// Return the number of memory operands.
unsigned getNumMemOperands() const { return memoperands().size(); }
/// Helper to extract a pre-instruction symbol if one has been added.
MCSymbol *getPreInstrSymbol() const {
if (!Info)
return nullptr;
if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
return S;
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
return EI->getPreInstrSymbol();
return nullptr;
}
/// Helper to extract a post-instruction symbol if one has been added.
MCSymbol *getPostInstrSymbol() const {
if (!Info)
return nullptr;
if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
return S;
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
return EI->getPostInstrSymbol();
return nullptr;
}
/// Helper to extract a heap alloc marker if one has been added.
MDNode *getHeapAllocMarker() const {
if (!Info)
return nullptr;
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
return EI->getHeapAllocMarker();
return nullptr;
}
/// Helper to extract PCSections metadata target sections.
MDNode *getPCSections() const {
if (!Info)
return nullptr;
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
return EI->getPCSections();
return nullptr;
}
/// Helper to extract a CFI type hash if one has been added.
uint32_t getCFIType() const {
if (!Info)
return 0;
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
return EI->getCFIType();
return 0;
}
/// API for querying MachineInstr properties. They are the same as MCInstrDesc
/// queries but they are bundle aware.
enum QueryType {
IgnoreBundle, // Ignore bundles
AnyInBundle, // Return true if any instruction in bundle has property
AllInBundle // Return true if all instructions in bundle have property
};
/// Return true if the instruction (or in the case of a bundle,
/// the instructions inside the bundle) has the specified property.
/// The first argument is the property being queried.
/// The second argument indicates whether the query should look inside
/// instruction bundles.
bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
assert(MCFlag < 64 &&
"MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
// Inline the fast path for unbundled or bundle-internal instructions.
if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
return getDesc().getFlags() & (1ULL << MCFlag);
// If this is the first instruction in a bundle, take the slow path.
return hasPropertyInBundle(1ULL << MCFlag, Type);
}
/// Return true if this is an instruction that should go through the usual
/// legalization steps.
bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::PreISelOpcode, Type);
}
/// Return true if this instruction can have a variable number of operands.
/// In this case, the variable operands will be after the normal
/// operands but before the implicit definitions and uses (if any are
/// present).
bool isVariadic(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Variadic, Type);
}
/// Set if this instruction has an optional definition, e.g.
/// ARM instructions which can set condition code if 's' bit is set.
bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::HasOptionalDef, Type);
}
/// Return true if this is a pseudo instruction that doesn't
/// correspond to a real machine instruction.
bool isPseudo(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Pseudo, Type);
}
/// Return true if this instruction doesn't produce any output in the form of
/// executable instructions.
bool isMetaInstruction(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Meta, Type);
}
bool isReturn(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Return, Type);
}
/// Return true if this is an instruction that marks the end of an EH scope,
/// i.e., a catchpad or a cleanuppad instruction.
bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::EHScopeReturn, Type);
}
bool isCall(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Call, Type);
}
/// Return true if this is a call instruction that may have an associated
/// call site entry in the debug info.
bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
/// Return true if copying, moving, or erasing this instruction requires
/// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
/// \ref eraseCallSiteInfo).
bool shouldUpdateCallSiteInfo() const;
/// Returns true if the specified instruction stops control flow
/// from executing the instruction immediately following it. Examples include
/// unconditional branches and return instructions.
bool isBarrier(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Barrier, Type);
}
/// Returns true if this instruction part of the terminator for a basic block.
/// Typically this is things like return and branch instructions.
///
/// Various passes use this to insert code into the bottom of a basic block,
/// but before control flow occurs.
bool isTerminator(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Terminator, Type);
}
/// Returns true if this is a conditional, unconditional, or indirect branch.
/// Predicates below can be used to discriminate between
/// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
/// get more information.
bool isBranch(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Branch, Type);
}
/// Return true if this is an indirect branch, such as a
/// branch through a register.
bool isIndirectBranch(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::IndirectBranch, Type);
}
/// Return true if this is a branch which may fall
/// through to the next instruction or may transfer control flow to some other
/// block. The TargetInstrInfo::analyzeBranch method can be used to get more
/// information about this branch.
bool isConditionalBranch(QueryType Type = AnyInBundle) const {
return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
}
/// Return true if this is a branch which always
/// transfers control flow to some other block. The
/// TargetInstrInfo::analyzeBranch method can be used to get more information
/// about this branch.
bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
}
/// Return true if this instruction has a predicate operand that
/// controls execution. It may be set to 'always', or may be set to other
/// values. There are various methods in TargetInstrInfo that can be used to
/// control and modify the predicate in this instruction.
bool isPredicable(QueryType Type = AllInBundle) const {
// If it's a bundle than all bundled instructions must be predicable for this
// to return true.
return hasProperty(MCID::Predicable, Type);
}
/// Return true if this instruction is a comparison.
bool isCompare(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Compare, Type);
}
/// Return true if this instruction is a move immediate
/// (including conditional moves) instruction.
bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::MoveImm, Type);
}
/// Return true if this instruction is a register move.
/// (including moving values from subreg to reg)
bool isMoveReg(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::MoveReg, Type);
}
/// Return true if this instruction is a bitcast instruction.
bool isBitcast(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Bitcast, Type);
}
/// Return true if this instruction is a select instruction.
bool isSelect(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Select, Type);
}
/// Return true if this instruction cannot be safely duplicated.
/// For example, if the instruction has a unique labels attached
/// to it, duplicating it would cause multiple definition errors.
bool isNotDuplicable(QueryType Type = AnyInBundle) const {
if (getPreInstrSymbol() || getPostInstrSymbol())
return true;
return hasProperty(MCID::NotDuplicable, Type);
}
/// Return true if this instruction is convergent.
/// Convergent instructions can not be made control-dependent on any
/// additional values.
bool isConvergent(QueryType Type = AnyInBundle) const {
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_IsConvergent)
return true;
}
return hasProperty(MCID::Convergent, Type);
}
/// Returns true if the specified instruction has a delay slot
/// which must be filled by the code generator.
bool hasDelaySlot(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::DelaySlot, Type);
}
/// Return true for instructions that can be folded as
/// memory operands in other instructions. The most common use for this
/// is instructions that are simple loads from memory that don't modify
/// the loaded value in any way, but it can also be used for instructions
/// that can be expressed as constant-pool loads, such as V_SETALLONES
/// on x86, to allow them to be folded when it is beneficial.
/// This should only be set on instructions that return a value in their
/// only virtual register definition.
bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::FoldableAsLoad, Type);
}
/// Return true if this instruction behaves
/// the same way as the generic REG_SEQUENCE instructions.
/// E.g., on ARM,
/// dX VMOVDRR rY, rZ
/// is equivalent to
/// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
///
/// Note that for the optimizers to be able to take advantage of
/// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
/// override accordingly.
bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::RegSequence, Type);
}
/// Return true if this instruction behaves
/// the same way as the generic EXTRACT_SUBREG instructions.
/// E.g., on ARM,
/// rX, rY VMOVRRD dZ
/// is equivalent to two EXTRACT_SUBREG:
/// rX = EXTRACT_SUBREG dZ, ssub_0
/// rY = EXTRACT_SUBREG dZ, ssub_1
///
/// Note that for the optimizers to be able to take advantage of
/// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
/// override accordingly.
bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::ExtractSubreg, Type);
}
/// Return true if this instruction behaves
/// the same way as the generic INSERT_SUBREG instructions.
/// E.g., on ARM,
/// dX = VSETLNi32 dY, rZ, Imm
/// is equivalent to a INSERT_SUBREG:
/// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
///
/// Note that for the optimizers to be able to take advantage of
/// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
/// override accordingly.
bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::InsertSubreg, Type);
}
//===--------------------------------------------------------------------===//
// Side Effect Analysis
//===--------------------------------------------------------------------===//
/// Return true if this instruction could possibly read memory.
/// Instructions with this flag set are not necessarily simple load
/// instructions, they may load a value and modify it, for example.
bool mayLoad(QueryType Type = AnyInBundle) const {
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_MayLoad)
return true;
}
return hasProperty(MCID::MayLoad, Type);
}
/// Return true if this instruction could possibly modify memory.
/// Instructions with this flag set are not necessarily simple store
/// instructions, they may store a modified value based on their operands, or
/// may not actually modify anything, for example.
bool mayStore(QueryType Type = AnyInBundle) const {
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_MayStore)
return true;
}
return hasProperty(MCID::MayStore, Type);
}
/// Return true if this instruction could possibly read or modify memory.
bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
return mayLoad(Type) || mayStore(Type);
}
/// Return true if this instruction could possibly raise a floating-point
/// exception. This is the case if the instruction is a floating-point
/// instruction that can in principle raise an exception, as indicated
/// by the MCID::MayRaiseFPException property, *and* at the same time,
/// the instruction is used in a context where we expect floating-point
/// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
bool mayRaiseFPException() const {
return hasProperty(MCID::MayRaiseFPException) &&
!getFlag(MachineInstr::MIFlag::NoFPExcept);
}
//===--------------------------------------------------------------------===//
// Flags that indicate whether an instruction can be modified by a method.
//===--------------------------------------------------------------------===//
/// Return true if this may be a 2- or 3-address
/// instruction (of the form "X = op Y, Z, ..."), which produces the same
/// result if Y and Z are exchanged. If this flag is set, then the
/// TargetInstrInfo::commuteInstruction method may be used to hack on the
/// instruction.
///
/// Note that this flag may be set on instructions that are only commutable
/// sometimes. In these cases, the call to commuteInstruction will fail.
/// Also note that some instructions require non-trivial modification to
/// commute them.
bool isCommutable(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Commutable, Type);
}
/// Return true if this is a 2-address instruction
/// which can be changed into a 3-address instruction if needed. Doing this
/// transformation can be profitable in the register allocator, because it
/// means that the instruction can use a 2-address form if possible, but
/// degrade into a less efficient form if the source and dest register cannot
/// be assigned to the same register. For example, this allows the x86
/// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
/// is the same speed as the shift but has bigger code size.
///
/// If this returns true, then the target must implement the
/// TargetInstrInfo::convertToThreeAddress method for this instruction, which
/// is allowed to fail if the transformation isn't valid for this specific
/// instruction (e.g. shl reg, 4 on x86).
///
bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::ConvertibleTo3Addr, Type);
}
/// Return true if this instruction requires
/// custom insertion support when the DAG scheduler is inserting it into a
/// machine basic block. If this is true for the instruction, it basically
/// means that it is a pseudo instruction used at SelectionDAG time that is
/// expanded out into magic code by the target when MachineInstrs are formed.
///
/// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
/// is used to insert this into the MachineBasicBlock.
bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::UsesCustomInserter, Type);
}
/// Return true if this instruction requires *adjustment*
/// after instruction selection by calling a target hook. For example, this
/// can be used to fill in ARM 's' optional operand depending on whether
/// the conditional flag register is used.
bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::HasPostISelHook, Type);
}
/// Returns true if this instruction is a candidate for remat.
/// This flag is deprecated, please don't use it anymore. If this
/// flag is set, the isReallyTriviallyReMaterializable() method is called to
/// verify the instruction is really rematable.
bool isRematerializable(QueryType Type = AllInBundle) const {
// It's only possible to re-mat a bundle if all bundled instructions are
// re-materializable.
return hasProperty(MCID::Rematerializable, Type);
}
/// Returns true if this instruction has the same cost (or less) than a move
/// instruction. This is useful during certain types of optimizations
/// (e.g., remat during two-address conversion or machine licm)
/// where we would like to remat or hoist the instruction, but not if it costs
/// more than moving the instruction into the appropriate register. Note, we
/// are not marking copies from and to the same register class with this flag.
bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
// Only returns true for a bundle if all bundled instructions are cheap.
return hasProperty(MCID::CheapAsAMove, Type);
}
/// Returns true if this instruction source operands
/// have special register allocation requirements that are not captured by the
/// operand register classes. e.g. ARM::STRD's two source registers must be an
/// even / odd pair, ARM::STM registers have to be in ascending order.
/// Post-register allocation passes should not attempt to change allocations
/// for sources of instructions with this flag.
bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
}
/// Returns true if this instruction def operands
/// have special register allocation requirements that are not captured by the
/// operand register classes. e.g. ARM::LDRD's two def registers must be an
/// even / odd pair, ARM::LDM registers have to be in ascending order.
/// Post-register allocation passes should not attempt to change allocations
/// for definitions of instructions with this flag.
bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::ExtraDefRegAllocReq, Type);
}
enum MICheckType {
CheckDefs, // Check all operands for equality
CheckKillDead, // Check all operands including kill / dead markers
IgnoreDefs, // Ignore all definitions
IgnoreVRegDefs // Ignore virtual register definitions
};
/// Return true if this instruction is identical to \p Other.
/// Two instructions are identical if they have the same opcode and all their
/// operands are identical (with respect to MachineOperand::isIdenticalTo()).
/// Note that this means liveness related flags (dead, undef, kill) do not
/// affect the notion of identical.
bool isIdenticalTo(const MachineInstr &Other,
MICheckType Check = CheckDefs) const;
/// Returns true if this instruction is a debug instruction that represents an
/// identical debug value to \p Other.
/// This function considers these debug instructions equivalent if they have
/// identical variables, debug locations, and debug operands, and if the
/// DIExpressions combined with the directness flags are equivalent.
bool isEquivalentDbgInstr(const MachineInstr &Other) const;
/// Unlink 'this' from the containing basic block, and return it without
/// deleting it.
///
/// This function can not be used on bundled instructions, use
/// removeFromBundle() to remove individual instructions from a bundle.
MachineInstr *removeFromParent();
/// Unlink this instruction from its basic block and return it without
/// deleting it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle remain bundled.
MachineInstr *removeFromBundle();
/// Unlink 'this' from the containing basic block and delete it.
///
/// If this instruction is the header of a bundle, the whole bundle is erased.
/// This function can not be used for instructions inside a bundle, use
/// eraseFromBundle() to erase individual bundled instructions.
void eraseFromParent();
/// Unlink 'this' form its basic block and delete it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle remain bundled.
void eraseFromBundle();
bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
bool isAnnotationLabel() const {
return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
}
/// Returns true if the MachineInstr represents a label.
bool isLabel() const {
return isEHLabel() || isGCLabel() || isAnnotationLabel();
}
bool isCFIInstruction() const {
return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
}
bool isPseudoProbe() const {
return getOpcode() == TargetOpcode::PSEUDO_PROBE;
}
// True if the instruction represents a position in the function.
bool isPosition() const { return isLabel() || isCFIInstruction(); }
bool isNonListDebugValue() const {
return getOpcode() == TargetOpcode::DBG_VALUE;
}
bool isDebugValueList() const {
return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
}
bool isDebugValue() const {
return isNonListDebugValue() || isDebugValueList();
}
bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); }
bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
bool isDebugInstr() const {
return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
}
bool isDebugOrPseudoInstr() const {
return isDebugInstr() || isPseudoProbe();
}
bool isDebugOffsetImm() const {
return isNonListDebugValue() && getDebugOffset().isImm();
}
/// A DBG_VALUE is indirect iff the location operand is a register and
/// the offset operand is an immediate.
bool isIndirectDebugValue() const {
return isDebugOffsetImm() && getDebugOperand(0).isReg();
}
/// A DBG_VALUE is an entry value iff its debug expression contains the
/// DW_OP_LLVM_entry_value operation.
bool isDebugEntryValue() const;
/// Return true if the instruction is a debug value which describes a part of
/// a variable as unavailable.
bool isUndefDebugValue() const {
if (!isDebugValue())
return false;
// If any $noreg locations are given, this DV is undef.
for (const MachineOperand &Op : debug_operands())
if (Op.isReg() && !Op.getReg().isValid())
return true;
return false;
}
bool isPHI() const {
return getOpcode() == TargetOpcode::PHI ||
getOpcode() == TargetOpcode::G_PHI;
}
bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
bool isInlineAsm() const {
return getOpcode() == TargetOpcode::INLINEASM ||
getOpcode() == TargetOpcode::INLINEASM_BR;
}
/// FIXME: Seems like a layering violation that the AsmDialect, which is X86
/// specific, be attached to a generic MachineInstr.
bool isMSInlineAsm() const {
return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
}
bool isStackAligningInlineAsm() const;
InlineAsm::AsmDialect getInlineAsmDialect() const;
bool isInsertSubreg() const {
return getOpcode() == TargetOpcode::INSERT_SUBREG;
}
bool isSubregToReg() const {
return getOpcode() == TargetOpcode::SUBREG_TO_REG;
}
bool isRegSequence() const {
return getOpcode() == TargetOpcode::REG_SEQUENCE;
}
bool isBundle() const {
return getOpcode() == TargetOpcode::BUNDLE;
}
bool isCopy() const {
return getOpcode() == TargetOpcode::COPY;
}
bool isFullCopy() const {
return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
}
bool isExtractSubreg() const {
return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
}
/// Return true if the instruction behaves like a copy.
/// This does not include native copy instructions.
bool isCopyLike() const {
return isCopy() || isSubregToReg();
}
/// Return true is the instruction is an identity copy.
bool isIdentityCopy() const {
return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
getOperand(0).getSubReg() == getOperand(1).getSubReg();
}
/// Return true if this is a transient instruction that is either very likely
/// to be eliminated during register allocation (such as copy-like
/// instructions), or if this instruction doesn't have an execution-time cost.
bool isTransient() const {
switch (getOpcode()) {
default:
return isMetaInstruction();
// Copy-like instructions are usually eliminated during register allocation.
case TargetOpcode::PHI:
case TargetOpcode::G_PHI:
case TargetOpcode::COPY:
case TargetOpcode::INSERT_SUBREG:
case TargetOpcode::SUBREG_TO_REG:
case TargetOpcode::REG_SEQUENCE:
return true;
}
}
/// Return the number of instructions inside the MI bundle, excluding the
/// bundle header.
///
/// This is the number of instructions that MachineBasicBlock::iterator
/// skips, 0 for unbundled instructions.
unsigned getBundleSize() const;
/// Return true if the MachineInstr reads the specified register.
/// If TargetRegisterInfo is passed, then it also checks if there
/// is a read of a super-register.
/// This does not count partial redefines of virtual registers as reads:
/// %reg1024:6 = OP.
bool readsRegister(Register Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
}
/// Return true if the MachineInstr reads the specified virtual register.
/// Take into account that a partial define is a
/// read-modify-write operation.
bool readsVirtualRegister(Register Reg) const {
return readsWritesVirtualRegister(Reg).first;
}
/// Return a pair of bools (reads, writes) indicating if this instruction
/// reads or writes Reg. This also considers partial defines.
/// If Ops is not null, all operand indices for Reg are added.
std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
SmallVectorImpl<unsigned> *Ops = nullptr) const;
/// Return true if the MachineInstr kills the specified register.
/// If TargetRegisterInfo is passed, then it also checks if there is
/// a kill of a super-register.
bool killsRegister(Register Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
}
/// Return true if the MachineInstr fully defines the specified register.
/// If TargetRegisterInfo is passed, then it also checks
/// if there is a def of a super-register.
/// NOTE: It's ignoring subreg indices on virtual registers.
bool definesRegister(Register Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
}
/// Return true if the MachineInstr modifies (fully define or partially
/// define) the specified register.
/// NOTE: It's ignoring subreg indices on virtual registers.
bool modifiesRegister(Register Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
}
/// Returns true if the register is dead in this machine instruction.
/// If TargetRegisterInfo is passed, then it also checks
/// if there is a dead def of a super-register.
bool registerDefIsDead(Register Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
}
/// Returns true if the MachineInstr has an implicit-use operand of exactly
/// the given register (not considering sub/super-registers).
bool hasRegisterImplicitUseOperand(Register Reg) const;
/// Returns the operand index that is a use of the specific register or -1
/// if it is not found. It further tightens the search criteria to a use
/// that kills the register if isKill is true.
int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
const TargetRegisterInfo *TRI = nullptr) const;
/// Wrapper for findRegisterUseOperandIdx, it returns
/// a pointer to the MachineOperand rather than an index.
MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
const TargetRegisterInfo *TRI = nullptr) {
int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
return (Idx == -1) ? nullptr : &getOperand(Idx);
}
const MachineOperand *findRegisterUseOperand(
Register Reg, bool isKill = false,
const TargetRegisterInfo *TRI = nullptr) const {
return const_cast<MachineInstr *>(this)->
findRegisterUseOperand(Reg, isKill, TRI);
}
/// Returns the operand index that is a def of the specified register or
/// -1 if it is not found. If isDead is true, defs that are not dead are
/// skipped. If Overlap is true, then it also looks for defs that merely
/// overlap the specified register. If TargetRegisterInfo is non-null,
/// then it also checks if there is a def of a super-register.
/// This may also return a register mask operand when Overlap is true.
int findRegisterDefOperandIdx(Register Reg,
bool isDead = false, bool Overlap = false,
const TargetRegisterInfo *TRI = nullptr) const;
/// Wrapper for findRegisterDefOperandIdx, it returns
/// a pointer to the MachineOperand rather than an index.
MachineOperand *
findRegisterDefOperand(Register Reg, bool isDead = false,
bool Overlap = false,
const TargetRegisterInfo *TRI = nullptr) {
int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
return (Idx == -1) ? nullptr : &getOperand(Idx);
}
const MachineOperand *
findRegisterDefOperand(Register Reg, bool isDead = false,
bool Overlap = false,
const TargetRegisterInfo *TRI = nullptr) const {
return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
Reg, isDead, Overlap, TRI);
}
/// Find the index of the first operand in the
/// operand list that is used to represent the predicate. It returns -1 if
/// none is found.
int findFirstPredOperandIdx() const;
/// Find the index of the flag word operand that
/// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
/// getOperand(OpIdx) does not belong to an inline asm operand group.
///
/// If GroupNo is not NULL, it will receive the number of the operand group
/// containing OpIdx.
int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
/// Compute the static register class constraint for operand OpIdx.
/// For normal instructions, this is derived from the MCInstrDesc.
/// For inline assembly it is derived from the flag words.
///
/// Returns NULL if the static register class constraint cannot be
/// determined.
const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) const;
/// Applies the constraints (def/use) implied by this MI on \p Reg to
/// the given \p CurRC.
/// If \p ExploreBundle is set and MI is part of a bundle, all the
/// instructions inside the bundle will be taken into account. In other words,
/// this method accumulates all the constraints of the operand of this MI and
/// the related bundle if MI is a bundle or inside a bundle.
///
/// Returns the register class that satisfies both \p CurRC and the
/// constraints set by MI. Returns NULL if such a register class does not
/// exist.
///
/// \pre CurRC must not be NULL.
const TargetRegisterClass *getRegClassConstraintEffectForVReg(
Register Reg, const TargetRegisterClass *CurRC,
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
bool ExploreBundle = false) const;
/// Applies the constraints (def/use) implied by the \p OpIdx operand
/// to the given \p CurRC.
///
/// Returns the register class that satisfies both \p CurRC and the
/// constraints set by \p OpIdx MI. Returns NULL if such a register class
/// does not exist.
///
/// \pre CurRC must not be NULL.
/// \pre The operand at \p OpIdx must be a register.
const TargetRegisterClass *
getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) const;
/// Add a tie between the register operands at DefIdx and UseIdx.
/// The tie will cause the register allocator to ensure that the two
/// operands are assigned the same physical register.
///
/// Tied operands are managed automatically for explicit operands in the
/// MCInstrDesc. This method is for exceptional cases like inline asm.
void tieOperands(unsigned DefIdx, unsigned UseIdx);
/// Given the index of a tied register operand, find the
/// operand it is tied to. Defs are tied to uses and vice versa. Returns the
/// index of the tied operand which must exist.
unsigned findTiedOperandIdx(unsigned OpIdx) const;
/// Given the index of a register def operand,
/// check if the register def is tied to a source operand, due to either
/// two-address elimination or inline assembly constraints. Returns the
/// first tied use operand index by reference if UseOpIdx is not null.
bool isRegTiedToUseOperand(unsigned DefOpIdx,
unsigned *UseOpIdx = nullptr) const {
const MachineOperand &MO = getOperand(DefOpIdx);
if (!MO.isReg() || !MO.isDef() || !MO.isTied())
return false;
if (UseOpIdx)
*UseOpIdx = findTiedOperandIdx(DefOpIdx);
return true;
}
/// Return true if the use operand of the specified index is tied to a def
/// operand. It also returns the def operand index by reference if DefOpIdx
/// is not null.
bool isRegTiedToDefOperand(unsigned UseOpIdx,
unsigned *DefOpIdx = nullptr) const {
const MachineOperand &MO = getOperand(UseOpIdx);
if (!MO.isReg() || !MO.isUse() || !MO.isTied())
return false;
if (DefOpIdx)
*DefOpIdx = findTiedOperandIdx(UseOpIdx);
return true;
}
/// Clears kill flags on all operands.
void clearKillInfo();
/// Replace all occurrences of FromReg with ToReg:SubIdx,
/// properly composing subreg indices where necessary.
void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
const TargetRegisterInfo &RegInfo);
/// We have determined MI kills a register. Look for the
/// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
/// add a implicit operand if it's not found. Returns true if the operand
/// exists / is added.
bool addRegisterKilled(Register IncomingReg,
const TargetRegisterInfo *RegInfo,
bool AddIfNotFound = false);
/// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
/// all aliasing registers.
void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
/// We have determined MI defined a register without a use.
/// Look for the operand that defines it and mark it as IsDead. If
/// AddIfNotFound is true, add a implicit operand if it's not found. Returns
/// true if the operand exists / is added.
bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
bool AddIfNotFound = false);
/// Clear all dead flags on operands defining register @p Reg.
void clearRegisterDeads(Register Reg);
/// Mark all subregister defs of register @p Reg with the undef flag.
/// This function is used when we determined to have a subregister def in an
/// otherwise undefined super register.
void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
/// We have determined MI defines a register. Make sure there is an operand
/// defining Reg.
void addRegisterDefined(Register Reg,
const TargetRegisterInfo *RegInfo = nullptr);
/// Mark every physreg used by this instruction as
/// dead except those in the UsedRegs list.
///
/// On instructions with register mask operands, also add implicit-def
/// operands for all registers in UsedRegs.
void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
const TargetRegisterInfo &TRI);
/// Return true if it is safe to move this instruction. If
/// SawStore is set to true, it means that there is a store (or call) between
/// the instruction's location and its intended destination.
bool isSafeToMove(AAResults *AA, bool &SawStore) const;
/// Returns true if this instruction's memory access aliases the memory
/// access of Other.
//
/// Assumes any physical registers used to compute addresses
/// have the same value for both instructions. Returns false if neither
/// instruction writes to memory.
///
/// @param AA Optional alias analysis, used to compare memory operands.
/// @param Other MachineInstr to check aliasing against.
/// @param UseTBAA Whether to pass TBAA information to alias analysis.
bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
/// Return true if this instruction may have an ordered
/// or volatile memory reference, or if the information describing the memory
/// reference is not available. Return false if it is known to have no
/// ordered or volatile memory references.
bool hasOrderedMemoryRef() const;
/// Return true if this load instruction never traps and points to a memory
/// location whose value doesn't change during the execution of this function.
///
/// Examples include loading a value from the constant pool or from the
/// argument area of a function (if it does not change). If the instruction
/// does multiple loads, this returns true only if all of the loads are
/// dereferenceable and invariant.
bool isDereferenceableInvariantLoad() const;
/// If the specified instruction is a PHI that always merges together the
/// same virtual register, return the register, otherwise return 0.
unsigned isConstantValuePHI() const;
/// Return true if this instruction has side effects that are not modeled
/// by mayLoad / mayStore, etc.
/// For all instructions, the property is encoded in MCInstrDesc::Flags
/// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
/// INLINEASM instruction, in which case the side effect property is encoded
/// in one of its operands (see InlineAsm::Extra_HasSideEffect).
///
bool hasUnmodeledSideEffects() const;
/// Returns true if it is illegal to fold a load across this instruction.
bool isLoadFoldBarrier() const;
/// Return true if all the defs of this instruction are dead.
bool allDefsAreDead() const;
/// Return a valid size if the instruction is a spill instruction.
std::optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
/// Return a valid size if the instruction is a folded spill instruction.
std::optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
/// Return a valid size if the instruction is a restore instruction.
std::optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
/// Return a valid size if the instruction is a folded restore instruction.
std::optional<unsigned>
getFoldedRestoreSize(const TargetInstrInfo *TII) const;
/// Copy implicit register operands from specified
/// instruction to this instruction.
void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
/// Debugging support
/// @{
/// Determine the generic type to be printed (if needed) on uses and defs.
LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
const MachineRegisterInfo &MRI) const;
/// Return true when an instruction has tied register that can't be determined
/// by the instruction's descriptor. This is useful for MIR printing, to
/// determine whether we need to print the ties or not.
bool hasComplexRegisterTies() const;
/// Print this MI to \p OS.
/// Don't print information that can be inferred from other instructions if
/// \p IsStandalone is false. It is usually true when only a fragment of the
/// function is printed.
/// Only print the defs and the opcode if \p SkipOpers is true.
/// Otherwise, also print operands if \p SkipDebugLoc is true.
/// Otherwise, also print the debug loc, with a terminating newline.
/// \p TII is used to print the opcode name. If it's not present, but the
/// MI is in a function, the opcode will be printed using the function's TII.
void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
bool SkipDebugLoc = false, bool AddNewLine = true,
const TargetInstrInfo *TII = nullptr) const;
void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
bool SkipOpers = false, bool SkipDebugLoc = false,
bool AddNewLine = true,
const TargetInstrInfo *TII = nullptr) const;
void dump() const;
/// Print on dbgs() the current instruction and the instructions defining its
/// operands and so on until we reach \p MaxDepth.
void dumpr(const MachineRegisterInfo &MRI,
unsigned MaxDepth = UINT_MAX) const;
/// @}
//===--------------------------------------------------------------------===//
// Accessors used to build up machine instructions.
/// Add the specified operand to the instruction. If it is an implicit
/// operand, it is added to the end of the operand list. If it is an
/// explicit operand it is added at the end of the explicit operand list
/// (before the first implicit operand).
///
/// MF must be the machine function that was used to allocate this
/// instruction.
///
/// MachineInstrBuilder provides a more convenient interface for creating
/// instructions and adding operands.
void addOperand(MachineFunction &MF, const MachineOperand &Op);
/// Add an operand without providing an MF reference. This only works for
/// instructions that are inserted in a basic block.
///
/// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
/// preferred.
void addOperand(const MachineOperand &Op);
/// Replace the instruction descriptor (thus opcode) of
/// the current instruction with a new one.
void setDesc(const MCInstrDesc &TID) { MCID = &TID; }
/// Replace current source information with new such.
/// Avoid using this, the constructor argument is preferable.
void setDebugLoc(DebugLoc DL) {
DbgLoc = std::move(DL);
assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
}
/// Erase an operand from an instruction, leaving it with one
/// fewer operand than it started with.
void removeOperand(unsigned OpNo);
/// Clear this MachineInstr's memory reference descriptor list. This resets
/// the memrefs to their most conservative state. This should be used only
/// as a last resort since it greatly pessimizes our knowledge of the memory
/// access performed by the instruction.
void dropMemRefs(MachineFunction &MF);
/// Assign this MachineInstr's memory reference descriptor list.
///
/// Unlike other methods, this *will* allocate them into a new array
/// associated with the provided `MachineFunction`.
void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
/// Add a MachineMemOperand to the machine instruction.
/// This function should be used only occasionally. The setMemRefs function
/// is the primary method for setting up a MachineInstr's MemRefs list.
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
/// Clone another MachineInstr's memory reference descriptor list and replace
/// ours with it.
///
/// Note that `*this` may be the incoming MI!
///
/// Prefer this API whenever possible as it can avoid allocations in common
/// cases.
void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
/// Clone the merge of multiple MachineInstrs' memory reference descriptors
/// list and replace ours with it.
///
/// Note that `*this` may be one of the incoming MIs!
///
/// Prefer this API whenever possible as it can avoid allocations in common
/// cases.
void cloneMergedMemRefs(MachineFunction &MF,
ArrayRef<const MachineInstr *> MIs);
/// Set a symbol that will be emitted just prior to the instruction itself.
///
/// Setting this to a null pointer will remove any such symbol.
///
/// FIXME: This is not fully implemented yet.
void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
/// Set a symbol that will be emitted just after the instruction itself.
///
/// Setting this to a null pointer will remove any such symbol.
///
/// FIXME: This is not fully implemented yet.
void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
/// Clone another MachineInstr's pre- and post- instruction symbols and
/// replace ours with it.
void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
/// Set a marker on instructions that denotes where we should create and emit
/// heap alloc site labels. This waits until after instruction selection and
/// optimizations to create the label, so it should still work if the
/// instruction is removed or duplicated.
void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
// Set metadata on instructions that say which sections to emit instruction
// addresses into.
void setPCSections(MachineFunction &MF, MDNode *MD);
/// Set the CFI type for the instruction.
void setCFIType(MachineFunction &MF, uint32_t Type);
/// Return the MIFlags which represent both MachineInstrs. This
/// should be used when merging two MachineInstrs into one. This routine does
/// not modify the MIFlags of this MachineInstr.
uint16_t mergeFlagsWith(const MachineInstr& Other) const;
static uint16_t copyFlagsFromInstruction(const Instruction &I);
/// Copy all flags to MachineInst MIFlags
void copyIRFlags(const Instruction &I);
/// Break any tie involving OpIdx.
void untieRegOperand(unsigned OpIdx) {
MachineOperand &MO = getOperand(OpIdx);
if (MO.isReg() && MO.isTied()) {
getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
MO.TiedTo = 0;
}
}
/// Add all implicit def and use operands to this instruction.
void addImplicitDefUseOperands(MachineFunction &MF);
/// Scan instructions immediately following MI and collect any matching
/// DBG_VALUEs.
void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
/// Find all DBG_VALUEs that point to the register def in this instruction
/// and point them to \p Reg instead.
void changeDebugValuesDefReg(Register Reg);
/// Returns the Intrinsic::ID for this instruction.
/// \pre Must have an intrinsic ID operand.
unsigned getIntrinsicID() const {
return getOperand(getNumExplicitDefs()).getIntrinsicID();
}
/// Sets all register debug operands in this debug value instruction to be
/// undef.
void setDebugValueUndef() {
assert(isDebugValue() && "Must be a debug value instruction.");
for (MachineOperand &MO : debug_operands()) {
if (MO.isReg()) {
MO.setReg(0);
MO.setSubReg(0);
}
}
}
private:
/// If this instruction is embedded into a MachineFunction, return the
/// MachineRegisterInfo object for the current function, otherwise
/// return null.
MachineRegisterInfo *getRegInfo();
/// Unlink all of the register operands in this instruction from their
/// respective use lists. This requires that the operands already be on their
/// use lists.
void removeRegOperandsFromUseLists(MachineRegisterInfo&);
/// Add all of the register operands in this instruction from their
/// respective use lists. This requires that the operands not be on their
/// use lists yet.
void addRegOperandsToUseLists(MachineRegisterInfo&);
/// Slow path for hasProperty when we're dealing with a bundle.
bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
/// Implements the logic of getRegClassConstraintEffectForVReg for the
/// this MI and the given operand index \p OpIdx.
/// If the related operand does not constrained Reg, this returns CurRC.
const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
/// Stores extra instruction information inline or allocates as ExtraInfo
/// based on the number of pointers.
void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
MDNode *HeapAllocMarker, MDNode *PCSections,
uint32_t CFIType);
};
/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
/// instruction rather than by pointer value.
/// The hashing and equality testing functions ignore definitions so this is
/// useful for CSE, etc.
struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
static inline MachineInstr *getEmptyKey() {
return nullptr;
}
static inline MachineInstr *getTombstoneKey() {
return reinterpret_cast<MachineInstr*>(-1);
}
static unsigned getHashValue(const MachineInstr* const &MI);
static bool isEqual(const MachineInstr* const &LHS,
const MachineInstr* const &RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
LHS == getEmptyKey() || LHS == getTombstoneKey())
return LHS == RHS;
return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
}
};
//===----------------------------------------------------------------------===//
// Debugging Support
inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
MI.print(OS);
return OS;
}
} // end namespace llvm
#endif // LLVM_CODEGEN_MACHINEINSTR_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|