1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- LiveRangeEdit.h - Basic tools for split and spill --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The LiveRangeEdit class represents changes done to a virtual register when it
// is spilled or split.
//
// The parent register is never changed. Instead, a number of new virtual
// registers are created and added to the newRegs vector.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVERANGEEDIT_H
#define LLVM_CODEGEN_LIVERANGEEDIT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include <cassert>
namespace llvm {
class LiveIntervals;
class MachineInstr;
class MachineOperand;
class TargetInstrInfo;
class TargetRegisterInfo;
class VirtRegMap;
class VirtRegAuxInfo;
class LiveRangeEdit : private MachineRegisterInfo::Delegate {
public:
/// Callback methods for LiveRangeEdit owners.
class Delegate {
virtual void anchor();
public:
virtual ~Delegate() = default;
/// Called immediately before erasing a dead machine instruction.
virtual void LRE_WillEraseInstruction(MachineInstr *MI) {}
/// Called when a virtual register is no longer used. Return false to defer
/// its deletion from LiveIntervals.
virtual bool LRE_CanEraseVirtReg(Register) { return true; }
/// Called before shrinking the live range of a virtual register.
virtual void LRE_WillShrinkVirtReg(Register) {}
/// Called after cloning a virtual register.
/// This is used for new registers representing connected components of Old.
virtual void LRE_DidCloneVirtReg(Register New, Register Old) {}
};
private:
const LiveInterval *const Parent;
SmallVectorImpl<Register> &NewRegs;
MachineRegisterInfo &MRI;
LiveIntervals &LIS;
VirtRegMap *VRM;
const TargetInstrInfo &TII;
Delegate *const TheDelegate;
/// FirstNew - Index of the first register added to NewRegs.
const unsigned FirstNew;
/// ScannedRemattable - true when remattable values have been identified.
bool ScannedRemattable = false;
/// DeadRemats - The saved instructions which have already been dead after
/// rematerialization but not deleted yet -- to be done in postOptimization.
SmallPtrSet<MachineInstr *, 32> *DeadRemats;
/// Remattable - Values defined by remattable instructions as identified by
/// tii.isTriviallyReMaterializable().
SmallPtrSet<const VNInfo *, 4> Remattable;
/// Rematted - Values that were actually rematted, and so need to have their
/// live range trimmed or entirely removed.
SmallPtrSet<const VNInfo *, 4> Rematted;
/// scanRemattable - Identify the Parent values that may rematerialize.
void scanRemattable();
/// foldAsLoad - If LI has a single use and a single def that can be folded as
/// a load, eliminate the register by folding the def into the use.
bool foldAsLoad(LiveInterval *LI, SmallVectorImpl<MachineInstr *> &Dead);
using ToShrinkSet = SetVector<LiveInterval *, SmallVector<LiveInterval *, 8>,
SmallPtrSet<LiveInterval *, 8>>;
/// Helper for eliminateDeadDefs.
void eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink);
/// MachineRegisterInfo callback to notify when new virtual
/// registers are created.
void MRI_NoteNewVirtualRegister(Register VReg) override;
/// Check if MachineOperand \p MO is a last use/kill either in the
/// main live range of \p LI or in one of the matching subregister ranges.
bool useIsKill(const LiveInterval &LI, const MachineOperand &MO) const;
/// Create a new empty interval based on OldReg.
LiveInterval &createEmptyIntervalFrom(Register OldReg, bool createSubRanges);
public:
/// Create a LiveRangeEdit for breaking down parent into smaller pieces.
/// @param parent The register being spilled or split.
/// @param newRegs List to receive any new registers created. This needn't be
/// empty initially, any existing registers are ignored.
/// @param MF The MachineFunction the live range edit is taking place in.
/// @param lis The collection of all live intervals in this function.
/// @param vrm Map of virtual registers to physical registers for this
/// function. If NULL, no virtual register map updates will
/// be done. This could be the case if called before Regalloc.
/// @param deadRemats The collection of all the instructions defining an
/// original reg and are dead after remat.
LiveRangeEdit(const LiveInterval *parent, SmallVectorImpl<Register> &newRegs,
MachineFunction &MF, LiveIntervals &lis, VirtRegMap *vrm,
Delegate *delegate = nullptr,
SmallPtrSet<MachineInstr *, 32> *deadRemats = nullptr)
: Parent(parent), NewRegs(newRegs), MRI(MF.getRegInfo()), LIS(lis),
VRM(vrm), TII(*MF.getSubtarget().getInstrInfo()), TheDelegate(delegate),
FirstNew(newRegs.size()), DeadRemats(deadRemats) {
MRI.addDelegate(this);
}
~LiveRangeEdit() override { MRI.resetDelegate(this); }
const LiveInterval &getParent() const {
assert(Parent && "No parent LiveInterval");
return *Parent;
}
Register getReg() const { return getParent().reg(); }
/// Iterator for accessing the new registers added by this edit.
using iterator = SmallVectorImpl<Register>::const_iterator;
iterator begin() const { return NewRegs.begin() + FirstNew; }
iterator end() const { return NewRegs.end(); }
unsigned size() const { return NewRegs.size() - FirstNew; }
bool empty() const { return size() == 0; }
Register get(unsigned idx) const { return NewRegs[idx + FirstNew]; }
/// pop_back - It allows LiveRangeEdit users to drop new registers.
/// The context is when an original def instruction of a register is
/// dead after rematerialization, we still want to keep it for following
/// rematerializations. We save the def instruction in DeadRemats,
/// and replace the original dst register with a new dummy register so
/// the live range of original dst register can be shrinked normally.
/// We don't want to allocate phys register for the dummy register, so
/// we want to drop it from the NewRegs set.
void pop_back() { NewRegs.pop_back(); }
ArrayRef<Register> regs() const { return ArrayRef(NewRegs).slice(FirstNew); }
/// createFrom - Create a new virtual register based on OldReg.
Register createFrom(Register OldReg);
/// create - Create a new register with the same class and original slot as
/// parent.
LiveInterval &createEmptyInterval() {
return createEmptyIntervalFrom(getReg(), true);
}
Register create() { return createFrom(getReg()); }
/// anyRematerializable - Return true if any parent values may be
/// rematerializable.
/// This function must be called before any rematerialization is attempted.
bool anyRematerializable();
/// checkRematerializable - Manually add VNI to the list of rematerializable
/// values if DefMI may be rematerializable.
bool checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI);
/// Remat - Information needed to rematerialize at a specific location.
struct Remat {
const VNInfo *const ParentVNI; // parent_'s value at the remat location.
MachineInstr *OrigMI = nullptr; // Instruction defining OrigVNI. It contains
// the real expr for remat.
explicit Remat(const VNInfo *ParentVNI) : ParentVNI(ParentVNI) {}
};
/// allUsesAvailableAt - Return true if all registers used by OrigMI at
/// OrigIdx are also available with the same value at UseIdx.
bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
SlotIndex UseIdx) const;
/// canRematerializeAt - Determine if ParentVNI can be rematerialized at
/// UseIdx. It is assumed that parent_.getVNINfoAt(UseIdx) == ParentVNI.
/// When cheapAsAMove is set, only cheap remats are allowed.
bool canRematerializeAt(Remat &RM, VNInfo *OrigVNI, SlotIndex UseIdx,
bool cheapAsAMove);
/// rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an
/// instruction into MBB before MI. The new instruction is mapped, but
/// liveness is not updated. If ReplaceIndexMI is not null it will be replaced
/// by new MI in the index map.
/// Return the SlotIndex of the new instruction.
SlotIndex rematerializeAt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, unsigned DestReg,
const Remat &RM, const TargetRegisterInfo &,
bool Late = false, unsigned SubIdx = 0,
MachineInstr *ReplaceIndexMI = nullptr);
/// markRematerialized - explicitly mark a value as rematerialized after doing
/// it manually.
void markRematerialized(const VNInfo *ParentVNI) {
Rematted.insert(ParentVNI);
}
/// didRematerialize - Return true if ParentVNI was rematerialized anywhere.
bool didRematerialize(const VNInfo *ParentVNI) const {
return Rematted.count(ParentVNI);
}
/// eraseVirtReg - Notify the delegate that Reg is no longer in use, and try
/// to erase it from LIS.
void eraseVirtReg(Register Reg);
/// eliminateDeadDefs - Try to delete machine instructions that are now dead
/// (allDefsAreDead returns true). This may cause live intervals to be trimmed
/// and further dead efs to be eliminated.
/// RegsBeingSpilled lists registers currently being spilled by the register
/// allocator. These registers should not be split into new intervals
/// as currently those new intervals are not guaranteed to spill.
void eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
ArrayRef<Register> RegsBeingSpilled = std::nullopt);
/// calculateRegClassAndHint - Recompute register class and hint for each new
/// register.
void calculateRegClassAndHint(MachineFunction &, VirtRegAuxInfo &);
};
} // end namespace llvm
#endif // LLVM_CODEGEN_LIVERANGEEDIT_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|