1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This pass exposes codegen information to IR-level passes. Every
/// transformation that uses codegen information is broken into three parts:
/// 1. The IR-level analysis pass.
/// 2. The IR-level transformation interface which provides the needed
/// information.
/// 3. Codegen-level implementation which uses target-specific hooks.
///
/// This file defines #2, which is the interface that IR-level transformations
/// use for querying the codegen.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/IR/FMF.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/InstructionCost.h"
#include <functional>
#include <optional>
#include <utility>
namespace llvm {
namespace Intrinsic {
typedef unsigned ID;
}
class AssumptionCache;
class BlockFrequencyInfo;
class DominatorTree;
class BranchInst;
class CallBase;
class Function;
class GlobalValue;
class InstCombiner;
class OptimizationRemarkEmitter;
class InterleavedAccessInfo;
class IntrinsicInst;
class LoadInst;
class Loop;
class LoopInfo;
class LoopVectorizationLegality;
class ProfileSummaryInfo;
class RecurrenceDescriptor;
class SCEV;
class ScalarEvolution;
class StoreInst;
class SwitchInst;
class TargetLibraryInfo;
class Type;
class User;
class Value;
class VPIntrinsic;
struct KnownBits;
/// Information about a load/store intrinsic defined by the target.
struct MemIntrinsicInfo {
/// This is the pointer that the intrinsic is loading from or storing to.
/// If this is non-null, then analysis/optimization passes can assume that
/// this intrinsic is functionally equivalent to a load/store from this
/// pointer.
Value *PtrVal = nullptr;
// Ordering for atomic operations.
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
// Same Id is set by the target for corresponding load/store intrinsics.
unsigned short MatchingId = 0;
bool ReadMem = false;
bool WriteMem = false;
bool IsVolatile = false;
bool isUnordered() const {
return (Ordering == AtomicOrdering::NotAtomic ||
Ordering == AtomicOrdering::Unordered) &&
!IsVolatile;
}
};
/// Attributes of a target dependent hardware loop.
struct HardwareLoopInfo {
HardwareLoopInfo() = delete;
HardwareLoopInfo(Loop *L) : L(L) {}
Loop *L = nullptr;
BasicBlock *ExitBlock = nullptr;
BranchInst *ExitBranch = nullptr;
const SCEV *ExitCount = nullptr;
IntegerType *CountType = nullptr;
Value *LoopDecrement = nullptr; // Decrement the loop counter by this
// value in every iteration.
bool IsNestingLegal = false; // Can a hardware loop be a parent to
// another hardware loop?
bool CounterInReg = false; // Should loop counter be updated in
// the loop via a phi?
bool PerformEntryTest = false; // Generate the intrinsic which also performs
// icmp ne zero on the loop counter value and
// produces an i1 to guard the loop entry.
bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
DominatorTree &DT, bool ForceNestedLoop = false,
bool ForceHardwareLoopPHI = false);
bool canAnalyze(LoopInfo &LI);
};
class IntrinsicCostAttributes {
const IntrinsicInst *II = nullptr;
Type *RetTy = nullptr;
Intrinsic::ID IID;
SmallVector<Type *, 4> ParamTys;
SmallVector<const Value *, 4> Arguments;
FastMathFlags FMF;
// If ScalarizationCost is UINT_MAX, the cost of scalarizing the
// arguments and the return value will be computed based on types.
InstructionCost ScalarizationCost = InstructionCost::getInvalid();
public:
IntrinsicCostAttributes(
Intrinsic::ID Id, const CallBase &CI,
InstructionCost ScalarCost = InstructionCost::getInvalid(),
bool TypeBasedOnly = false);
IntrinsicCostAttributes(
Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
InstructionCost ScalarCost = InstructionCost::getInvalid());
IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
ArrayRef<const Value *> Args);
IntrinsicCostAttributes(
Intrinsic::ID Id, Type *RTy, ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys, FastMathFlags Flags = FastMathFlags(),
const IntrinsicInst *I = nullptr,
InstructionCost ScalarCost = InstructionCost::getInvalid());
Intrinsic::ID getID() const { return IID; }
const IntrinsicInst *getInst() const { return II; }
Type *getReturnType() const { return RetTy; }
FastMathFlags getFlags() const { return FMF; }
InstructionCost getScalarizationCost() const { return ScalarizationCost; }
const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
bool isTypeBasedOnly() const {
return Arguments.empty();
}
bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
};
enum class PredicationStyle { None, Data, DataAndControlFlow };
class TargetTransformInfo;
typedef TargetTransformInfo TTI;
/// This pass provides access to the codegen interfaces that are needed
/// for IR-level transformations.
class TargetTransformInfo {
public:
/// Construct a TTI object using a type implementing the \c Concept
/// API below.
///
/// This is used by targets to construct a TTI wrapping their target-specific
/// implementation that encodes appropriate costs for their target.
template <typename T> TargetTransformInfo(T Impl);
/// Construct a baseline TTI object using a minimal implementation of
/// the \c Concept API below.
///
/// The TTI implementation will reflect the information in the DataLayout
/// provided if non-null.
explicit TargetTransformInfo(const DataLayout &DL);
// Provide move semantics.
TargetTransformInfo(TargetTransformInfo &&Arg);
TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
// We need to define the destructor out-of-line to define our sub-classes
// out-of-line.
~TargetTransformInfo();
/// Handle the invalidation of this information.
///
/// When used as a result of \c TargetIRAnalysis this method will be called
/// when the function this was computed for changes. When it returns false,
/// the information is preserved across those changes.
bool invalidate(Function &, const PreservedAnalyses &,
FunctionAnalysisManager::Invalidator &) {
// FIXME: We should probably in some way ensure that the subtarget
// information for a function hasn't changed.
return false;
}
/// \name Generic Target Information
/// @{
/// The kind of cost model.
///
/// There are several different cost models that can be customized by the
/// target. The normalization of each cost model may be target specific.
/// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
/// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
enum TargetCostKind {
TCK_RecipThroughput, ///< Reciprocal throughput.
TCK_Latency, ///< The latency of instruction.
TCK_CodeSize, ///< Instruction code size.
TCK_SizeAndLatency ///< The weighted sum of size and latency.
};
/// Underlying constants for 'cost' values in this interface.
///
/// Many APIs in this interface return a cost. This enum defines the
/// fundamental values that should be used to interpret (and produce) those
/// costs. The costs are returned as an int rather than a member of this
/// enumeration because it is expected that the cost of one IR instruction
/// may have a multiplicative factor to it or otherwise won't fit directly
/// into the enum. Moreover, it is common to sum or average costs which works
/// better as simple integral values. Thus this enum only provides constants.
/// Also note that the returned costs are signed integers to make it natural
/// to add, subtract, and test with zero (a common boundary condition). It is
/// not expected that 2^32 is a realistic cost to be modeling at any point.
///
/// Note that these costs should usually reflect the intersection of code-size
/// cost and execution cost. A free instruction is typically one that folds
/// into another instruction. For example, reg-to-reg moves can often be
/// skipped by renaming the registers in the CPU, but they still are encoded
/// and thus wouldn't be considered 'free' here.
enum TargetCostConstants {
TCC_Free = 0, ///< Expected to fold away in lowering.
TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
};
/// Estimate the cost of a GEP operation when lowered.
InstructionCost
getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands,
TargetCostKind CostKind = TCK_SizeAndLatency) const;
/// \returns A value by which our inlining threshold should be multiplied.
/// This is primarily used to bump up the inlining threshold wholesale on
/// targets where calls are unusually expensive.
///
/// TODO: This is a rather blunt instrument. Perhaps altering the costs of
/// individual classes of instructions would be better.
unsigned getInliningThresholdMultiplier() const;
/// \returns A value to be added to the inlining threshold.
unsigned adjustInliningThreshold(const CallBase *CB) const;
/// \returns Vector bonus in percent.
///
/// Vector bonuses: We want to more aggressively inline vector-dense kernels
/// and apply this bonus based on the percentage of vector instructions. A
/// bonus is applied if the vector instructions exceed 50% and half that
/// amount is applied if it exceeds 10%. Note that these bonuses are some what
/// arbitrary and evolved over time by accident as much as because they are
/// principled bonuses.
/// FIXME: It would be nice to base the bonus values on something more
/// scientific. A target may has no bonus on vector instructions.
int getInlinerVectorBonusPercent() const;
/// \return the expected cost of a memcpy, which could e.g. depend on the
/// source/destination type and alignment and the number of bytes copied.
InstructionCost getMemcpyCost(const Instruction *I) const;
/// \return The estimated number of case clusters when lowering \p 'SI'.
/// \p JTSize Set a jump table size only when \p SI is suitable for a jump
/// table.
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
unsigned &JTSize,
ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) const;
/// Estimate the cost of a given IR user when lowered.
///
/// This can estimate the cost of either a ConstantExpr or Instruction when
/// lowered.
///
/// \p Operands is a list of operands which can be a result of transformations
/// of the current operands. The number of the operands on the list must equal
/// to the number of the current operands the IR user has. Their order on the
/// list must be the same as the order of the current operands the IR user
/// has.
///
/// The returned cost is defined in terms of \c TargetCostConstants, see its
/// comments for a detailed explanation of the cost values.
InstructionCost getInstructionCost(const User *U,
ArrayRef<const Value *> Operands,
TargetCostKind CostKind) const;
/// This is a helper function which calls the three-argument
/// getInstructionCost with \p Operands which are the current operands U has.
InstructionCost getInstructionCost(const User *U,
TargetCostKind CostKind) const {
SmallVector<const Value *, 4> Operands(U->operand_values());
return getInstructionCost(U, Operands, CostKind);
}
/// If a branch or a select condition is skewed in one direction by more than
/// this factor, it is very likely to be predicted correctly.
BranchProbability getPredictableBranchThreshold() const;
/// Return true if branch divergence exists.
///
/// Branch divergence has a significantly negative impact on GPU performance
/// when threads in the same wavefront take different paths due to conditional
/// branches.
bool hasBranchDivergence() const;
/// Return true if the target prefers to use GPU divergence analysis to
/// replace the legacy version.
bool useGPUDivergenceAnalysis() const;
/// Returns whether V is a source of divergence.
///
/// This function provides the target-dependent information for
/// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis
/// first builds the dependency graph, and then runs the reachability
/// algorithm starting with the sources of divergence.
bool isSourceOfDivergence(const Value *V) const;
// Returns true for the target specific
// set of operations which produce uniform result
// even taking non-uniform arguments
bool isAlwaysUniform(const Value *V) const;
/// Returns the address space ID for a target's 'flat' address space. Note
/// this is not necessarily the same as addrspace(0), which LLVM sometimes
/// refers to as the generic address space. The flat address space is a
/// generic address space that can be used access multiple segments of memory
/// with different address spaces. Access of a memory location through a
/// pointer with this address space is expected to be legal but slower
/// compared to the same memory location accessed through a pointer with a
/// different address space.
//
/// This is for targets with different pointer representations which can
/// be converted with the addrspacecast instruction. If a pointer is converted
/// to this address space, optimizations should attempt to replace the access
/// with the source address space.
///
/// \returns ~0u if the target does not have such a flat address space to
/// optimize away.
unsigned getFlatAddressSpace() const;
/// Return any intrinsic address operand indexes which may be rewritten if
/// they use a flat address space pointer.
///
/// \returns true if the intrinsic was handled.
bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const;
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
/// Return true if globals in this address space can have initializers other
/// than `undef`.
bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const;
unsigned getAssumedAddrSpace(const Value *V) const;
bool isSingleThreaded() const;
std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value *V) const;
/// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
/// NewV, which has a different address space. This should happen for every
/// operand index that collectFlatAddressOperands returned for the intrinsic.
/// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
/// new value (which may be the original \p II with modified operands).
Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
Value *NewV) const;
/// Test whether calls to a function lower to actual program function
/// calls.
///
/// The idea is to test whether the program is likely to require a 'call'
/// instruction or equivalent in order to call the given function.
///
/// FIXME: It's not clear that this is a good or useful query API. Client's
/// should probably move to simpler cost metrics using the above.
/// Alternatively, we could split the cost interface into distinct code-size
/// and execution-speed costs. This would allow modelling the core of this
/// query more accurately as a call is a single small instruction, but
/// incurs significant execution cost.
bool isLoweredToCall(const Function *F) const;
struct LSRCost {
/// TODO: Some of these could be merged. Also, a lexical ordering
/// isn't always optimal.
unsigned Insns;
unsigned NumRegs;
unsigned AddRecCost;
unsigned NumIVMuls;
unsigned NumBaseAdds;
unsigned ImmCost;
unsigned SetupCost;
unsigned ScaleCost;
};
/// Parameters that control the generic loop unrolling transformation.
struct UnrollingPreferences {
/// The cost threshold for the unrolled loop. Should be relative to the
/// getInstructionCost values returned by this API, and the expectation is
/// that the unrolled loop's instructions when run through that interface
/// should not exceed this cost. However, this is only an estimate. Also,
/// specific loops may be unrolled even with a cost above this threshold if
/// deemed profitable. Set this to UINT_MAX to disable the loop body cost
/// restriction.
unsigned Threshold;
/// If complete unrolling will reduce the cost of the loop, we will boost
/// the Threshold by a certain percent to allow more aggressive complete
/// unrolling. This value provides the maximum boost percentage that we
/// can apply to Threshold (The value should be no less than 100).
/// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
/// MaxPercentThresholdBoost / 100)
/// E.g. if complete unrolling reduces the loop execution time by 50%
/// then we boost the threshold by the factor of 2x. If unrolling is not
/// expected to reduce the running time, then we do not increase the
/// threshold.
unsigned MaxPercentThresholdBoost;
/// The cost threshold for the unrolled loop when optimizing for size (set
/// to UINT_MAX to disable).
unsigned OptSizeThreshold;
/// The cost threshold for the unrolled loop, like Threshold, but used
/// for partial/runtime unrolling (set to UINT_MAX to disable).
unsigned PartialThreshold;
/// The cost threshold for the unrolled loop when optimizing for size, like
/// OptSizeThreshold, but used for partial/runtime unrolling (set to
/// UINT_MAX to disable).
unsigned PartialOptSizeThreshold;
/// A forced unrolling factor (the number of concatenated bodies of the
/// original loop in the unrolled loop body). When set to 0, the unrolling
/// transformation will select an unrolling factor based on the current cost
/// threshold and other factors.
unsigned Count;
/// Default unroll count for loops with run-time trip count.
unsigned DefaultUnrollRuntimeCount;
// Set the maximum unrolling factor. The unrolling factor may be selected
// using the appropriate cost threshold, but may not exceed this number
// (set to UINT_MAX to disable). This does not apply in cases where the
// loop is being fully unrolled.
unsigned MaxCount;
/// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
/// applies even if full unrolling is selected. This allows a target to fall
/// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
unsigned FullUnrollMaxCount;
// Represents number of instructions optimized when "back edge"
// becomes "fall through" in unrolled loop.
// For now we count a conditional branch on a backedge and a comparison
// feeding it.
unsigned BEInsns;
/// Allow partial unrolling (unrolling of loops to expand the size of the
/// loop body, not only to eliminate small constant-trip-count loops).
bool Partial;
/// Allow runtime unrolling (unrolling of loops to expand the size of the
/// loop body even when the number of loop iterations is not known at
/// compile time).
bool Runtime;
/// Allow generation of a loop remainder (extra iterations after unroll).
bool AllowRemainder;
/// Allow emitting expensive instructions (such as divisions) when computing
/// the trip count of a loop for runtime unrolling.
bool AllowExpensiveTripCount;
/// Apply loop unroll on any kind of loop
/// (mainly to loops that fail runtime unrolling).
bool Force;
/// Allow using trip count upper bound to unroll loops.
bool UpperBound;
/// Allow unrolling of all the iterations of the runtime loop remainder.
bool UnrollRemainder;
/// Allow unroll and jam. Used to enable unroll and jam for the target.
bool UnrollAndJam;
/// Threshold for unroll and jam, for inner loop size. The 'Threshold'
/// value above is used during unroll and jam for the outer loop size.
/// This value is used in the same manner to limit the size of the inner
/// loop.
unsigned UnrollAndJamInnerLoopThreshold;
/// Don't allow loop unrolling to simulate more than this number of
/// iterations when checking full unroll profitability
unsigned MaxIterationsCountToAnalyze;
};
/// Get target-customized preferences for the generic loop unrolling
/// transformation. The caller will initialize UP with the current
/// target-independent defaults.
void getUnrollingPreferences(Loop *L, ScalarEvolution &,
UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) const;
/// Query the target whether it would be profitable to convert the given loop
/// into a hardware loop.
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *LibInfo,
HardwareLoopInfo &HWLoopInfo) const;
/// Query the target whether it would be prefered to create a predicated
/// vector loop, which can avoid the need to emit a scalar epilogue loop.
bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *TLI,
DominatorTree *DT,
LoopVectorizationLegality *LVL,
InterleavedAccessInfo *IAI) const;
/// Query the target whether lowering of the llvm.get.active.lane.mask
/// intrinsic is supported and how the mask should be used. A return value
/// of PredicationStyle::Data indicates the mask is used as data only,
/// whereas PredicationStyle::DataAndControlFlow indicates we should also use
/// the mask for control flow in the loop. If unsupported the return value is
/// PredicationStyle::None.
PredicationStyle emitGetActiveLaneMask() const;
// Parameters that control the loop peeling transformation
struct PeelingPreferences {
/// A forced peeling factor (the number of bodied of the original loop
/// that should be peeled off before the loop body). When set to 0, the
/// a peeling factor based on profile information and other factors.
unsigned PeelCount;
/// Allow peeling off loop iterations.
bool AllowPeeling;
/// Allow peeling off loop iterations for loop nests.
bool AllowLoopNestsPeeling;
/// Allow peeling basing on profile. Uses to enable peeling off all
/// iterations basing on provided profile.
/// If the value is true the peeling cost model can decide to peel only
/// some iterations and in this case it will set this to false.
bool PeelProfiledIterations;
};
/// Get target-customized preferences for the generic loop peeling
/// transformation. The caller will initialize \p PP with the current
/// target-independent defaults with information from \p L and \p SE.
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
PeelingPreferences &PP) const;
/// Targets can implement their own combinations for target-specific
/// intrinsics. This function will be called from the InstCombine pass every
/// time a target-specific intrinsic is encountered.
///
/// \returns std::nullopt to not do anything target specific or a value that
/// will be returned from the InstCombiner. It is possible to return null and
/// stop further processing of the intrinsic by returning nullptr.
std::optional<Instruction *> instCombineIntrinsic(InstCombiner & IC,
IntrinsicInst & II) const;
/// Can be used to implement target-specific instruction combining.
/// \see instCombineIntrinsic
std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask,
KnownBits & Known, bool &KnownBitsComputed) const;
/// Can be used to implement target-specific instruction combining.
/// \see instCombineIntrinsic
std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts,
APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) const;
/// @}
/// \name Scalar Target Information
/// @{
/// Flags indicating the kind of support for population count.
///
/// Compared to the SW implementation, HW support is supposed to
/// significantly boost the performance when the population is dense, and it
/// may or may not degrade performance if the population is sparse. A HW
/// support is considered as "Fast" if it can outperform, or is on a par
/// with, SW implementation when the population is sparse; otherwise, it is
/// considered as "Slow".
enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
/// Return true if the specified immediate is legal add immediate, that
/// is the target has add instructions which can add a register with the
/// immediate without having to materialize the immediate into a register.
bool isLegalAddImmediate(int64_t Imm) const;
/// Return true if the specified immediate is legal icmp immediate,
/// that is the target has icmp instructions which can compare a register
/// against the immediate without having to materialize the immediate into a
/// register.
bool isLegalICmpImmediate(int64_t Imm) const;
/// Return true if the addressing mode represented by AM is legal for
/// this target, for a load/store of the specified type.
/// The type may be VoidTy, in which case only return true if the addressing
/// mode is legal for a load/store of any legal type.
/// If target returns true in LSRWithInstrQueries(), I may be valid.
/// TODO: Handle pre/postinc as well.
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
unsigned AddrSpace = 0,
Instruction *I = nullptr) const;
/// Return true if LSR cost of C1 is lower than C2.
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
const TargetTransformInfo::LSRCost &C2) const;
/// Return true if LSR major cost is number of registers. Targets which
/// implement their own isLSRCostLess and unset number of registers as major
/// cost should return false, otherwise return true.
bool isNumRegsMajorCostOfLSR() const;
/// \returns true if LSR should not optimize a chain that includes \p I.
bool isProfitableLSRChainElement(Instruction *I) const;
/// Return true if the target can fuse a compare and branch.
/// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
/// calculation for the instructions in a loop.
bool canMacroFuseCmp() const;
/// Return true if the target can save a compare for loop count, for example
/// hardware loop saves a compare.
bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *LibInfo) const;
enum AddressingModeKind {
AMK_PreIndexed,
AMK_PostIndexed,
AMK_None
};
/// Return the preferred addressing mode LSR should make efforts to generate.
AddressingModeKind getPreferredAddressingMode(const Loop *L,
ScalarEvolution *SE) const;
/// Return true if the target supports masked store.
bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
/// Return true if the target supports masked load.
bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
/// Return true if the target supports nontemporal store.
bool isLegalNTStore(Type *DataType, Align Alignment) const;
/// Return true if the target supports nontemporal load.
bool isLegalNTLoad(Type *DataType, Align Alignment) const;
/// \Returns true if the target supports broadcasting a load to a vector of
/// type <NumElements x ElementTy>.
bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const;
/// Return true if the target supports masked scatter.
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
/// Return true if the target supports masked gather.
bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
/// Return true if the target forces scalarizing of llvm.masked.gather
/// intrinsics.
bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const;
/// Return true if the target forces scalarizing of llvm.masked.scatter
/// intrinsics.
bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const;
/// Return true if the target supports masked compress store.
bool isLegalMaskedCompressStore(Type *DataType) const;
/// Return true if the target supports masked expand load.
bool isLegalMaskedExpandLoad(Type *DataType) const;
/// Return true if this is an alternating opcode pattern that can be lowered
/// to a single instruction on the target. In X86 this is for the addsub
/// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
/// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
/// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
/// when \p Opcode0 is selected and `1` when Opcode1 is selected.
/// \p VecTy is the vector type of the instruction to be generated.
bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
const SmallBitVector &OpcodeMask) const;
/// Return true if we should be enabling ordered reductions for the target.
bool enableOrderedReductions() const;
/// Return true if the target has a unified operation to calculate division
/// and remainder. If so, the additional implicit multiplication and
/// subtraction required to calculate a remainder from division are free. This
/// can enable more aggressive transformations for division and remainder than
/// would typically be allowed using throughput or size cost models.
bool hasDivRemOp(Type *DataType, bool IsSigned) const;
/// Return true if the given instruction (assumed to be a memory access
/// instruction) has a volatile variant. If that's the case then we can avoid
/// addrspacecast to generic AS for volatile loads/stores. Default
/// implementation returns false, which prevents address space inference for
/// volatile loads/stores.
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
/// Return true if target doesn't mind addresses in vectors.
bool prefersVectorizedAddressing() const;
/// Return the cost of the scaling factor used in the addressing
/// mode represented by AM for this target, for a load/store
/// of the specified type.
/// If the AM is supported, the return value must be >= 0.
/// If the AM is not supported, it returns a negative value.
/// TODO: Handle pre/postinc as well.
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale,
unsigned AddrSpace = 0) const;
/// Return true if the loop strength reduce pass should make
/// Instruction* based TTI queries to isLegalAddressingMode(). This is
/// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
/// immediate offset and no index register.
bool LSRWithInstrQueries() const;
/// Return true if it's free to truncate a value of type Ty1 to type
/// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
/// by referencing its sub-register AX.
bool isTruncateFree(Type *Ty1, Type *Ty2) const;
/// Return true if it is profitable to hoist instruction in the
/// then/else to before if.
bool isProfitableToHoist(Instruction *I) const;
bool useAA() const;
/// Return true if this type is legal.
bool isTypeLegal(Type *Ty) const;
/// Returns the estimated number of registers required to represent \p Ty.
unsigned getRegUsageForType(Type *Ty) const;
/// Return true if switches should be turned into lookup tables for the
/// target.
bool shouldBuildLookupTables() const;
/// Return true if switches should be turned into lookup tables
/// containing this constant value for the target.
bool shouldBuildLookupTablesForConstant(Constant *C) const;
/// Return true if lookup tables should be turned into relative lookup tables.
bool shouldBuildRelLookupTables() const;
/// Return true if the input function which is cold at all call sites,
/// should use coldcc calling convention.
bool useColdCCForColdCall(Function &F) const;
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
/// are set if the demanded result elements need to be inserted and/or
/// extracted from vectors.
InstructionCost getScalarizationOverhead(VectorType *Ty,
const APInt &DemandedElts,
bool Insert, bool Extract,
TTI::TargetCostKind CostKind) const;
/// Estimate the overhead of scalarizing an instructions unique
/// non-constant operands. The (potentially vector) types to use for each of
/// argument are passes via Tys.
InstructionCost
getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind) const;
/// If target has efficient vector element load/store instructions, it can
/// return true here so that insertion/extraction costs are not added to
/// the scalarization cost of a load/store.
bool supportsEfficientVectorElementLoadStore() const;
/// If the target supports tail calls.
bool supportsTailCalls() const;
/// If target supports tail call on \p CB
bool supportsTailCallFor(const CallBase *CB) const;
/// Don't restrict interleaved unrolling to small loops.
bool enableAggressiveInterleaving(bool LoopHasReductions) const;
/// Returns options for expansion of memcmp. IsZeroCmp is
// true if this is the expansion of memcmp(p1, p2, s) == 0.
struct MemCmpExpansionOptions {
// Return true if memcmp expansion is enabled.
operator bool() const { return MaxNumLoads > 0; }
// Maximum number of load operations.
unsigned MaxNumLoads = 0;
// The list of available load sizes (in bytes), sorted in decreasing order.
SmallVector<unsigned, 8> LoadSizes;
// For memcmp expansion when the memcmp result is only compared equal or
// not-equal to 0, allow up to this number of load pairs per block. As an
// example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
// a0 = load2bytes &a[0]
// b0 = load2bytes &b[0]
// a2 = load1byte &a[2]
// b2 = load1byte &b[2]
// r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
unsigned NumLoadsPerBlock = 1;
// Set to true to allow overlapping loads. For example, 7-byte compares can
// be done with two 4-byte compares instead of 4+2+1-byte compares. This
// requires all loads in LoadSizes to be doable in an unaligned way.
bool AllowOverlappingLoads = false;
};
MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
bool IsZeroCmp) const;
/// Should the Select Optimization pass be enabled and ran.
bool enableSelectOptimize() const;
/// Enable matching of interleaved access groups.
bool enableInterleavedAccessVectorization() const;
/// Enable matching of interleaved access groups that contain predicated
/// accesses or gaps and therefore vectorized using masked
/// vector loads/stores.
bool enableMaskedInterleavedAccessVectorization() const;
/// Indicate that it is potentially unsafe to automatically vectorize
/// floating-point operations because the semantics of vector and scalar
/// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
/// does not support IEEE-754 denormal numbers, while depending on the
/// platform, scalar floating-point math does.
/// This applies to floating-point math operations and calls, not memory
/// operations, shuffles, or casts.
bool isFPVectorizationPotentiallyUnsafe() const;
/// Determine if the target supports unaligned memory accesses.
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
unsigned AddressSpace = 0,
Align Alignment = Align(1),
unsigned *Fast = nullptr) const;
/// Return hardware support for population count.
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
/// Return true if the hardware has a fast square-root instruction.
bool haveFastSqrt(Type *Ty) const;
/// Return true if the cost of the instruction is too high to speculatively
/// execute and should be kept behind a branch.
/// This normally just wraps around a getInstructionCost() call, but some
/// targets might report a low TCK_SizeAndLatency value that is incompatible
/// with the fixed TCC_Expensive value.
/// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
bool isExpensiveToSpeculativelyExecute(const Instruction *I) const;
/// Return true if it is faster to check if a floating-point value is NaN
/// (or not-NaN) versus a comparison against a constant FP zero value.
/// Targets should override this if materializing a 0.0 for comparison is
/// generally as cheap as checking for ordered/unordered.
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
/// Return the expected cost of supporting the floating point operation
/// of the specified type.
InstructionCost getFPOpCost(Type *Ty) const;
/// Return the expected cost of materializing for the given integer
/// immediate of the specified type.
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
TargetCostKind CostKind) const;
/// Return the expected cost of materialization for the given integer
/// immediate of the specified type for a given instruction. The cost can be
/// zero if the immediate can be folded into the specified instruction.
InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind,
Instruction *Inst = nullptr) const;
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind) const;
/// Return the expected cost for the given integer when optimising
/// for size. This is different than the other integer immediate cost
/// functions in that it is subtarget agnostic. This is useful when you e.g.
/// target one ISA such as Aarch32 but smaller encodings could be possible
/// with another such as Thumb. This return value is used as a penalty when
/// the total costs for a constant is calculated (the bigger the cost, the
/// more beneficial constant hoisting is).
InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty) const;
/// @}
/// \name Vector Target Information
/// @{
/// The various kinds of shuffle patterns for vector queries.
enum ShuffleKind {
SK_Broadcast, ///< Broadcast element 0 to all other elements.
SK_Reverse, ///< Reverse the order of the vector.
SK_Select, ///< Selects elements from the corresponding lane of
///< either source operand. This is equivalent to a
///< vector select with a constant condition operand.
SK_Transpose, ///< Transpose two vectors.
SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
///< with any shuffle mask.
SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
///< shuffle mask.
SK_Splice ///< Concatenates elements from the first input vector
///< with elements of the second input vector. Returning
///< a vector of the same type as the input vectors.
///< Index indicates start offset in first input vector.
};
/// Additional information about an operand's possible values.
enum OperandValueKind {
OK_AnyValue, // Operand can have any value.
OK_UniformValue, // Operand is uniform (splat of a value).
OK_UniformConstantValue, // Operand is uniform constant.
OK_NonUniformConstantValue // Operand is a non uniform constant value.
};
/// Additional properties of an operand's values.
enum OperandValueProperties {
OP_None = 0,
OP_PowerOf2 = 1,
OP_NegatedPowerOf2 = 2,
};
// Describe the values an operand can take. We're in the process
// of migrating uses of OperandValueKind and OperandValueProperties
// to use this class, and then will change the internal representation.
struct OperandValueInfo {
OperandValueKind Kind = OK_AnyValue;
OperandValueProperties Properties = OP_None;
bool isConstant() const {
return Kind == OK_UniformConstantValue || Kind == OK_NonUniformConstantValue;
}
bool isUniform() const {
return Kind == OK_UniformConstantValue || Kind == OK_UniformValue;
}
bool isPowerOf2() const {
return Properties == OP_PowerOf2;
}
bool isNegatedPowerOf2() const {
return Properties == OP_NegatedPowerOf2;
}
OperandValueInfo getNoProps() const {
return {Kind, OP_None};
}
};
/// \return the number of registers in the target-provided register class.
unsigned getNumberOfRegisters(unsigned ClassID) const;
/// \return the target-provided register class ID for the provided type,
/// accounting for type promotion and other type-legalization techniques that
/// the target might apply. However, it specifically does not account for the
/// scalarization or splitting of vector types. Should a vector type require
/// scalarization or splitting into multiple underlying vector registers, that
/// type should be mapped to a register class containing no registers.
/// Specifically, this is designed to provide a simple, high-level view of the
/// register allocation later performed by the backend. These register classes
/// don't necessarily map onto the register classes used by the backend.
/// FIXME: It's not currently possible to determine how many registers
/// are used by the provided type.
unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
/// \return the target-provided register class name
const char *getRegisterClassName(unsigned ClassID) const;
enum RegisterKind { RGK_Scalar, RGK_FixedWidthVector, RGK_ScalableVector };
/// \return The width of the largest scalar or vector register type.
TypeSize getRegisterBitWidth(RegisterKind K) const;
/// \return The width of the smallest vector register type.
unsigned getMinVectorRegisterBitWidth() const;
/// \return The maximum value of vscale if the target specifies an
/// architectural maximum vector length, and std::nullopt otherwise.
std::optional<unsigned> getMaxVScale() const;
/// \return the value of vscale to tune the cost model for.
std::optional<unsigned> getVScaleForTuning() const;
/// \return True if the vectorization factor should be chosen to
/// make the vector of the smallest element type match the size of a
/// vector register. For wider element types, this could result in
/// creating vectors that span multiple vector registers.
/// If false, the vectorization factor will be chosen based on the
/// size of the widest element type.
/// \p K Register Kind for vectorization.
bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const;
/// \return The minimum vectorization factor for types of given element
/// bit width, or 0 if there is no minimum VF. The returned value only
/// applies when shouldMaximizeVectorBandwidth returns true.
/// If IsScalable is true, the returned ElementCount must be a scalable VF.
ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
/// \return The maximum vectorization factor for types of given element
/// bit width and opcode, or 0 if there is no maximum VF.
/// Currently only used by the SLP vectorizer.
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
/// \return The minimum vectorization factor for the store instruction. Given
/// the initial estimation of the minimum vector factor and store value type,
/// it tries to find possible lowest VF, which still might be profitable for
/// the vectorization.
/// \param VF Initial estimation of the minimum vector factor.
/// \param ScalarMemTy Scalar memory type of the store operation.
/// \param ScalarValTy Scalar type of the stored value.
/// Currently only used by the SLP vectorizer.
unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
Type *ScalarValTy) const;
/// \return True if it should be considered for address type promotion.
/// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
/// profitable without finding other extensions fed by the same input.
bool shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
/// \return The size of a cache line in bytes.
unsigned getCacheLineSize() const;
/// The possible cache levels
enum class CacheLevel {
L1D, // The L1 data cache
L2D, // The L2 data cache
// We currently do not model L3 caches, as their sizes differ widely between
// microarchitectures. Also, we currently do not have a use for L3 cache
// size modeling yet.
};
/// \return The size of the cache level in bytes, if available.
std::optional<unsigned> getCacheSize(CacheLevel Level) const;
/// \return The associativity of the cache level, if available.
std::optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
/// \return How much before a load we should place the prefetch
/// instruction. This is currently measured in number of
/// instructions.
unsigned getPrefetchDistance() const;
/// Some HW prefetchers can handle accesses up to a certain constant stride.
/// Sometimes prefetching is beneficial even below the HW prefetcher limit,
/// and the arguments provided are meant to serve as a basis for deciding this
/// for a particular loop.
///
/// \param NumMemAccesses Number of memory accesses in the loop.
/// \param NumStridedMemAccesses Number of the memory accesses that
/// ScalarEvolution could find a known stride
/// for.
/// \param NumPrefetches Number of software prefetches that will be
/// emitted as determined by the addresses
/// involved and the cache line size.
/// \param HasCall True if the loop contains a call.
///
/// \return This is the minimum stride in bytes where it makes sense to start
/// adding SW prefetches. The default is 1, i.e. prefetch with any
/// stride.
unsigned getMinPrefetchStride(unsigned NumMemAccesses,
unsigned NumStridedMemAccesses,
unsigned NumPrefetches, bool HasCall) const;
/// \return The maximum number of iterations to prefetch ahead. If
/// the required number of iterations is more than this number, no
/// prefetching is performed.
unsigned getMaxPrefetchIterationsAhead() const;
/// \return True if prefetching should also be done for writes.
bool enableWritePrefetching() const;
/// \return if target want to issue a prefetch in address space \p AS.
bool shouldPrefetchAddressSpace(unsigned AS) const;
/// \return The maximum interleave factor that any transform should try to
/// perform for this target. This number depends on the level of parallelism
/// and the number of execution units in the CPU.
unsigned getMaxInterleaveFactor(unsigned VF) const;
/// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
static OperandValueInfo getOperandInfo(const Value *V);
/// This is an approximation of reciprocal throughput of a math/logic op.
/// A higher cost indicates less expected throughput.
/// From Agner Fog's guides, reciprocal throughput is "the average number of
/// clock cycles per instruction when the instructions are not part of a
/// limiting dependency chain."
/// Therefore, costs should be scaled to account for multiple execution units
/// on the target that can process this type of instruction. For example, if
/// there are 5 scalar integer units and 2 vector integer units that can
/// calculate an 'add' in a single cycle, this model should indicate that the
/// cost of the vector add instruction is 2.5 times the cost of the scalar
/// add instruction.
/// \p Args is an optional argument which holds the instruction operands
/// values so the TTI can analyze those values searching for special
/// cases or optimizations based on those values.
/// \p CxtI is the optional original context instruction, if one exists, to
/// provide even more information.
InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None},
TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None},
ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
const Instruction *CxtI = nullptr) const;
/// \return The cost of a shuffle instruction of kind Kind and of type Tp.
/// The exact mask may be passed as Mask, or else the array will be empty.
/// The index and subtype parameters are used by the subvector insertion and
/// extraction shuffle kinds to show the insert/extract point and the type of
/// the subvector being inserted/extracted. The operands of the shuffle can be
/// passed through \p Args, which helps improve the cost estimation in some
/// cases, like in broadcast loads.
/// NOTE: For subvector extractions Tp represents the source type.
InstructionCost
getShuffleCost(ShuffleKind Kind, VectorType *Tp,
ArrayRef<int> Mask = std::nullopt,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
int Index = 0, VectorType *SubTp = nullptr,
ArrayRef<const Value *> Args = std::nullopt) const;
/// Represents a hint about the context in which a cast is used.
///
/// For zext/sext, the context of the cast is the operand, which must be a
/// load of some kind. For trunc, the context is of the cast is the single
/// user of the instruction, which must be a store of some kind.
///
/// This enum allows the vectorizer to give getCastInstrCost an idea of the
/// type of cast it's dealing with, as not every cast is equal. For instance,
/// the zext of a load may be free, but the zext of an interleaving load can
//// be (very) expensive!
///
/// See \c getCastContextHint to compute a CastContextHint from a cast
/// Instruction*. Callers can use it if they don't need to override the
/// context and just want it to be calculated from the instruction.
///
/// FIXME: This handles the types of load/store that the vectorizer can
/// produce, which are the cases where the context instruction is most
/// likely to be incorrect. There are other situations where that can happen
/// too, which might be handled here but in the long run a more general
/// solution of costing multiple instructions at the same times may be better.
enum class CastContextHint : uint8_t {
None, ///< The cast is not used with a load/store of any kind.
Normal, ///< The cast is used with a normal load/store.
Masked, ///< The cast is used with a masked load/store.
GatherScatter, ///< The cast is used with a gather/scatter.
Interleave, ///< The cast is used with an interleaved load/store.
Reversed, ///< The cast is used with a reversed load/store.
};
/// Calculates a CastContextHint from \p I.
/// This should be used by callers of getCastInstrCost if they wish to
/// determine the context from some instruction.
/// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
/// or if it's another type of cast.
static CastContextHint getCastContextHint(const Instruction *I);
/// \return The expected cost of cast instructions, such as bitcast, trunc,
/// zext, etc. If there is an existing instruction that holds Opcode, it
/// may be passed in the 'I' parameter.
InstructionCost
getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
const Instruction *I = nullptr) const;
/// \return The expected cost of a sign- or zero-extended vector extract. Use
/// Index = -1 to indicate that there is no information about the index value.
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index) const;
/// \return The expected cost of control-flow related instructions such as
/// Phi, Ret, Br, Switch.
InstructionCost
getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
const Instruction *I = nullptr) const;
/// \returns The expected cost of compare and select instructions. If there
/// is an existing instruction that holds Opcode, it may be passed in the
/// 'I' parameter. The \p VecPred parameter can be used to indicate the select
/// is using a compare with the specified predicate as condition. When vector
/// types are passed, \p VecPred must be used for all lanes.
InstructionCost
getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
const Instruction *I = nullptr) const;
/// \return The expected cost of vector Insert and Extract.
/// Use -1 to indicate that there is no information on the index value.
/// This is used when the instruction is not available; a typical use
/// case is to provision the cost of vectorization/scalarization in
/// vectorizer passes.
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index = -1, Value *Op0 = nullptr,
Value *Op1 = nullptr) const;
/// \return The expected cost of vector Insert and Extract.
/// This is used when instruction is available, and implementation
/// asserts 'I' is not nullptr.
///
/// A typical suitable use case is cost estimation when vector instruction
/// exists (e.g., from basic blocks during transformation).
InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index = -1) const;
/// \return The cost of replication shuffle of \p VF elements typed \p EltTy
/// \p ReplicationFactor times.
///
/// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
/// <0,0,0,1,1,1,2,2,2,3,3,3>
InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
int VF,
const APInt &DemandedDstElts,
TTI::TargetCostKind CostKind);
/// \return The cost of Load and Store instructions.
InstructionCost
getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
OperandValueInfo OpdInfo = {OK_AnyValue, OP_None},
const Instruction *I = nullptr) const;
/// \return The cost of VP Load and Store instructions.
InstructionCost
getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
const Instruction *I = nullptr) const;
/// \return The cost of masked Load and Store instructions.
InstructionCost getMaskedMemoryOpCost(
unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
/// \return The cost of Gather or Scatter operation
/// \p Opcode - is a type of memory access Load or Store
/// \p DataTy - a vector type of the data to be loaded or stored
/// \p Ptr - pointer [or vector of pointers] - address[es] in memory
/// \p VariableMask - true when the memory access is predicated with a mask
/// that is not a compile-time constant
/// \p Alignment - alignment of single element
/// \p I - the optional original context instruction, if one exists, e.g. the
/// load/store to transform or the call to the gather/scatter intrinsic
InstructionCost getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
const Instruction *I = nullptr) const;
/// \return The cost of the interleaved memory operation.
/// \p Opcode is the memory operation code
/// \p VecTy is the vector type of the interleaved access.
/// \p Factor is the interleave factor
/// \p Indices is the indices for interleaved load members (as interleaved
/// load allows gaps)
/// \p Alignment is the alignment of the memory operation
/// \p AddressSpace is address space of the pointer.
/// \p UseMaskForCond indicates if the memory access is predicated.
/// \p UseMaskForGaps indicates if gaps should be masked.
InstructionCost getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
/// A helper function to determine the type of reduction algorithm used
/// for a given \p Opcode and set of FastMathFlags \p FMF.
static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
return FMF && !(*FMF).allowReassoc();
}
/// Calculate the cost of vector reduction intrinsics.
///
/// This is the cost of reducing the vector value of type \p Ty to a scalar
/// value using the operation denoted by \p Opcode. The FastMathFlags
/// parameter \p FMF indicates what type of reduction we are performing:
/// 1. Tree-wise. This is the typical 'fast' reduction performed that
/// involves successively splitting a vector into half and doing the
/// operation on the pair of halves until you have a scalar value. For
/// example:
/// (v0, v1, v2, v3)
/// ((v0+v2), (v1+v3), undef, undef)
/// ((v0+v2+v1+v3), undef, undef, undef)
/// This is the default behaviour for integer operations, whereas for
/// floating point we only do this if \p FMF indicates that
/// reassociation is allowed.
/// 2. Ordered. For a vector with N elements this involves performing N
/// operations in lane order, starting with an initial scalar value, i.e.
/// result = InitVal + v0
/// result = result + v1
/// result = result + v2
/// result = result + v3
/// This is only the case for FP operations and when reassociation is not
/// allowed.
///
InstructionCost getArithmeticReductionCost(
unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
InstructionCost getMinMaxReductionCost(
VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
/// Calculate the cost of an extended reduction pattern, similar to
/// getArithmeticReductionCost of an Add reduction with multiply and optional
/// extensions. This is the cost of as:
/// ResTy vecreduce.add(mul (A, B)).
/// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)).
InstructionCost getMulAccReductionCost(
bool IsUnsigned, Type *ResTy, VectorType *Ty,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
/// Calculate the cost of an extended reduction pattern, similar to
/// getArithmeticReductionCost of a reduction with an extension.
/// This is the cost of as:
/// ResTy vecreduce.opcode(ext(Ty A)).
InstructionCost getExtendedReductionCost(
unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
/// \returns The cost of Intrinsic instructions. Analyses the real arguments.
/// Three cases are handled: 1. scalar instruction 2. vector instruction
/// 3. scalar instruction which is to be vectorized.
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) const;
/// \returns The cost of Call instructions.
InstructionCost getCallInstrCost(
Function *F, Type *RetTy, ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
/// \returns The number of pieces into which the provided type must be
/// split during legalization. Zero is returned when the answer is unknown.
unsigned getNumberOfParts(Type *Tp) const;
/// \returns The cost of the address computation. For most targets this can be
/// merged into the instruction indexing mode. Some targets might want to
/// distinguish between address computation for memory operations on vector
/// types and scalar types. Such targets should override this function.
/// The 'SE' parameter holds pointer for the scalar evolution object which
/// is used in order to get the Ptr step value in case of constant stride.
/// The 'Ptr' parameter holds SCEV of the access pointer.
InstructionCost getAddressComputationCost(Type *Ty,
ScalarEvolution *SE = nullptr,
const SCEV *Ptr = nullptr) const;
/// \returns The cost, if any, of keeping values of the given types alive
/// over a callsite.
///
/// Some types may require the use of register classes that do not have
/// any callee-saved registers, so would require a spill and fill.
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
/// \returns True if the intrinsic is a supported memory intrinsic. Info
/// will contain additional information - whether the intrinsic may write
/// or read to memory, volatility and the pointer. Info is undefined
/// if false is returned.
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
/// \returns The maximum element size, in bytes, for an element
/// unordered-atomic memory intrinsic.
unsigned getAtomicMemIntrinsicMaxElementSize() const;
/// \returns A value which is the result of the given memory intrinsic. New
/// instructions may be created to extract the result from the given intrinsic
/// memory operation. Returns nullptr if the target cannot create a result
/// from the given intrinsic.
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) const;
/// \returns The type to use in a loop expansion of a memcpy call.
Type *getMemcpyLoopLoweringType(
LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
/// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
/// \param RemainingBytes The number of bytes to copy.
///
/// Calculates the operand types to use when copying \p RemainingBytes of
/// memory, where source and destination alignments are \p SrcAlign and
/// \p DestAlign respectively.
void getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign,
std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
/// \returns True if the two functions have compatible attributes for inlining
/// purposes.
bool areInlineCompatible(const Function *Caller,
const Function *Callee) const;
/// \returns True if the caller and callee agree on how \p Types will be
/// passed to or returned from the callee.
/// to the callee.
/// \param Types List of types to check.
bool areTypesABICompatible(const Function *Caller, const Function *Callee,
const ArrayRef<Type *> &Types) const;
/// The type of load/store indexing.
enum MemIndexedMode {
MIM_Unindexed, ///< No indexing.
MIM_PreInc, ///< Pre-incrementing.
MIM_PreDec, ///< Pre-decrementing.
MIM_PostInc, ///< Post-incrementing.
MIM_PostDec ///< Post-decrementing.
};
/// \returns True if the specified indexed load for the given type is legal.
bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
/// \returns True if the specified indexed store for the given type is legal.
bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
/// \returns The bitwidth of the largest vector type that should be used to
/// load/store in the given address space.
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
/// \returns True if the load instruction is legal to vectorize.
bool isLegalToVectorizeLoad(LoadInst *LI) const;
/// \returns True if the store instruction is legal to vectorize.
bool isLegalToVectorizeStore(StoreInst *SI) const;
/// \returns True if it is legal to vectorize the given load chain.
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const;
/// \returns True if it is legal to vectorize the given store chain.
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const;
/// \returns True if it is legal to vectorize the given reduction kind.
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
ElementCount VF) const;
/// \returns True if the given type is supported for scalable vectors
bool isElementTypeLegalForScalableVector(Type *Ty) const;
/// \returns The new vector factor value if the target doesn't support \p
/// SizeInBytes loads or has a better vector factor.
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const;
/// \returns The new vector factor value if the target doesn't support \p
/// SizeInBytes stores or has a better vector factor.
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const;
/// Flags describing the kind of vector reduction.
struct ReductionFlags {
ReductionFlags() = default;
bool IsMaxOp =
false; ///< If the op a min/max kind, true if it's a max operation.
bool IsSigned = false; ///< Whether the operation is a signed int reduction.
bool NoNaN =
false; ///< If op is an fp min/max, whether NaNs may be present.
};
/// \returns True if the target prefers reductions in loop.
bool preferInLoopReduction(unsigned Opcode, Type *Ty,
ReductionFlags Flags) const;
/// \returns True if the target prefers reductions select kept in the loop
/// when tail folding. i.e.
/// loop:
/// p = phi (0, s)
/// a = add (p, x)
/// s = select (mask, a, p)
/// vecreduce.add(s)
///
/// As opposed to the normal scheme of p = phi (0, a) which allows the select
/// to be pulled out of the loop. If the select(.., add, ..) can be predicated
/// by the target, this can lead to cleaner code generation.
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
ReductionFlags Flags) const;
/// Return true if the loop vectorizer should consider vectorizing an
/// otherwise scalar epilogue loop.
bool preferEpilogueVectorization() const;
/// \returns True if the target wants to expand the given reduction intrinsic
/// into a shuffle sequence.
bool shouldExpandReduction(const IntrinsicInst *II) const;
/// \returns the size cost of rematerializing a GlobalValue address relative
/// to a stack reload.
unsigned getGISelRematGlobalCost() const;
/// \returns the lower bound of a trip count to decide on vectorization
/// while tail-folding.
unsigned getMinTripCountTailFoldingThreshold() const;
/// \returns True if the target supports scalable vectors.
bool supportsScalableVectors() const;
/// \return true when scalable vectorization is preferred.
bool enableScalableVectorization() const;
/// \name Vector Predication Information
/// @{
/// Whether the target supports the %evl parameter of VP intrinsic efficiently
/// in hardware, for the given opcode and type/alignment. (see LLVM Language
/// Reference - "Vector Predication Intrinsics").
/// Use of %evl is discouraged when that is not the case.
bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
Align Alignment) const;
struct VPLegalization {
enum VPTransform {
// keep the predicating parameter
Legal = 0,
// where legal, discard the predicate parameter
Discard = 1,
// transform into something else that is also predicating
Convert = 2
};
// How to transform the EVL parameter.
// Legal: keep the EVL parameter as it is.
// Discard: Ignore the EVL parameter where it is safe to do so.
// Convert: Fold the EVL into the mask parameter.
VPTransform EVLParamStrategy;
// How to transform the operator.
// Legal: The target supports this operator.
// Convert: Convert this to a non-VP operation.
// The 'Discard' strategy is invalid.
VPTransform OpStrategy;
bool shouldDoNothing() const {
return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
}
VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)
: EVLParamStrategy(EVLParamStrategy), OpStrategy(OpStrategy) {}
};
/// \returns How the target needs this vector-predicated operation to be
/// transformed.
VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const;
/// @}
/// @}
private:
/// The abstract base class used to type erase specific TTI
/// implementations.
class Concept;
/// The template model for the base class which wraps a concrete
/// implementation in a type erased interface.
template <typename T> class Model;
std::unique_ptr<Concept> TTIImpl;
};
class TargetTransformInfo::Concept {
public:
virtual ~Concept() = 0;
virtual const DataLayout &getDataLayout() const = 0;
virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) = 0;
virtual unsigned getInliningThresholdMultiplier() = 0;
virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
virtual int getInlinerVectorBonusPercent() = 0;
virtual InstructionCost getMemcpyCost(const Instruction *I) = 0;
virtual unsigned
getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) = 0;
virtual InstructionCost getInstructionCost(const User *U,
ArrayRef<const Value *> Operands,
TargetCostKind CostKind) = 0;
virtual BranchProbability getPredictableBranchThreshold() = 0;
virtual bool hasBranchDivergence() = 0;
virtual bool useGPUDivergenceAnalysis() = 0;
virtual bool isSourceOfDivergence(const Value *V) = 0;
virtual bool isAlwaysUniform(const Value *V) = 0;
virtual unsigned getFlatAddressSpace() = 0;
virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const = 0;
virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
virtual bool
canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const = 0;
virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
virtual bool isSingleThreaded() const = 0;
virtual std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value *V) const = 0;
virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
Value *OldV,
Value *NewV) const = 0;
virtual bool isLoweredToCall(const Function *F) = 0;
virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) = 0;
virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
PeelingPreferences &PP) = 0;
virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
AssumptionCache &AC,
TargetLibraryInfo *LibInfo,
HardwareLoopInfo &HWLoopInfo) = 0;
virtual bool
preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *TLI,
DominatorTree *DT, LoopVectorizationLegality *LVL,
InterleavedAccessInfo *IAI) = 0;
virtual PredicationStyle emitGetActiveLaneMask() = 0;
virtual std::optional<Instruction *> instCombineIntrinsic(
InstCombiner &IC, IntrinsicInst &II) = 0;
virtual std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask,
KnownBits & Known, bool &KnownBitsComputed) = 0;
virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts,
APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) = 0;
virtual bool isLegalAddImmediate(int64_t Imm) = 0;
virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale, unsigned AddrSpace,
Instruction *I) = 0;
virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
const TargetTransformInfo::LSRCost &C2) = 0;
virtual bool isNumRegsMajorCostOfLSR() = 0;
virtual bool isProfitableLSRChainElement(Instruction *I) = 0;
virtual bool canMacroFuseCmp() = 0;
virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *LibInfo) = 0;
virtual AddressingModeKind
getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const = 0;
virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
virtual bool isLegalBroadcastLoad(Type *ElementTy,
ElementCount NumElements) const = 0;
virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
virtual bool forceScalarizeMaskedGather(VectorType *DataType,
Align Alignment) = 0;
virtual bool forceScalarizeMaskedScatter(VectorType *DataType,
Align Alignment) = 0;
virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
unsigned Opcode1,
const SmallBitVector &OpcodeMask) const = 0;
virtual bool enableOrderedReductions() = 0;
virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
virtual bool prefersVectorizedAddressing() = 0;
virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
unsigned AddrSpace) = 0;
virtual bool LSRWithInstrQueries() = 0;
virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
virtual bool isProfitableToHoist(Instruction *I) = 0;
virtual bool useAA() = 0;
virtual bool isTypeLegal(Type *Ty) = 0;
virtual unsigned getRegUsageForType(Type *Ty) = 0;
virtual bool shouldBuildLookupTables() = 0;
virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
virtual bool shouldBuildRelLookupTables() = 0;
virtual bool useColdCCForColdCall(Function &F) = 0;
virtual InstructionCost getScalarizationOverhead(VectorType *Ty,
const APInt &DemandedElts,
bool Insert, bool Extract,
TargetCostKind CostKind) = 0;
virtual InstructionCost
getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys,
TargetCostKind CostKind) = 0;
virtual bool supportsEfficientVectorElementLoadStore() = 0;
virtual bool supportsTailCalls() = 0;
virtual bool supportsTailCallFor(const CallBase *CB) = 0;
virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
virtual MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
virtual bool enableSelectOptimize() = 0;
virtual bool enableInterleavedAccessVectorization() = 0;
virtual bool enableMaskedInterleavedAccessVectorization() = 0;
virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
unsigned BitWidth,
unsigned AddressSpace,
Align Alignment,
unsigned *Fast) = 0;
virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
virtual bool haveFastSqrt(Type *Ty) = 0;
virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I) = 0;
virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
virtual InstructionCost getFPOpCost(Type *Ty) = 0;
virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty) = 0;
virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
TargetCostKind CostKind) = 0;
virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind,
Instruction *Inst = nullptr) = 0;
virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind) = 0;
virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
virtual unsigned getRegisterClassForType(bool Vector,
Type *Ty = nullptr) const = 0;
virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
virtual TypeSize getRegisterBitWidth(RegisterKind K) const = 0;
virtual unsigned getMinVectorRegisterBitWidth() const = 0;
virtual std::optional<unsigned> getMaxVScale() const = 0;
virtual std::optional<unsigned> getVScaleForTuning() const = 0;
virtual bool
shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const = 0;
virtual ElementCount getMinimumVF(unsigned ElemWidth,
bool IsScalable) const = 0;
virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
Type *ScalarValTy) const = 0;
virtual bool shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
virtual unsigned getCacheLineSize() const = 0;
virtual std::optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
virtual std::optional<unsigned> getCacheAssociativity(CacheLevel Level)
const = 0;
/// \return How much before a load we should place the prefetch
/// instruction. This is currently measured in number of
/// instructions.
virtual unsigned getPrefetchDistance() const = 0;
/// \return Some HW prefetchers can handle accesses up to a certain
/// constant stride. This is the minimum stride in bytes where it
/// makes sense to start adding SW prefetches. The default is 1,
/// i.e. prefetch with any stride. Sometimes prefetching is beneficial
/// even below the HW prefetcher limit, and the arguments provided are
/// meant to serve as a basis for deciding this for a particular loop.
virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
unsigned NumStridedMemAccesses,
unsigned NumPrefetches,
bool HasCall) const = 0;
/// \return The maximum number of iterations to prefetch ahead. If
/// the required number of iterations is more than this number, no
/// prefetching is performed.
virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
/// \return True if prefetching should also be done for writes.
virtual bool enableWritePrefetching() const = 0;
/// \return if target want to issue a prefetch in address space \p AS.
virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0;
virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
virtual InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0;
virtual InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
ArrayRef<int> Mask,
TTI::TargetCostKind CostKind,
int Index, VectorType *SubTp,
ArrayRef<const Value *> Args) = 0;
virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src, CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) = 0;
virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index) = 0;
virtual InstructionCost getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) = 0;
virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) = 0;
virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index, Value *Op0,
Value *Op1) = 0;
virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index) = 0;
virtual InstructionCost
getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
const APInt &DemandedDstElts,
TTI::TargetCostKind CostKind) = 0;
virtual InstructionCost
getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace, TTI::TargetCostKind CostKind,
OperandValueInfo OpInfo, const Instruction *I) = 0;
virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I) = 0;
virtual InstructionCost
getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind) = 0;
virtual InstructionCost
getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
bool VariableMask, Align Alignment,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) = 0;
virtual InstructionCost getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
virtual InstructionCost
getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) = 0;
virtual InstructionCost
getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
TTI::TargetCostKind CostKind) = 0;
virtual InstructionCost getExtendedReductionCost(
unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
virtual InstructionCost getMulAccReductionCost(
bool IsUnsigned, Type *ResTy, VectorType *Ty,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
virtual InstructionCost
getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) = 0;
virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind) = 0;
virtual unsigned getNumberOfParts(Type *Tp) = 0;
virtual InstructionCost
getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0;
virtual InstructionCost
getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) = 0;
virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) = 0;
virtual Type *getMemcpyLoopLoweringType(
LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
std::optional<uint32_t> AtomicElementSize) const = 0;
virtual void getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign,
std::optional<uint32_t> AtomicCpySize) const = 0;
virtual bool areInlineCompatible(const Function *Caller,
const Function *Callee) const = 0;
virtual bool areTypesABICompatible(const Function *Caller,
const Function *Callee,
const ArrayRef<Type *> &Types) const = 0;
virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const = 0;
virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const = 0;
virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
ElementCount VF) const = 0;
virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0;
virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const = 0;
virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const = 0;
virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
ReductionFlags) const = 0;
virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
ReductionFlags) const = 0;
virtual bool preferEpilogueVectorization() const = 0;
virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
virtual unsigned getGISelRematGlobalCost() const = 0;
virtual unsigned getMinTripCountTailFoldingThreshold() const = 0;
virtual bool enableScalableVectorization() const = 0;
virtual bool supportsScalableVectors() const = 0;
virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
Align Alignment) const = 0;
virtual VPLegalization
getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0;
};
template <typename T>
class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
T Impl;
public:
Model(T Impl) : Impl(std::move(Impl)) {}
~Model() override = default;
const DataLayout &getDataLayout() const override {
return Impl.getDataLayout();
}
InstructionCost
getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands,
TargetTransformInfo::TargetCostKind CostKind) override {
return Impl.getGEPCost(PointeeType, Ptr, Operands, CostKind);
}
unsigned getInliningThresholdMultiplier() override {
return Impl.getInliningThresholdMultiplier();
}
unsigned adjustInliningThreshold(const CallBase *CB) override {
return Impl.adjustInliningThreshold(CB);
}
int getInlinerVectorBonusPercent() override {
return Impl.getInlinerVectorBonusPercent();
}
InstructionCost getMemcpyCost(const Instruction *I) override {
return Impl.getMemcpyCost(I);
}
InstructionCost getInstructionCost(const User *U,
ArrayRef<const Value *> Operands,
TargetCostKind CostKind) override {
return Impl.getInstructionCost(U, Operands, CostKind);
}
BranchProbability getPredictableBranchThreshold() override {
return Impl.getPredictableBranchThreshold();
}
bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
bool useGPUDivergenceAnalysis() override {
return Impl.useGPUDivergenceAnalysis();
}
bool isSourceOfDivergence(const Value *V) override {
return Impl.isSourceOfDivergence(V);
}
bool isAlwaysUniform(const Value *V) override {
return Impl.isAlwaysUniform(V);
}
unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const override {
return Impl.collectFlatAddressOperands(OpIndexes, IID);
}
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
}
bool
canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override {
return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS);
}
unsigned getAssumedAddrSpace(const Value *V) const override {
return Impl.getAssumedAddrSpace(V);
}
bool isSingleThreaded() const override { return Impl.isSingleThreaded(); }
std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value *V) const override {
return Impl.getPredicatedAddrSpace(V);
}
Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
Value *NewV) const override {
return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
}
bool isLoweredToCall(const Function *F) override {
return Impl.isLoweredToCall(F);
}
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) override {
return Impl.getUnrollingPreferences(L, SE, UP, ORE);
}
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
PeelingPreferences &PP) override {
return Impl.getPeelingPreferences(L, SE, PP);
}
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *LibInfo,
HardwareLoopInfo &HWLoopInfo) override {
return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
}
bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *TLI,
DominatorTree *DT,
LoopVectorizationLegality *LVL,
InterleavedAccessInfo *IAI) override {
return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL, IAI);
}
PredicationStyle emitGetActiveLaneMask() override {
return Impl.emitGetActiveLaneMask();
}
std::optional<Instruction *>
instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override {
return Impl.instCombineIntrinsic(IC, II);
}
std::optional<Value *>
simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
APInt DemandedMask, KnownBits &Known,
bool &KnownBitsComputed) override {
return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
KnownBitsComputed);
}
std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) override {
return Impl.simplifyDemandedVectorEltsIntrinsic(
IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
SimplifyAndSetOp);
}
bool isLegalAddImmediate(int64_t Imm) override {
return Impl.isLegalAddImmediate(Imm);
}
bool isLegalICmpImmediate(int64_t Imm) override {
return Impl.isLegalICmpImmediate(Imm);
}
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
Instruction *I) override {
return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
AddrSpace, I);
}
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
const TargetTransformInfo::LSRCost &C2) override {
return Impl.isLSRCostLess(C1, C2);
}
bool isNumRegsMajorCostOfLSR() override {
return Impl.isNumRegsMajorCostOfLSR();
}
bool isProfitableLSRChainElement(Instruction *I) override {
return Impl.isProfitableLSRChainElement(I);
}
bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *LibInfo) override {
return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
}
AddressingModeKind
getPreferredAddressingMode(const Loop *L,
ScalarEvolution *SE) const override {
return Impl.getPreferredAddressingMode(L, SE);
}
bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
return Impl.isLegalMaskedStore(DataType, Alignment);
}
bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
return Impl.isLegalMaskedLoad(DataType, Alignment);
}
bool isLegalNTStore(Type *DataType, Align Alignment) override {
return Impl.isLegalNTStore(DataType, Alignment);
}
bool isLegalNTLoad(Type *DataType, Align Alignment) override {
return Impl.isLegalNTLoad(DataType, Alignment);
}
bool isLegalBroadcastLoad(Type *ElementTy,
ElementCount NumElements) const override {
return Impl.isLegalBroadcastLoad(ElementTy, NumElements);
}
bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
return Impl.isLegalMaskedScatter(DataType, Alignment);
}
bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
return Impl.isLegalMaskedGather(DataType, Alignment);
}
bool forceScalarizeMaskedGather(VectorType *DataType,
Align Alignment) override {
return Impl.forceScalarizeMaskedGather(DataType, Alignment);
}
bool forceScalarizeMaskedScatter(VectorType *DataType,
Align Alignment) override {
return Impl.forceScalarizeMaskedScatter(DataType, Alignment);
}
bool isLegalMaskedCompressStore(Type *DataType) override {
return Impl.isLegalMaskedCompressStore(DataType);
}
bool isLegalMaskedExpandLoad(Type *DataType) override {
return Impl.isLegalMaskedExpandLoad(DataType);
}
bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
const SmallBitVector &OpcodeMask) const override {
return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
}
bool enableOrderedReductions() override {
return Impl.enableOrderedReductions();
}
bool hasDivRemOp(Type *DataType, bool IsSigned) override {
return Impl.hasDivRemOp(DataType, IsSigned);
}
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
return Impl.hasVolatileVariant(I, AddrSpace);
}
bool prefersVectorizedAddressing() override {
return Impl.prefersVectorizedAddressing();
}
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale,
unsigned AddrSpace) override {
return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
AddrSpace);
}
bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
bool isTruncateFree(Type *Ty1, Type *Ty2) override {
return Impl.isTruncateFree(Ty1, Ty2);
}
bool isProfitableToHoist(Instruction *I) override {
return Impl.isProfitableToHoist(I);
}
bool useAA() override { return Impl.useAA(); }
bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
unsigned getRegUsageForType(Type *Ty) override {
return Impl.getRegUsageForType(Ty);
}
bool shouldBuildLookupTables() override {
return Impl.shouldBuildLookupTables();
}
bool shouldBuildLookupTablesForConstant(Constant *C) override {
return Impl.shouldBuildLookupTablesForConstant(C);
}
bool shouldBuildRelLookupTables() override {
return Impl.shouldBuildRelLookupTables();
}
bool useColdCCForColdCall(Function &F) override {
return Impl.useColdCCForColdCall(F);
}
InstructionCost getScalarizationOverhead(VectorType *Ty,
const APInt &DemandedElts,
bool Insert, bool Extract,
TargetCostKind CostKind) override {
return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
CostKind);
}
InstructionCost
getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys,
TargetCostKind CostKind) override {
return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind);
}
bool supportsEfficientVectorElementLoadStore() override {
return Impl.supportsEfficientVectorElementLoadStore();
}
bool supportsTailCalls() override { return Impl.supportsTailCalls(); }
bool supportsTailCallFor(const CallBase *CB) override {
return Impl.supportsTailCallFor(CB);
}
bool enableAggressiveInterleaving(bool LoopHasReductions) override {
return Impl.enableAggressiveInterleaving(LoopHasReductions);
}
MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
bool IsZeroCmp) const override {
return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
}
bool enableInterleavedAccessVectorization() override {
return Impl.enableInterleavedAccessVectorization();
}
bool enableSelectOptimize() override {
return Impl.enableSelectOptimize();
}
bool enableMaskedInterleavedAccessVectorization() override {
return Impl.enableMaskedInterleavedAccessVectorization();
}
bool isFPVectorizationPotentiallyUnsafe() override {
return Impl.isFPVectorizationPotentiallyUnsafe();
}
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
unsigned AddressSpace, Align Alignment,
unsigned *Fast) override {
return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
Alignment, Fast);
}
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
return Impl.getPopcntSupport(IntTyWidthInBit);
}
bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
bool isExpensiveToSpeculativelyExecute(const Instruction* I) override {
return Impl.isExpensiveToSpeculativelyExecute(I);
}
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
}
InstructionCost getFPOpCost(Type *Ty) override {
return Impl.getFPOpCost(Ty);
}
InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty) override {
return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
}
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
TargetCostKind CostKind) override {
return Impl.getIntImmCost(Imm, Ty, CostKind);
}
InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind,
Instruction *Inst = nullptr) override {
return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
}
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind) override {
return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
}
unsigned getNumberOfRegisters(unsigned ClassID) const override {
return Impl.getNumberOfRegisters(ClassID);
}
unsigned getRegisterClassForType(bool Vector,
Type *Ty = nullptr) const override {
return Impl.getRegisterClassForType(Vector, Ty);
}
const char *getRegisterClassName(unsigned ClassID) const override {
return Impl.getRegisterClassName(ClassID);
}
TypeSize getRegisterBitWidth(RegisterKind K) const override {
return Impl.getRegisterBitWidth(K);
}
unsigned getMinVectorRegisterBitWidth() const override {
return Impl.getMinVectorRegisterBitWidth();
}
std::optional<unsigned> getMaxVScale() const override {
return Impl.getMaxVScale();
}
std::optional<unsigned> getVScaleForTuning() const override {
return Impl.getVScaleForTuning();
}
bool shouldMaximizeVectorBandwidth(
TargetTransformInfo::RegisterKind K) const override {
return Impl.shouldMaximizeVectorBandwidth(K);
}
ElementCount getMinimumVF(unsigned ElemWidth,
bool IsScalable) const override {
return Impl.getMinimumVF(ElemWidth, IsScalable);
}
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
return Impl.getMaximumVF(ElemWidth, Opcode);
}
unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
Type *ScalarValTy) const override {
return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
}
bool shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
return Impl.shouldConsiderAddressTypePromotion(
I, AllowPromotionWithoutCommonHeader);
}
unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
std::optional<unsigned> getCacheSize(CacheLevel Level) const override {
return Impl.getCacheSize(Level);
}
std::optional<unsigned>
getCacheAssociativity(CacheLevel Level) const override {
return Impl.getCacheAssociativity(Level);
}
/// Return the preferred prefetch distance in terms of instructions.
///
unsigned getPrefetchDistance() const override {
return Impl.getPrefetchDistance();
}
/// Return the minimum stride necessary to trigger software
/// prefetching.
///
unsigned getMinPrefetchStride(unsigned NumMemAccesses,
unsigned NumStridedMemAccesses,
unsigned NumPrefetches,
bool HasCall) const override {
return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
NumPrefetches, HasCall);
}
/// Return the maximum prefetch distance in terms of loop
/// iterations.
///
unsigned getMaxPrefetchIterationsAhead() const override {
return Impl.getMaxPrefetchIterationsAhead();
}
/// \return True if prefetching should also be done for writes.
bool enableWritePrefetching() const override {
return Impl.enableWritePrefetching();
}
/// \return if target want to issue a prefetch in address space \p AS.
bool shouldPrefetchAddressSpace(unsigned AS) const override {
return Impl.shouldPrefetchAddressSpace(AS);
}
unsigned getMaxInterleaveFactor(unsigned VF) override {
return Impl.getMaxInterleaveFactor(VF);
}
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
unsigned &JTSize,
ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) override {
return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
}
InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
ArrayRef<const Value *> Args,
const Instruction *CxtI = nullptr) override {
return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
Args, CxtI);
}
InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
ArrayRef<int> Mask,
TTI::TargetCostKind CostKind, int Index,
VectorType *SubTp,
ArrayRef<const Value *> Args) override {
return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args);
}
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) override {
return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index) override {
return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
}
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) override {
return Impl.getCFInstrCost(Opcode, CostKind, I);
}
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) override {
return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
}
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index, Value *Op0,
Value *Op1) override {
return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
}
InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index) override {
return Impl.getVectorInstrCost(I, Val, CostKind, Index);
}
InstructionCost
getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
const APInt &DemandedDstElts,
TTI::TargetCostKind CostKind) override {
return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
DemandedDstElts, CostKind);
}
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
OperandValueInfo OpInfo,
const Instruction *I) override {
return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind,
OpInfo, I);
}
InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I) override {
return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, I);
}
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind) override {
return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind);
}
InstructionCost
getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
bool VariableMask, Align Alignment,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) override {
return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
}
InstructionCost getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond, bool UseMaskForGaps) override {
return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace, CostKind,
UseMaskForCond, UseMaskForGaps);
}
InstructionCost
getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) override {
return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
}
InstructionCost
getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
TTI::TargetCostKind CostKind) override {
return Impl.getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
}
InstructionCost getExtendedReductionCost(
unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF,
CostKind);
}
InstructionCost getMulAccReductionCost(
bool IsUnsigned, Type *ResTy, VectorType *Ty,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind);
}
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) override {
return Impl.getIntrinsicInstrCost(ICA, CostKind);
}
InstructionCost getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind) override {
return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
}
unsigned getNumberOfParts(Type *Tp) override {
return Impl.getNumberOfParts(Tp);
}
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
const SCEV *Ptr) override {
return Impl.getAddressComputationCost(Ty, SE, Ptr);
}
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
return Impl.getCostOfKeepingLiveOverCall(Tys);
}
bool getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) override {
return Impl.getTgtMemIntrinsic(Inst, Info);
}
unsigned getAtomicMemIntrinsicMaxElementSize() const override {
return Impl.getAtomicMemIntrinsicMaxElementSize();
}
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) override {
return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
}
Type *getMemcpyLoopLoweringType(
LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
std::optional<uint32_t> AtomicElementSize) const override {
return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
DestAddrSpace, SrcAlign, DestAlign,
AtomicElementSize);
}
void getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign,
std::optional<uint32_t> AtomicCpySize) const override {
Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
SrcAddrSpace, DestAddrSpace,
SrcAlign, DestAlign, AtomicCpySize);
}
bool areInlineCompatible(const Function *Caller,
const Function *Callee) const override {
return Impl.areInlineCompatible(Caller, Callee);
}
bool areTypesABICompatible(const Function *Caller, const Function *Callee,
const ArrayRef<Type *> &Types) const override {
return Impl.areTypesABICompatible(Caller, Callee, Types);
}
bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
}
bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
}
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
}
bool isLegalToVectorizeLoad(LoadInst *LI) const override {
return Impl.isLegalToVectorizeLoad(LI);
}
bool isLegalToVectorizeStore(StoreInst *SI) const override {
return Impl.isLegalToVectorizeStore(SI);
}
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const override {
return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const override {
return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
ElementCount VF) const override {
return Impl.isLegalToVectorizeReduction(RdxDesc, VF);
}
bool isElementTypeLegalForScalableVector(Type *Ty) const override {
return Impl.isElementTypeLegalForScalableVector(Ty);
}
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const override {
return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
}
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const override {
return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
}
bool preferInLoopReduction(unsigned Opcode, Type *Ty,
ReductionFlags Flags) const override {
return Impl.preferInLoopReduction(Opcode, Ty, Flags);
}
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
ReductionFlags Flags) const override {
return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
}
bool preferEpilogueVectorization() const override {
return Impl.preferEpilogueVectorization();
}
bool shouldExpandReduction(const IntrinsicInst *II) const override {
return Impl.shouldExpandReduction(II);
}
unsigned getGISelRematGlobalCost() const override {
return Impl.getGISelRematGlobalCost();
}
unsigned getMinTripCountTailFoldingThreshold() const override {
return Impl.getMinTripCountTailFoldingThreshold();
}
bool supportsScalableVectors() const override {
return Impl.supportsScalableVectors();
}
bool enableScalableVectorization() const override {
return Impl.enableScalableVectorization();
}
bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
Align Alignment) const override {
return Impl.hasActiveVectorLength(Opcode, DataType, Alignment);
}
VPLegalization
getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
return Impl.getVPLegalizationStrategy(PI);
}
};
template <typename T>
TargetTransformInfo::TargetTransformInfo(T Impl)
: TTIImpl(new Model<T>(Impl)) {}
/// Analysis pass providing the \c TargetTransformInfo.
///
/// The core idea of the TargetIRAnalysis is to expose an interface through
/// which LLVM targets can analyze and provide information about the middle
/// end's target-independent IR. This supports use cases such as target-aware
/// cost modeling of IR constructs.
///
/// This is a function analysis because much of the cost modeling for targets
/// is done in a subtarget specific way and LLVM supports compiling different
/// functions targeting different subtargets in order to support runtime
/// dispatch according to the observed subtarget.
class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
public:
typedef TargetTransformInfo Result;
/// Default construct a target IR analysis.
///
/// This will use the module's datalayout to construct a baseline
/// conservative TTI result.
TargetIRAnalysis();
/// Construct an IR analysis pass around a target-provide callback.
///
/// The callback will be called with a particular function for which the TTI
/// is needed and must return a TTI object for that function.
TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
// Value semantics. We spell out the constructors for MSVC.
TargetIRAnalysis(const TargetIRAnalysis &Arg)
: TTICallback(Arg.TTICallback) {}
TargetIRAnalysis(TargetIRAnalysis &&Arg)
: TTICallback(std::move(Arg.TTICallback)) {}
TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
TTICallback = RHS.TTICallback;
return *this;
}
TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
TTICallback = std::move(RHS.TTICallback);
return *this;
}
Result run(const Function &F, FunctionAnalysisManager &);
private:
friend AnalysisInfoMixin<TargetIRAnalysis>;
static AnalysisKey Key;
/// The callback used to produce a result.
///
/// We use a completely opaque callback so that targets can provide whatever
/// mechanism they desire for constructing the TTI for a given function.
///
/// FIXME: Should we really use std::function? It's relatively inefficient.
/// It might be possible to arrange for even stateful callbacks to outlive
/// the analysis and thus use a function_ref which would be lighter weight.
/// This may also be less error prone as the callback is likely to reference
/// the external TargetMachine, and that reference needs to never dangle.
std::function<Result(const Function &)> TTICallback;
/// Helper function used as the callback in the default constructor.
static Result getDefaultTTI(const Function &F);
};
/// Wrapper pass for TargetTransformInfo.
///
/// This pass can be constructed from a TTI object which it stores internally
/// and is queried by passes.
class TargetTransformInfoWrapperPass : public ImmutablePass {
TargetIRAnalysis TIRA;
std::optional<TargetTransformInfo> TTI;
virtual void anchor();
public:
static char ID;
/// We must provide a default constructor for the pass but it should
/// never be used.
///
/// Use the constructor below or call one of the creation routines.
TargetTransformInfoWrapperPass();
explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
TargetTransformInfo &getTTI(const Function &F);
};
/// Create an analysis pass wrapper around a TTI object.
///
/// This analysis pass just holds the TTI instance and makes it available to
/// clients.
ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
} // namespace llvm
#endif
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|