aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/include/llvm/Analysis/LoopIterator.h
blob: f0d89826d47b0e1929b23ef24fcc94ed67c5801b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===--------- LoopIterator.h - Iterate over loop blocks --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file defines iterators to visit the basic blocks within a loop.
//
// These iterators currently visit blocks within subloops as well.
// Unfortunately we have no efficient way of summarizing loop exits which would
// allow skipping subloops during traversal.
//
// If you want to visit all blocks in a loop and don't need an ordered traveral,
// use Loop::block_begin() instead.
//
// This is intentionally designed to work with ill-formed loops in which the
// backedge has been deleted. The only prerequisite is that all blocks
// contained within the loop according to the most recent LoopInfo analysis are
// reachable from the loop header.
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_LOOPITERATOR_H
#define LLVM_ANALYSIS_LOOPITERATOR_H

#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/LoopInfo.h"

namespace llvm {

class LoopBlocksTraversal;

// A traits type that is intended to be used in graph algorithms. The graph
// traits starts at the loop header, and traverses the BasicBlocks that are in
// the loop body, but not the loop header. Since the loop header is skipped,
// the back edges are excluded.
//
// TODO: Explore the possibility to implement LoopBlocksTraversal in terms of
//       LoopBodyTraits, so that insertEdge doesn't have to be specialized.
struct LoopBodyTraits {
  using NodeRef = std::pair<const Loop *, BasicBlock *>;

  // This wraps a const Loop * into the iterator, so we know which edges to
  // filter out.
  class WrappedSuccIterator
      : public iterator_adaptor_base<
            WrappedSuccIterator, succ_iterator,
            typename std::iterator_traits<succ_iterator>::iterator_category,
            NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> {
    using BaseT = iterator_adaptor_base<
        WrappedSuccIterator, succ_iterator,
        typename std::iterator_traits<succ_iterator>::iterator_category,
        NodeRef, std::ptrdiff_t, NodeRef *, NodeRef>;

    const Loop *L;

  public:
    WrappedSuccIterator(succ_iterator Begin, const Loop *L)
        : BaseT(Begin), L(L) {}

    NodeRef operator*() const { return {L, *I}; }
  };

  struct LoopBodyFilter {
    bool operator()(NodeRef N) const {
      const Loop *L = N.first;
      return N.second != L->getHeader() && L->contains(N.second);
    }
  };

  using ChildIteratorType =
      filter_iterator<WrappedSuccIterator, LoopBodyFilter>;

  static NodeRef getEntryNode(const Loop &G) { return {&G, G.getHeader()}; }

  static ChildIteratorType child_begin(NodeRef Node) {
    return make_filter_range(make_range<WrappedSuccIterator>(
                                 {succ_begin(Node.second), Node.first},
                                 {succ_end(Node.second), Node.first}),
                             LoopBodyFilter{})
        .begin();
  }

  static ChildIteratorType child_end(NodeRef Node) {
    return make_filter_range(make_range<WrappedSuccIterator>(
                                 {succ_begin(Node.second), Node.first},
                                 {succ_end(Node.second), Node.first}),
                             LoopBodyFilter{})
        .end();
  }
};

/// Store the result of a depth first search within basic blocks contained by a
/// single loop.
///
/// TODO: This could be generalized for any CFG region, or the entire CFG.
class LoopBlocksDFS {
public:
  /// Postorder list iterators.
  typedef std::vector<BasicBlock*>::const_iterator POIterator;
  typedef std::vector<BasicBlock*>::const_reverse_iterator RPOIterator;

  friend class LoopBlocksTraversal;

private:
  Loop *L;

  /// Map each block to its postorder number. A block is only mapped after it is
  /// preorder visited by DFS. It's postorder number is initially zero and set
  /// to nonzero after it is finished by postorder traversal.
  DenseMap<BasicBlock*, unsigned> PostNumbers;
  std::vector<BasicBlock*> PostBlocks;

public:
  LoopBlocksDFS(Loop *Container) :
    L(Container), PostNumbers(NextPowerOf2(Container->getNumBlocks())) {
    PostBlocks.reserve(Container->getNumBlocks());
  }

  Loop *getLoop() const { return L; }

  /// Traverse the loop blocks and store the DFS result.
  void perform(LoopInfo *LI);

  /// Return true if postorder numbers are assigned to all loop blocks.
  bool isComplete() const { return PostBlocks.size() == L->getNumBlocks(); }

  /// Iterate over the cached postorder blocks.
  POIterator beginPostorder() const {
    assert(isComplete() && "bad loop DFS");
    return PostBlocks.begin();
  }
  POIterator endPostorder() const { return PostBlocks.end(); }

  /// Reverse iterate over the cached postorder blocks.
  RPOIterator beginRPO() const {
    assert(isComplete() && "bad loop DFS");
    return PostBlocks.rbegin();
  }
  RPOIterator endRPO() const { return PostBlocks.rend(); }

  /// Return true if this block has been preorder visited.
  bool hasPreorder(BasicBlock *BB) const { return PostNumbers.count(BB); }

  /// Return true if this block has a postorder number.
  bool hasPostorder(BasicBlock *BB) const {
    DenseMap<BasicBlock*, unsigned>::const_iterator I = PostNumbers.find(BB);
    return I != PostNumbers.end() && I->second;
  }

  /// Get a block's postorder number.
  unsigned getPostorder(BasicBlock *BB) const {
    DenseMap<BasicBlock*, unsigned>::const_iterator I = PostNumbers.find(BB);
    assert(I != PostNumbers.end() && "block not visited by DFS");
    assert(I->second && "block not finished by DFS");
    return I->second;
  }

  /// Get a block's reverse postorder number.
  unsigned getRPO(BasicBlock *BB) const {
    return 1 + PostBlocks.size() - getPostorder(BB);
  }

  void clear() {
    PostNumbers.clear();
    PostBlocks.clear();
  }
};

/// Wrapper class to LoopBlocksDFS that provides a standard begin()/end()
/// interface for the DFS reverse post-order traversal of blocks in a loop body.
class LoopBlocksRPO {
private:
  LoopBlocksDFS DFS;

public:
  LoopBlocksRPO(Loop *Container) : DFS(Container) {}

  /// Traverse the loop blocks and store the DFS result.
  void perform(LoopInfo *LI) {
    DFS.perform(LI);
  }

  /// Reverse iterate over the cached postorder blocks.
  LoopBlocksDFS::RPOIterator begin() const { return DFS.beginRPO(); }
  LoopBlocksDFS::RPOIterator end() const { return DFS.endRPO(); }
};

/// Specialize po_iterator_storage to record postorder numbers.
template<> class po_iterator_storage<LoopBlocksTraversal, true> {
  LoopBlocksTraversal &LBT;
public:
  po_iterator_storage(LoopBlocksTraversal &lbs) : LBT(lbs) {}
  // These functions are defined below.
  bool insertEdge(std::optional<BasicBlock *> From, BasicBlock *To);
  void finishPostorder(BasicBlock *BB);
};

/// Traverse the blocks in a loop using a depth-first search.
class LoopBlocksTraversal {
public:
  /// Graph traversal iterator.
  typedef po_iterator<BasicBlock*, LoopBlocksTraversal, true> POTIterator;

private:
  LoopBlocksDFS &DFS;
  LoopInfo *LI;

public:
  LoopBlocksTraversal(LoopBlocksDFS &Storage, LoopInfo *LInfo) :
    DFS(Storage), LI(LInfo) {}

  /// Postorder traversal over the graph. This only needs to be done once.
  /// po_iterator "automatically" calls back to visitPreorder and
  /// finishPostorder to record the DFS result.
  POTIterator begin() {
    assert(DFS.PostBlocks.empty() && "Need clear DFS result before traversing");
    assert(DFS.L->getNumBlocks() && "po_iterator cannot handle an empty graph");
    return po_ext_begin(DFS.L->getHeader(), *this);
  }
  POTIterator end() {
    // po_ext_end interface requires a basic block, but ignores its value.
    return po_ext_end(DFS.L->getHeader(), *this);
  }

  /// Called by po_iterator upon reaching a block via a CFG edge. If this block
  /// is contained in the loop and has not been visited, then mark it preorder
  /// visited and return true.
  ///
  /// TODO: If anyone is interested, we could record preorder numbers here.
  bool visitPreorder(BasicBlock *BB) {
    if (!DFS.L->contains(LI->getLoopFor(BB)))
      return false;

    return DFS.PostNumbers.insert(std::make_pair(BB, 0)).second;
  }

  /// Called by po_iterator each time it advances, indicating a block's
  /// postorder.
  void finishPostorder(BasicBlock *BB) {
    assert(DFS.PostNumbers.count(BB) && "Loop DFS skipped preorder");
    DFS.PostBlocks.push_back(BB);
    DFS.PostNumbers[BB] = DFS.PostBlocks.size();
  }
};

inline bool po_iterator_storage<LoopBlocksTraversal, true>::insertEdge(
    std::optional<BasicBlock *> From, BasicBlock *To) {
  return LBT.visitPreorder(To);
}

inline void po_iterator_storage<LoopBlocksTraversal, true>::
finishPostorder(BasicBlock *BB) {
  LBT.finishPostorder(BB);
}

} // End namespace llvm

#endif

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif