aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/include/llvm/ADT/edit_distance.h
blob: 3352f8860422142679f7d8f1275ce20270fcb5dc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===-- llvm/ADT/edit_distance.h - Array edit distance function --- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines a Levenshtein distance function that works for any two
/// sequences, with each element of each sequence being analogous to a character
/// in a string.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_EDIT_DISTANCE_H
#define LLVM_ADT_EDIT_DISTANCE_H

#include "llvm/ADT/ArrayRef.h"
#include <algorithm>
#include <memory>

namespace llvm {

/// Determine the edit distance between two sequences.
///
/// \param FromArray the first sequence to compare.
///
/// \param ToArray the second sequence to compare.
///
/// \param Map A Functor to apply to each item of the sequences before
/// comparison.
///
/// \param AllowReplacements whether to allow element replacements (change one
/// element into another) as a single operation, rather than as two operations
/// (an insertion and a removal).
///
/// \param MaxEditDistance If non-zero, the maximum edit distance that this
/// routine is allowed to compute. If the edit distance will exceed that
/// maximum, returns \c MaxEditDistance+1.
///
/// \returns the minimum number of element insertions, removals, or (if
/// \p AllowReplacements is \c true) replacements needed to transform one of
/// the given sequences into the other. If zero, the sequences are identical.
template <typename T, typename Functor>
unsigned ComputeMappedEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
                                   Functor Map, bool AllowReplacements = true,
                                   unsigned MaxEditDistance = 0) {
  // The algorithm implemented below is the "classic"
  // dynamic-programming algorithm for computing the Levenshtein
  // distance, which is described here:
  //
  //   http://en.wikipedia.org/wiki/Levenshtein_distance
  //
  // Although the algorithm is typically described using an m x n
  // array, only one row plus one element are used at a time, so this
  // implementation just keeps one vector for the row.  To update one entry,
  // only the entries to the left, top, and top-left are needed.  The left
  // entry is in Row[x-1], the top entry is what's in Row[x] from the last
  // iteration, and the top-left entry is stored in Previous.
  typename ArrayRef<T>::size_type m = FromArray.size();
  typename ArrayRef<T>::size_type n = ToArray.size();

  if (MaxEditDistance) {
    // If the difference in size between the 2 arrays is larger than the max
    // distance allowed, we can bail out as we will always need at least
    // MaxEditDistance insertions or removals.
    typename ArrayRef<T>::size_type AbsDiff = m > n ? m - n : n - m;
    if (AbsDiff > MaxEditDistance)
      return MaxEditDistance + 1;
  }

  const unsigned SmallBufferSize = 64;
  unsigned SmallBuffer[SmallBufferSize];
  std::unique_ptr<unsigned[]> Allocated;
  unsigned *Row = SmallBuffer;
  if (n + 1 > SmallBufferSize) {
    Row = new unsigned[n + 1];
    Allocated.reset(Row);
  }

  for (unsigned i = 1; i <= n; ++i)
    Row[i] = i;

  for (typename ArrayRef<T>::size_type y = 1; y <= m; ++y) {
    Row[0] = y;
    unsigned BestThisRow = Row[0];

    unsigned Previous = y - 1;
    const auto &CurItem = Map(FromArray[y - 1]);
    for (typename ArrayRef<T>::size_type x = 1; x <= n; ++x) {
      int OldRow = Row[x];
      if (AllowReplacements) {
        Row[x] = std::min(Previous + (CurItem == Map(ToArray[x - 1]) ? 0u : 1u),
                          std::min(Row[x - 1], Row[x]) + 1);
      }
      else {
        if (CurItem == Map(ToArray[x - 1]))
          Row[x] = Previous;
        else Row[x] = std::min(Row[x-1], Row[x]) + 1;
      }
      Previous = OldRow;
      BestThisRow = std::min(BestThisRow, Row[x]);
    }

    if (MaxEditDistance && BestThisRow > MaxEditDistance)
      return MaxEditDistance + 1;
  }

  unsigned Result = Row[n];
  return Result;
}

template <typename T>
unsigned ComputeEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
                             bool AllowReplacements = true,
                             unsigned MaxEditDistance = 0) {
  return ComputeMappedEditDistance(
      FromArray, ToArray, [](const T &X) -> const T & { return X; },
      AllowReplacements, MaxEditDistance);
}

} // End llvm namespace

#endif

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif