1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- GenericCycleInfo.h - Info for Cycles in any IR ------*- C++ -*------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Find all cycles in a control-flow graph, including irreducible loops.
///
/// See docs/CycleTerminology.rst for a formal definition of cycles.
///
/// Briefly:
/// - A cycle is a generalization of a loop which can represent
/// irreducible control flow.
/// - Cycles identified in a program are implementation defined,
/// depending on the DFS traversal chosen.
/// - Cycles are well-nested, and form a forest with a parent-child
/// relationship.
/// - In any choice of DFS, every natural loop L is represented by a
/// unique cycle C which is a superset of L.
/// - In the absence of irreducible control flow, the cycles are
/// exactly the natural loops in the program.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_GENERICCYCLEINFO_H
#define LLVM_ADT_GENERICCYCLEINFO_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GenericSSAContext.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Printable.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
namespace llvm {
template <typename ContextT> class GenericCycleInfo;
template <typename ContextT> class GenericCycleInfoCompute;
/// A possibly irreducible generalization of a \ref Loop.
template <typename ContextT> class GenericCycle {
public:
using BlockT = typename ContextT::BlockT;
using FunctionT = typename ContextT::FunctionT;
template <typename> friend class GenericCycleInfo;
template <typename> friend class GenericCycleInfoCompute;
private:
/// The parent cycle. Is null for the root "cycle". Top-level cycles point
/// at the root.
GenericCycle *ParentCycle = nullptr;
/// The entry block(s) of the cycle. The header is the only entry if
/// this is a loop. Is empty for the root "cycle", to avoid
/// unnecessary memory use.
SmallVector<BlockT *, 1> Entries;
/// Child cycles, if any.
std::vector<std::unique_ptr<GenericCycle>> Children;
/// Basic blocks that are contained in the cycle, including entry blocks,
/// and including blocks that are part of a child cycle.
std::vector<BlockT *> Blocks;
/// Depth of the cycle in the tree. The root "cycle" is at depth 0.
///
/// \note Depths are not necessarily contiguous. However, child loops always
/// have strictly greater depth than their parents, and sibling loops
/// always have the same depth.
unsigned Depth = 0;
void clear() {
Entries.clear();
Children.clear();
Blocks.clear();
Depth = 0;
ParentCycle = nullptr;
}
void appendEntry(BlockT *Block) { Entries.push_back(Block); }
void appendBlock(BlockT *Block) { Blocks.push_back(Block); }
GenericCycle(const GenericCycle &) = delete;
GenericCycle &operator=(const GenericCycle &) = delete;
GenericCycle(GenericCycle &&Rhs) = delete;
GenericCycle &operator=(GenericCycle &&Rhs) = delete;
public:
GenericCycle() = default;
/// \brief Whether the cycle is a natural loop.
bool isReducible() const { return Entries.size() == 1; }
BlockT *getHeader() const { return Entries[0]; }
const SmallVectorImpl<BlockT *> & getEntries() const {
return Entries;
}
/// \brief Return whether \p Block is an entry block of the cycle.
bool isEntry(const BlockT *Block) const {
return is_contained(Entries, Block);
}
/// \brief Return whether \p Block is contained in the cycle.
bool contains(const BlockT *Block) const {
return is_contained(Blocks, Block);
}
/// \brief Returns true iff this cycle contains \p C.
///
/// Note: Non-strict containment check, i.e. returns true if C is the
/// same cycle.
bool contains(const GenericCycle *C) const;
const GenericCycle *getParentCycle() const { return ParentCycle; }
GenericCycle *getParentCycle() { return ParentCycle; }
unsigned getDepth() const { return Depth; }
/// Return all of the successor blocks of this cycle.
///
/// These are the blocks _outside of the current cycle_ which are
/// branched to.
void getExitBlocks(SmallVectorImpl<BlockT *> &TmpStorage) const;
/// Return the preheader block for this cycle. Pre-header is well-defined for
/// reducible cycle in docs/LoopTerminology.rst as: the only one entering
/// block and its only edge is to the entry block. Return null for irreducible
/// cycles.
BlockT *getCyclePreheader() const;
/// If the cycle has exactly one entry with exactly one predecessor, return
/// it, otherwise return nullptr.
BlockT *getCyclePredecessor() const;
/// Iteration over child cycles.
//@{
using const_child_iterator_base =
typename std::vector<std::unique_ptr<GenericCycle>>::const_iterator;
struct const_child_iterator
: iterator_adaptor_base<const_child_iterator, const_child_iterator_base> {
using Base =
iterator_adaptor_base<const_child_iterator, const_child_iterator_base>;
const_child_iterator() = default;
explicit const_child_iterator(const_child_iterator_base I) : Base(I) {}
const const_child_iterator_base &wrapped() { return Base::wrapped(); }
GenericCycle *operator*() const { return Base::I->get(); }
};
const_child_iterator child_begin() const {
return const_child_iterator{Children.begin()};
}
const_child_iterator child_end() const {
return const_child_iterator{Children.end()};
}
size_t getNumChildren() const { return Children.size(); }
iterator_range<const_child_iterator> children() const {
return llvm::make_range(const_child_iterator{Children.begin()},
const_child_iterator{Children.end()});
}
//@}
/// Iteration over blocks in the cycle (including entry blocks).
//@{
using const_block_iterator = typename std::vector<BlockT *>::const_iterator;
const_block_iterator block_begin() const {
return const_block_iterator{Blocks.begin()};
}
const_block_iterator block_end() const {
return const_block_iterator{Blocks.end()};
}
size_t getNumBlocks() const { return Blocks.size(); }
iterator_range<const_block_iterator> blocks() const {
return llvm::make_range(block_begin(), block_end());
}
//@}
/// Iteration over entry blocks.
//@{
using const_entry_iterator =
typename SmallVectorImpl<BlockT *>::const_iterator;
size_t getNumEntries() const { return Entries.size(); }
iterator_range<const_entry_iterator> entries() const {
return llvm::make_range(Entries.begin(), Entries.end());
}
//@}
Printable printEntries(const ContextT &Ctx) const {
return Printable([this, &Ctx](raw_ostream &Out) {
bool First = true;
for (auto *Entry : Entries) {
if (!First)
Out << ' ';
First = false;
Out << Ctx.print(Entry);
}
});
}
Printable print(const ContextT &Ctx) const {
return Printable([this, &Ctx](raw_ostream &Out) {
Out << "depth=" << Depth << ": entries(" << printEntries(Ctx) << ')';
for (auto *Block : Blocks) {
if (isEntry(Block))
continue;
Out << ' ' << Ctx.print(Block);
}
});
}
};
/// \brief Cycle information for a function.
template <typename ContextT> class GenericCycleInfo {
public:
using BlockT = typename ContextT::BlockT;
using CycleT = GenericCycle<ContextT>;
using FunctionT = typename ContextT::FunctionT;
template <typename> friend class GenericCycle;
template <typename> friend class GenericCycleInfoCompute;
private:
ContextT Context;
/// Map basic blocks to their inner-most containing cycle.
DenseMap<BlockT *, CycleT *> BlockMap;
/// Map basic blocks to their top level containing cycle.
DenseMap<BlockT *, CycleT *> BlockMapTopLevel;
/// Top-level cycles discovered by any DFS.
///
/// Note: The implementation treats the nullptr as the parent of
/// every top-level cycle. See \ref contains for an example.
std::vector<std::unique_ptr<CycleT>> TopLevelCycles;
/// Move \p Child to \p NewParent by manipulating Children vectors.
///
/// Note: This is an incomplete operation that does not update the depth of
/// the subtree.
void moveTopLevelCycleToNewParent(CycleT *NewParent, CycleT *Child);
public:
GenericCycleInfo() = default;
GenericCycleInfo(GenericCycleInfo &&) = default;
GenericCycleInfo &operator=(GenericCycleInfo &&) = default;
void clear();
void compute(FunctionT &F);
FunctionT *getFunction() const { return Context.getFunction(); }
const ContextT &getSSAContext() const { return Context; }
CycleT *getCycle(const BlockT *Block) const;
unsigned getCycleDepth(const BlockT *Block) const;
CycleT *getTopLevelParentCycle(BlockT *Block);
/// Methods for debug and self-test.
//@{
#ifndef NDEBUG
bool validateTree() const;
#endif
void print(raw_ostream &Out) const;
void dump() const { print(dbgs()); }
//@}
/// Iteration over top-level cycles.
//@{
using const_toplevel_iterator_base =
typename std::vector<std::unique_ptr<CycleT>>::const_iterator;
struct const_toplevel_iterator
: iterator_adaptor_base<const_toplevel_iterator,
const_toplevel_iterator_base> {
using Base = iterator_adaptor_base<const_toplevel_iterator,
const_toplevel_iterator_base>;
const_toplevel_iterator() = default;
explicit const_toplevel_iterator(const_toplevel_iterator_base I)
: Base(I) {}
const const_toplevel_iterator_base &wrapped() { return Base::wrapped(); }
CycleT *operator*() const { return Base::I->get(); }
};
const_toplevel_iterator toplevel_begin() const {
return const_toplevel_iterator{TopLevelCycles.begin()};
}
const_toplevel_iterator toplevel_end() const {
return const_toplevel_iterator{TopLevelCycles.end()};
}
iterator_range<const_toplevel_iterator> toplevel_cycles() const {
return llvm::make_range(const_toplevel_iterator{TopLevelCycles.begin()},
const_toplevel_iterator{TopLevelCycles.end()});
}
//@}
};
/// \brief GraphTraits for iterating over a sub-tree of the CycleT tree.
template <typename CycleRefT, typename ChildIteratorT> struct CycleGraphTraits {
using NodeRef = CycleRefT;
using nodes_iterator = ChildIteratorT;
using ChildIteratorType = nodes_iterator;
static NodeRef getEntryNode(NodeRef Graph) { return Graph; }
static ChildIteratorType child_begin(NodeRef Ref) {
return Ref->child_begin();
}
static ChildIteratorType child_end(NodeRef Ref) { return Ref->child_end(); }
// Not implemented:
// static nodes_iterator nodes_begin(GraphType *G)
// static nodes_iterator nodes_end (GraphType *G)
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
// typedef EdgeRef - Type of Edge token in the graph, which should
// be cheap to copy.
// typedef ChildEdgeIteratorType - Type used to iterate over children edges in
// graph, dereference to a EdgeRef.
// static ChildEdgeIteratorType child_edge_begin(NodeRef)
// static ChildEdgeIteratorType child_edge_end(NodeRef)
// Return iterators that point to the beginning and ending of the
// edge list for the given callgraph node.
//
// static NodeRef edge_dest(EdgeRef)
// Return the destination node of an edge.
// static unsigned size (GraphType *G)
// Return total number of nodes in the graph
};
template <typename BlockT>
struct GraphTraits<const GenericCycle<BlockT> *>
: CycleGraphTraits<const GenericCycle<BlockT> *,
typename GenericCycle<BlockT>::const_child_iterator> {};
template <typename BlockT>
struct GraphTraits<GenericCycle<BlockT> *>
: CycleGraphTraits<GenericCycle<BlockT> *,
typename GenericCycle<BlockT>::const_child_iterator> {};
} // namespace llvm
#endif // LLVM_ADT_GENERICCYCLEINFO_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|