1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===-- llvm/ADT/Bitfield.h - Get and Set bits in an integer ---*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements methods to test, set and extract typed bits from packed
/// unsigned integers.
///
/// Why not C++ bitfields?
/// ----------------------
/// C++ bitfields do not offer control over the bit layout nor consistent
/// behavior when it comes to out of range values.
/// For instance, the layout is implementation defined and adjacent bits may be
/// packed together but are not required to. This is problematic when storage is
/// sparse and data must be stored in a particular integer type.
///
/// The methods provided in this file ensure precise control over the
/// layout/storage as well as protection against out of range values.
///
/// Usage example
/// -------------
/// \code{.cpp}
/// uint8_t Storage = 0;
///
/// // Store and retrieve a single bit as bool.
/// using Bool = Bitfield::Element<bool, 0, 1>;
/// Bitfield::set<Bool>(Storage, true);
/// EXPECT_EQ(Storage, 0b00000001);
/// // ^
/// EXPECT_EQ(Bitfield::get<Bool>(Storage), true);
///
/// // Store and retrieve a 2 bit typed enum.
/// // Note: enum underlying type must be unsigned.
/// enum class SuitEnum : uint8_t { CLUBS, DIAMONDS, HEARTS, SPADES };
/// // Note: enum maximum value needs to be passed in as last parameter.
/// using Suit = Bitfield::Element<SuitEnum, 1, 2, SuitEnum::SPADES>;
/// Bitfield::set<Suit>(Storage, SuitEnum::HEARTS);
/// EXPECT_EQ(Storage, 0b00000101);
/// // ^^
/// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::HEARTS);
///
/// // Store and retrieve a 5 bit value as unsigned.
/// using Value = Bitfield::Element<unsigned, 3, 5>;
/// Bitfield::set<Value>(Storage, 10);
/// EXPECT_EQ(Storage, 0b01010101);
/// // ^^^^^
/// EXPECT_EQ(Bitfield::get<Value>(Storage), 10U);
///
/// // Interpret the same 5 bit value as signed.
/// using SignedValue = Bitfield::Element<int, 3, 5>;
/// Bitfield::set<SignedValue>(Storage, -2);
/// EXPECT_EQ(Storage, 0b11110101);
/// // ^^^^^
/// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -2);
///
/// // Ability to efficiently test if a field is non zero.
/// EXPECT_TRUE(Bitfield::test<Value>(Storage));
///
/// // Alter Storage changes value.
/// Storage = 0;
/// EXPECT_EQ(Bitfield::get<Bool>(Storage), false);
/// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::CLUBS);
/// EXPECT_EQ(Bitfield::get<Value>(Storage), 0U);
/// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), 0);
///
/// Storage = 255;
/// EXPECT_EQ(Bitfield::get<Bool>(Storage), true);
/// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::SPADES);
/// EXPECT_EQ(Bitfield::get<Value>(Storage), 31U);
/// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -1);
/// \endcode
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_BITFIELDS_H
#define LLVM_ADT_BITFIELDS_H
#include <cassert>
#include <climits> // CHAR_BIT
#include <cstddef> // size_t
#include <cstdint> // uintXX_t
#include <limits> // numeric_limits
#include <type_traits>
namespace llvm {
namespace bitfields_details {
/// A struct defining useful bit patterns for n-bits integer types.
template <typename T, unsigned Bits> struct BitPatterns {
/// Bit patterns are forged using the equivalent `Unsigned` type because of
/// undefined operations over signed types (e.g. Bitwise shift operators).
/// Moreover same size casting from unsigned to signed is well defined but not
/// the other way around.
using Unsigned = std::make_unsigned_t<T>;
static_assert(sizeof(Unsigned) == sizeof(T), "Types must have same size");
static constexpr unsigned TypeBits = sizeof(Unsigned) * CHAR_BIT;
static_assert(TypeBits >= Bits, "n-bit must fit in T");
/// e.g. with TypeBits == 8 and Bits == 6.
static constexpr Unsigned AllZeros = Unsigned(0); // 00000000
static constexpr Unsigned AllOnes = ~Unsigned(0); // 11111111
static constexpr Unsigned Umin = AllZeros; // 00000000
static constexpr Unsigned Umax = AllOnes >> (TypeBits - Bits); // 00111111
static constexpr Unsigned SignBitMask = Unsigned(1) << (Bits - 1); // 00100000
static constexpr Unsigned Smax = Umax >> 1U; // 00011111
static constexpr Unsigned Smin = ~Smax; // 11100000
static constexpr Unsigned SignExtend = Unsigned(Smin << 1U); // 11000000
};
/// `Compressor` is used to manipulate the bits of a (possibly signed) integer
/// type so it can be packed and unpacked into a `bits` sized integer,
/// `Compressor` is specialized on signed-ness so no runtime cost is incurred.
/// The `pack` method also checks that the passed in `UserValue` is valid.
template <typename T, unsigned Bits, bool = std::is_unsigned<T>::value>
struct Compressor {
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
using BP = BitPatterns<T, Bits>;
static T pack(T UserValue, T UserMaxValue) {
assert(UserValue <= UserMaxValue && "value is too big");
assert(UserValue <= BP::Umax && "value is too big");
return UserValue;
}
static T unpack(T StorageValue) { return StorageValue; }
};
template <typename T, unsigned Bits> struct Compressor<T, Bits, false> {
static_assert(std::is_signed<T>::value, "T must be signed");
using BP = BitPatterns<T, Bits>;
static T pack(T UserValue, T UserMaxValue) {
assert(UserValue <= UserMaxValue && "value is too big");
assert(UserValue <= T(BP::Smax) && "value is too big");
assert(UserValue >= T(BP::Smin) && "value is too small");
if (UserValue < 0)
UserValue &= ~BP::SignExtend;
return UserValue;
}
static T unpack(T StorageValue) {
if (StorageValue >= T(BP::SignBitMask))
StorageValue |= BP::SignExtend;
return StorageValue;
}
};
/// Impl is where Bifield description and Storage are put together to interact
/// with values.
template <typename Bitfield, typename StorageType> struct Impl {
static_assert(std::is_unsigned<StorageType>::value,
"Storage must be unsigned");
using IntegerType = typename Bitfield::IntegerType;
using C = Compressor<IntegerType, Bitfield::Bits>;
using BP = BitPatterns<StorageType, Bitfield::Bits>;
static constexpr size_t StorageBits = sizeof(StorageType) * CHAR_BIT;
static_assert(Bitfield::FirstBit <= StorageBits, "Data must fit in mask");
static_assert(Bitfield::LastBit <= StorageBits, "Data must fit in mask");
static constexpr StorageType Mask = BP::Umax << Bitfield::Shift;
/// Checks `UserValue` is within bounds and packs it between `FirstBit` and
/// `LastBit` of `Packed` leaving the rest unchanged.
static void update(StorageType &Packed, IntegerType UserValue) {
const StorageType StorageValue = C::pack(UserValue, Bitfield::UserMaxValue);
Packed &= ~Mask;
Packed |= StorageValue << Bitfield::Shift;
}
/// Interprets bits between `FirstBit` and `LastBit` of `Packed` as
/// an`IntegerType`.
static IntegerType extract(StorageType Packed) {
const StorageType StorageValue = (Packed & Mask) >> Bitfield::Shift;
return C::unpack(StorageValue);
}
/// Interprets bits between `FirstBit` and `LastBit` of `Packed` as
/// an`IntegerType`.
static StorageType test(StorageType Packed) { return Packed & Mask; }
};
/// `Bitfield` deals with the following type:
/// - unsigned enums
/// - signed and unsigned integer
/// - `bool`
/// Internally though we only manipulate integer with well defined and
/// consistent semantics, this excludes typed enums and `bool` that are replaced
/// with their unsigned counterparts. The correct type is restored in the public
/// API.
template <typename T, bool = std::is_enum<T>::value>
struct ResolveUnderlyingType {
using type = std::underlying_type_t<T>;
};
template <typename T> struct ResolveUnderlyingType<T, false> {
using type = T;
};
template <> struct ResolveUnderlyingType<bool, false> {
/// In case sizeof(bool) != 1, replace `void` by an additionnal
/// std::conditional.
using type = std::conditional_t<sizeof(bool) == 1, uint8_t, void>;
};
} // namespace bitfields_details
/// Holds functions to get, set or test bitfields.
struct Bitfield {
/// Describes an element of a Bitfield. This type is then used with the
/// Bitfield static member functions.
/// \tparam T The type of the field once in unpacked form.
/// \tparam Offset The position of the first bit.
/// \tparam Size The size of the field.
/// \tparam MaxValue For enums the maximum enum allowed.
template <typename T, unsigned Offset, unsigned Size,
T MaxValue = std::is_enum<T>::value
? T(0) // coupled with static_assert below
: std::numeric_limits<T>::max()>
struct Element {
using Type = T;
using IntegerType =
typename bitfields_details::ResolveUnderlyingType<T>::type;
static constexpr unsigned Shift = Offset;
static constexpr unsigned Bits = Size;
static constexpr unsigned FirstBit = Offset;
static constexpr unsigned LastBit = Shift + Bits - 1;
static constexpr unsigned NextBit = Shift + Bits;
private:
template <typename, typename> friend struct bitfields_details::Impl;
static_assert(Bits > 0, "Bits must be non zero");
static constexpr size_t TypeBits = sizeof(IntegerType) * CHAR_BIT;
static_assert(Bits <= TypeBits, "Bits may not be greater than T size");
static_assert(!std::is_enum<T>::value || MaxValue != T(0),
"Enum Bitfields must provide a MaxValue");
static_assert(!std::is_enum<T>::value ||
std::is_unsigned<IntegerType>::value,
"Enum must be unsigned");
static_assert(std::is_integral<IntegerType>::value &&
std::numeric_limits<IntegerType>::is_integer,
"IntegerType must be an integer type");
static constexpr IntegerType UserMaxValue =
static_cast<IntegerType>(MaxValue);
};
/// Unpacks the field from the `Packed` value.
template <typename Bitfield, typename StorageType>
static typename Bitfield::Type get(StorageType Packed) {
using I = bitfields_details::Impl<Bitfield, StorageType>;
return static_cast<typename Bitfield::Type>(I::extract(Packed));
}
/// Return a non-zero value if the field is non-zero.
/// It is more efficient than `getField`.
template <typename Bitfield, typename StorageType>
static StorageType test(StorageType Packed) {
using I = bitfields_details::Impl<Bitfield, StorageType>;
return I::test(Packed);
}
/// Sets the typed value in the provided `Packed` value.
/// The method will asserts if the provided value is too big to fit in.
template <typename Bitfield, typename StorageType>
static void set(StorageType &Packed, typename Bitfield::Type Value) {
using I = bitfields_details::Impl<Bitfield, StorageType>;
I::update(Packed, static_cast<typename Bitfield::IntegerType>(Value));
}
/// Returns whether the two bitfields share common bits.
template <typename A, typename B> static constexpr bool isOverlapping() {
return A::LastBit >= B::FirstBit && B::LastBit >= A::FirstBit;
}
template <typename A> static constexpr bool areContiguous() { return true; }
template <typename A, typename B, typename... Others>
static constexpr bool areContiguous() {
return A::NextBit == B::FirstBit && areContiguous<B, Others...>();
}
};
} // namespace llvm
#endif // LLVM_ADT_BITFIELDS_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|