1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
//===- MaximalStaticExpansion.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass fully expand the memory accesses of a Scop to get rid of
// dependencies.
//
//===----------------------------------------------------------------------===//
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Support/ISLTools.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/InitializePasses.h"
#include "isl/isl-noexceptions.h"
#include "isl/union_map.h"
#include <cassert>
#include <limits>
#include <string>
#include <vector>
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-mse"
namespace {
class MaximalStaticExpander : public ScopPass {
public:
static char ID;
explicit MaximalStaticExpander() : ScopPass(ID) {}
~MaximalStaticExpander() override = default;
/// Expand the accesses of the SCoP.
///
/// @param S The SCoP that must be expanded.
bool runOnScop(Scop &S) override;
/// Print the SCoP.
///
/// @param OS The stream where to print.
/// @param S The SCop that must be printed.
void printScop(raw_ostream &OS, Scop &S) const override;
/// Register all analyses and transformations required.
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
/// OptimizationRemarkEmitter object for displaying diagnostic remarks.
OptimizationRemarkEmitter *ORE;
/// Emit remark
void emitRemark(StringRef Msg, Instruction *Inst);
/// Return true if the SAI in parameter is expandable.
///
/// @param SAI the SAI that need to be checked.
/// @param Writes A set that will contains all the write accesses.
/// @param Reads A set that will contains all the read accesses.
/// @param S The SCop in which the SAI is in.
/// @param Dependences The RAW dependences of the SCop.
bool isExpandable(const ScopArrayInfo *SAI,
SmallPtrSetImpl<MemoryAccess *> &Writes,
SmallPtrSetImpl<MemoryAccess *> &Reads, Scop &S,
const isl::union_map &Dependences);
/// Expand the MemoryAccess according to its domain.
///
/// @param S The SCop in which the memory access appears in.
/// @param MA The memory access that need to be expanded.
ScopArrayInfo *expandAccess(Scop &S, MemoryAccess *MA);
/// Filter the dependences to have only one related to current memory access.
///
/// @param S The SCop in which the memory access appears in.
/// @param MapDependences The dependences to filter.
/// @param MA The memory access that need to be expanded.
isl::union_map filterDependences(Scop &S,
const isl::union_map &MapDependences,
MemoryAccess *MA);
/// Expand the MemoryAccess according to Dependences and already expanded
/// MemoryAccesses.
///
/// @param The SCop in which the memory access appears in.
/// @param The memory access that need to be expanded.
/// @param Dependences The RAW dependences of the SCop.
/// @param ExpandedSAI The expanded SAI created during write expansion.
/// @param Reverse if true, the Dependences union_map is reversed before
/// intersection.
void mapAccess(Scop &S, SmallPtrSetImpl<MemoryAccess *> &Accesses,
const isl::union_map &Dependences, ScopArrayInfo *ExpandedSAI,
bool Reverse);
/// Expand PHI memory accesses.
///
/// @param The SCop in which the memory access appears in.
/// @param The ScopArrayInfo representing the PHI accesses to expand.
/// @param Dependences The RAW dependences of the SCop.
void expandPhi(Scop &S, const ScopArrayInfo *SAI,
const isl::union_map &Dependences);
};
} // namespace
#ifndef NDEBUG
/// Whether a dimension of a set is bounded (lower and upper) by a constant,
/// i.e. there are two constants Min and Max, such that every value x of the
/// chosen dimensions is Min <= x <= Max.
static bool isDimBoundedByConstant(isl::set Set, unsigned dim) {
auto ParamDims = unsignedFromIslSize(Set.dim(isl::dim::param));
Set = Set.project_out(isl::dim::param, 0, ParamDims);
Set = Set.project_out(isl::dim::set, 0, dim);
auto SetDims = unsignedFromIslSize(Set.tuple_dim());
assert(SetDims >= 1);
Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
return bool(Set.is_bounded());
}
#endif
char MaximalStaticExpander::ID = 0;
isl::union_map MaximalStaticExpander::filterDependences(
Scop &S, const isl::union_map &Dependences, MemoryAccess *MA) {
auto SAI = MA->getLatestScopArrayInfo();
auto AccessDomainSet = MA->getAccessRelation().domain();
auto AccessDomainId = AccessDomainSet.get_tuple_id();
isl::union_map MapDependences = isl::union_map::empty(S.getIslCtx());
for (isl::map Map : Dependences.get_map_list()) {
// Filter out Statement to Statement dependences.
if (!Map.can_curry())
continue;
// Intersect with the relevant SAI.
auto TmpMapDomainId =
Map.get_space().domain().unwrap().range().get_tuple_id(isl::dim::set);
ScopArrayInfo *UserSAI =
static_cast<ScopArrayInfo *>(TmpMapDomainId.get_user());
if (SAI != UserSAI)
continue;
// Get the correct S1[] -> S2[] dependence.
auto NewMap = Map.factor_domain();
auto NewMapDomainId = NewMap.domain().get_tuple_id();
if (AccessDomainId.get() != NewMapDomainId.get())
continue;
// Add the corresponding map to MapDependences.
MapDependences = MapDependences.unite(NewMap);
}
return MapDependences;
}
bool MaximalStaticExpander::isExpandable(
const ScopArrayInfo *SAI, SmallPtrSetImpl<MemoryAccess *> &Writes,
SmallPtrSetImpl<MemoryAccess *> &Reads, Scop &S,
const isl::union_map &Dependences) {
if (SAI->isValueKind()) {
Writes.insert(S.getValueDef(SAI));
for (auto MA : S.getValueUses(SAI))
Reads.insert(MA);
return true;
} else if (SAI->isPHIKind()) {
auto Read = S.getPHIRead(SAI);
auto StmtDomain = isl::union_set(Read->getStatement()->getDomain());
auto Writes = S.getPHIIncomings(SAI);
// Get the domain where all the writes are writing to.
auto WriteDomain = isl::union_set::empty(S.getIslCtx());
for (auto Write : Writes) {
auto MapDeps = filterDependences(S, Dependences, Write);
for (isl::map Map : MapDeps.get_map_list())
WriteDomain = WriteDomain.unite(Map.range());
}
// For now, read from original scalar is not possible.
if (!StmtDomain.is_equal(WriteDomain)) {
emitRemark(SAI->getName() + " read from its original value.",
Read->getAccessInstruction());
return false;
}
return true;
} else if (SAI->isExitPHIKind()) {
// For now, we are not able to expand ExitPhi.
emitRemark(SAI->getName() + " is a ExitPhi node.",
S.getEnteringBlock()->getFirstNonPHI());
return false;
}
int NumberWrites = 0;
for (ScopStmt &Stmt : S) {
auto StmtReads = isl::union_map::empty(S.getIslCtx());
auto StmtWrites = isl::union_map::empty(S.getIslCtx());
for (MemoryAccess *MA : Stmt) {
// Check if the current MemoryAccess involved the current SAI.
if (SAI != MA->getLatestScopArrayInfo())
continue;
// For now, we are not able to expand array where read come after write
// (to the same location) in a same statement.
auto AccRel = isl::union_map(MA->getAccessRelation());
if (MA->isRead()) {
// Reject load after store to same location.
if (!StmtWrites.is_disjoint(AccRel)) {
emitRemark(SAI->getName() + " has read after write to the same "
"element in same statement. The "
"dependences found during analysis may "
"be wrong because Polly is not able to "
"handle such case for now.",
MA->getAccessInstruction());
return false;
}
StmtReads = StmtReads.unite(AccRel);
} else {
StmtWrites = StmtWrites.unite(AccRel);
}
// For now, we are not able to expand MayWrite.
if (MA->isMayWrite()) {
emitRemark(SAI->getName() + " has a maywrite access.",
MA->getAccessInstruction());
return false;
}
// For now, we are not able to expand SAI with more than one write.
if (MA->isMustWrite()) {
Writes.insert(MA);
NumberWrites++;
if (NumberWrites > 1) {
emitRemark(SAI->getName() + " has more than 1 write access.",
MA->getAccessInstruction());
return false;
}
}
// Check if it is possible to expand this read.
if (MA->isRead()) {
// Get the domain of the current ScopStmt.
auto StmtDomain = Stmt.getDomain();
// Get the domain of the future Read access.
auto ReadDomainSet = MA->getAccessRelation().domain();
auto ReadDomain = isl::union_set(ReadDomainSet);
// Get the dependences relevant for this MA
auto MapDependences = filterDependences(S, Dependences.reverse(), MA);
unsigned NumberElementMap = isl_union_map_n_map(MapDependences.get());
if (NumberElementMap == 0) {
emitRemark("The expansion of " + SAI->getName() +
" would lead to a read from the original array.",
MA->getAccessInstruction());
return false;
}
auto DepsDomain = MapDependences.domain();
// If there are multiple maps in the Deps, we cannot handle this case
// for now.
if (NumberElementMap != 1) {
emitRemark(SAI->getName() +
" has too many dependences to be handle for now.",
MA->getAccessInstruction());
return false;
}
auto DepsDomainSet = isl::set(DepsDomain);
// For now, read from the original array is not possible.
if (!StmtDomain.is_subset(DepsDomainSet)) {
emitRemark("The expansion of " + SAI->getName() +
" would lead to a read from the original array.",
MA->getAccessInstruction());
return false;
}
Reads.insert(MA);
}
}
}
// No need to expand SAI with no write.
if (NumberWrites == 0) {
emitRemark(SAI->getName() + " has 0 write access.",
S.getEnteringBlock()->getFirstNonPHI());
return false;
}
return true;
}
void MaximalStaticExpander::mapAccess(Scop &S,
SmallPtrSetImpl<MemoryAccess *> &Accesses,
const isl::union_map &Dependences,
ScopArrayInfo *ExpandedSAI,
bool Reverse) {
for (auto MA : Accesses) {
// Get the current AM.
auto CurrentAccessMap = MA->getAccessRelation();
// Get RAW dependences for the current WA.
auto DomainSet = MA->getAccessRelation().domain();
auto Domain = isl::union_set(DomainSet);
// Get the dependences relevant for this MA.
isl::union_map MapDependences =
filterDependences(S, Reverse ? Dependences.reverse() : Dependences, MA);
// If no dependences, no need to modify anything.
if (MapDependences.is_empty())
return;
assert(isl_union_map_n_map(MapDependences.get()) == 1 &&
"There are more than one RAW dependencies in the union map.");
auto NewAccessMap = isl::map::from_union_map(MapDependences);
auto Id = ExpandedSAI->getBasePtrId();
// Replace the out tuple id with the one of the access array.
NewAccessMap = NewAccessMap.set_tuple_id(isl::dim::out, Id);
// Set the new access relation.
MA->setNewAccessRelation(NewAccessMap);
}
}
ScopArrayInfo *MaximalStaticExpander::expandAccess(Scop &S, MemoryAccess *MA) {
// Get the current AM.
auto CurrentAccessMap = MA->getAccessRelation();
unsigned in_dimensions =
unsignedFromIslSize(CurrentAccessMap.domain_tuple_dim());
// Get domain from the current AM.
auto Domain = CurrentAccessMap.domain();
// Create a new AM from the domain.
auto NewAccessMap = isl::map::from_domain(Domain);
// Add dimensions to the new AM according to the current in_dim.
NewAccessMap = NewAccessMap.add_dims(isl::dim::out, in_dimensions);
// Create the string representing the name of the new SAI.
// One new SAI for each statement so that each write go to a different memory
// cell.
auto CurrentStmtDomain = MA->getStatement()->getDomain();
auto CurrentStmtName = CurrentStmtDomain.get_tuple_name();
auto CurrentOutId = CurrentAccessMap.get_tuple_id(isl::dim::out);
std::string CurrentOutIdString =
MA->getScopArrayInfo()->getName() + "_" + CurrentStmtName + "_expanded";
// Set the tuple id for the out dimension.
NewAccessMap = NewAccessMap.set_tuple_id(isl::dim::out, CurrentOutId);
// Create the size vector.
std::vector<unsigned> Sizes;
for (unsigned i = 0; i < in_dimensions; i++) {
assert(isDimBoundedByConstant(CurrentStmtDomain, i) &&
"Domain boundary are not constant.");
auto UpperBound = getConstant(CurrentStmtDomain.dim_max(i), true, false);
assert(!UpperBound.is_null() && UpperBound.is_pos() &&
!UpperBound.is_nan() &&
"The upper bound is not a positive integer.");
assert(UpperBound.le(isl::val(CurrentAccessMap.ctx(),
std::numeric_limits<int>::max() - 1)) &&
"The upper bound overflow a int.");
Sizes.push_back(UpperBound.get_num_si() + 1);
}
// Get the ElementType of the current SAI.
auto ElementType = MA->getLatestScopArrayInfo()->getElementType();
// Create (or get if already existing) the new expanded SAI.
auto ExpandedSAI =
S.createScopArrayInfo(ElementType, CurrentOutIdString, Sizes);
ExpandedSAI->setIsOnHeap(true);
// Get the out Id of the expanded Array.
auto NewOutId = ExpandedSAI->getBasePtrId();
// Set the out id of the new AM to the new SAI id.
NewAccessMap = NewAccessMap.set_tuple_id(isl::dim::out, NewOutId);
// Add constraints to linked output with input id.
auto SpaceMap = NewAccessMap.get_space();
auto ConstraintBasicMap = isl::basic_map::equal(
SpaceMap, unsignedFromIslSize(SpaceMap.dim(isl::dim::in)));
NewAccessMap = isl::map(ConstraintBasicMap);
// Set the new access relation map.
MA->setNewAccessRelation(NewAccessMap);
return ExpandedSAI;
}
void MaximalStaticExpander::expandPhi(Scop &S, const ScopArrayInfo *SAI,
const isl::union_map &Dependences) {
SmallPtrSet<MemoryAccess *, 4> Writes;
for (auto MA : S.getPHIIncomings(SAI))
Writes.insert(MA);
auto Read = S.getPHIRead(SAI);
auto ExpandedSAI = expandAccess(S, Read);
mapAccess(S, Writes, Dependences, ExpandedSAI, false);
}
void MaximalStaticExpander::emitRemark(StringRef Msg, Instruction *Inst) {
ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ExpansionRejection", Inst)
<< Msg);
}
bool MaximalStaticExpander::runOnScop(Scop &S) {
// Get the ORE from OptimizationRemarkEmitterWrapperPass.
ORE = &(getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
// Get the RAW Dependences.
auto &DI = getAnalysis<DependenceInfo>();
auto &D = DI.getDependences(Dependences::AL_Reference);
isl::union_map Dependences = D.getDependences(Dependences::TYPE_RAW);
SmallVector<ScopArrayInfo *, 4> CurrentSAI(S.arrays().begin(),
S.arrays().end());
for (auto SAI : CurrentSAI) {
SmallPtrSet<MemoryAccess *, 4> AllWrites;
SmallPtrSet<MemoryAccess *, 4> AllReads;
if (!isExpandable(SAI, AllWrites, AllReads, S, Dependences))
continue;
if (SAI->isValueKind() || SAI->isArrayKind()) {
assert(AllWrites.size() == 1 || SAI->isValueKind());
auto TheWrite = *(AllWrites.begin());
ScopArrayInfo *ExpandedArray = expandAccess(S, TheWrite);
mapAccess(S, AllReads, Dependences, ExpandedArray, true);
} else if (SAI->isPHIKind()) {
expandPhi(S, SAI, Dependences);
}
}
return false;
}
void MaximalStaticExpander::printScop(raw_ostream &OS, Scop &S) const {
S.print(OS, false);
}
void MaximalStaticExpander::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DependenceInfo>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
}
Pass *polly::createMaximalStaticExpansionPass() {
return new MaximalStaticExpander();
}
INITIALIZE_PASS_BEGIN(MaximalStaticExpander, "polly-mse",
"Polly - Maximal static expansion of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
INITIALIZE_PASS_END(MaximalStaticExpander, "polly-mse",
"Polly - Maximal static expansion of SCoP", false, false)
|