aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/tools/polly/lib/Transform/MatmulOptimizer.cpp
blob: 60dd9eda3c2c096f73e02b0b81dedaa52a097cf2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
//===- MatmulOptimizer.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "polly/MatmulOptimizer.h"
#include "polly/DependenceInfo.h"
#include "polly/Options.h"
#include "polly/ScheduleTreeTransform.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Simplify.h"
#include "polly/Support/ISLTools.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TypeSize.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/ctx.h"
#include "isl/schedule_node.h"
#include "isl/schedule_type.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <string>
#include <vector>

#define DEBUG_TYPE "polly-opt-isl"

using namespace llvm;
using namespace polly;

namespace llvm {
class Value;
}

static cl::opt<int> LatencyVectorFma(
    "polly-target-latency-vector-fma",
    cl::desc("The minimal number of cycles between issuing two "
             "dependent consecutive vector fused multiply-add "
             "instructions."),
    cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> ThroughputVectorFma(
    "polly-target-throughput-vector-fma",
    cl::desc("A throughput of the processor floating-point arithmetic units "
             "expressed in the number of vector fused multiply-add "
             "instructions per clock cycle."),
    cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> FirstCacheLevelSize(
    "polly-target-1st-cache-level-size",
    cl::desc("The size of the first cache level specified in bytes."),
    cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> FirstCacheLevelDefaultSize(
    "polly-target-1st-cache-level-default-size",
    cl::desc("The default size of the first cache level specified in bytes"
             " (if not enough were provided by the TargetTransformInfo)."),
    cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> SecondCacheLevelSize(
    "polly-target-2nd-cache-level-size",
    cl::desc("The size of the second level specified in bytes."), cl::Hidden,
    cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> SecondCacheLevelDefaultSize(
    "polly-target-2nd-cache-level-default-size",
    cl::desc("The default size of the second cache level specified in bytes"
             " (if not enough were provided by the TargetTransformInfo)."),
    cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));

// This option, along with --polly-target-2nd-cache-level-associativity,
// --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
// represent the parameters of the target cache, which do not have typical
// values that can be used by default. However, to apply the pattern matching
// optimizations, we use the values of the parameters of Intel Core i7-3820
// SandyBridge in case the parameters are not specified or not provided by the
// TargetTransformInfo.
static cl::opt<int> FirstCacheLevelAssociativity(
    "polly-target-1st-cache-level-associativity",
    cl::desc("The associativity of the first cache level."), cl::Hidden,
    cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> FirstCacheLevelDefaultAssociativity(
    "polly-target-1st-cache-level-default-associativity",
    cl::desc("The default associativity of the first cache level"
             " (if not enough were provided by the TargetTransformInfo)."),
    cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> SecondCacheLevelAssociativity(
    "polly-target-2nd-cache-level-associativity",
    cl::desc("The associativity of the second cache level."), cl::Hidden,
    cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> SecondCacheLevelDefaultAssociativity(
    "polly-target-2nd-cache-level-default-associativity",
    cl::desc("The default associativity of the second cache level"
             " (if not enough were provided by the TargetTransformInfo)."),
    cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> VectorRegisterBitwidth(
    "polly-target-vector-register-bitwidth",
    cl::desc("The size in bits of a vector register (if not set, this "
             "information is taken from LLVM's target information."),
    cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> PollyPatternMatchingNcQuotient(
    "polly-pattern-matching-nc-quotient",
    cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
             "macro-kernel, by Nr, the parameter of the micro-kernel"),
    cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));

namespace {
/// Parameters of the micro kernel.
///
/// Parameters, which determine sizes of rank-1 (i.e., outer product) update
/// used in the optimized matrix multiplication.
struct MicroKernelParamsTy {
  int Mr;
  int Nr;
};

/// Parameters of the macro kernel.
///
/// Parameters, which determine sizes of blocks of partitioned matrices
/// used in the optimized matrix multiplication.
struct MacroKernelParamsTy {
  int Mc;
  int Nc;
  int Kc;
};

/// Parameters of the matrix multiplication operands.
///
/// Parameters, which describe access relations that represent operands of the
/// matrix multiplication.
struct MatMulInfoTy {
  MemoryAccess *A = nullptr;
  MemoryAccess *B = nullptr;
  MemoryAccess *ReadFromC = nullptr;
  MemoryAccess *WriteToC = nullptr;
  int i = -1;
  int j = -1;
  int k = -1;
};

/// Create an isl::union_set, which describes the option of the form
/// [isolate[] -> unroll[x]].
///
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
  isl::space Space = isl::space(Ctx, 0, 0, 1);
  isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
  isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
  isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
  UnrollIsolatedSetOption =
      UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
  UnrollIsolatedSetOption =
      UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
  return UnrollIsolatedSetOption.wrap();
}

/// Permute the two dimensions of the isl map.
///
/// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
/// have type @p DimType.
///
/// @param Map     The isl map to be modified.
/// @param DimType The type of the dimensions.
/// @param DstPos  The first dimension.
/// @param SrcPos  The second dimension.
/// @return        The modified map.
static isl::map permuteDimensions(isl::map Map, isl::dim DimType,
                                  unsigned DstPos, unsigned SrcPos) {
  assert(DstPos < unsignedFromIslSize(Map.dim(DimType)) &&
         SrcPos < unsignedFromIslSize(Map.dim(DimType)));
  if (DstPos == SrcPos)
    return Map;
  isl::id DimId;
  if (Map.has_tuple_id(DimType))
    DimId = Map.get_tuple_id(DimType);
  auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
  isl::id FreeDimId;
  if (Map.has_tuple_id(FreeDim))
    FreeDimId = Map.get_tuple_id(FreeDim);
  auto MaxDim = std::max(DstPos, SrcPos);
  auto MinDim = std::min(DstPos, SrcPos);
  Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
  Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
  Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
  Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
  if (!DimId.is_null())
    Map = Map.set_tuple_id(DimType, DimId);
  if (!FreeDimId.is_null())
    Map = Map.set_tuple_id(FreeDim, FreeDimId);
  return Map;
}

/// Check the form of the access relation.
///
/// Check that the access relation @p AccMap has the form M[i][j], where i
/// is a @p FirstPos and j is a @p SecondPos.
///
/// @param AccMap    The access relation to be checked.
/// @param FirstPos  The index of the input dimension that is mapped to
///                  the first output dimension.
/// @param SecondPos The index of the input dimension that is mapped to the
///                  second output dimension.
/// @return          True in case @p AccMap has the expected form and false,
///                  otherwise.
static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
                               int &SecondPos) {
  isl::space Space = AccMap.get_space();
  isl::map Universe = isl::map::universe(Space);

  if (unsignedFromIslSize(Space.dim(isl::dim::out)) != 2)
    return false;

  // MatMul has the form:
  // for (i = 0; i < N; i++)
  //   for (j = 0; j < M; j++)
  //     for (k = 0; k < P; k++)
  //       C[i, j] += A[i, k] * B[k, j]
  //
  // Permutation of three outer loops: 3! = 6 possibilities.
  int FirstDims[] = {0, 0, 1, 1, 2, 2};
  int SecondDims[] = {1, 2, 2, 0, 0, 1};
  for (int i = 0; i < 6; i += 1) {
    auto PossibleMatMul =
        Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
            .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);

    AccMap = AccMap.intersect_domain(Domain);
    PossibleMatMul = PossibleMatMul.intersect_domain(Domain);

    // If AccMap spans entire domain (Non-partial write),
    // compute FirstPos and SecondPos.
    // If AccMap != PossibleMatMul here (the two maps have been gisted at
    // this point), it means that the writes are not complete, or in other
    // words, it is a Partial write and Partial writes must be rejected.
    if (AccMap.is_equal(PossibleMatMul)) {
      if (FirstPos != -1 && FirstPos != FirstDims[i])
        continue;
      FirstPos = FirstDims[i];
      if (SecondPos != -1 && SecondPos != SecondDims[i])
        continue;
      SecondPos = SecondDims[i];
      return true;
    }
  }

  return false;
}

/// Does the memory access represent a non-scalar operand of the matrix
/// multiplication.
///
/// Check that the memory access @p MemAccess is the read access to a non-scalar
/// operand of the matrix multiplication or its result.
///
/// @param MemAccess The memory access to be checked.
/// @param MMI       Parameters of the matrix multiplication operands.
/// @return          True in case the memory access represents the read access
///                  to a non-scalar operand of the matrix multiplication and
///                  false, otherwise.
static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
                                        MatMulInfoTy &MMI) {
  if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
    return false;
  auto AccMap = MemAccess->getLatestAccessRelation();
  isl::set StmtDomain = MemAccess->getStatement()->getDomain();
  if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
    MMI.ReadFromC = MemAccess;
    return true;
  }
  if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
    MMI.A = MemAccess;
    return true;
  }
  if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
    MMI.B = MemAccess;
    return true;
  }
  return false;
}

/// Check accesses to operands of the matrix multiplication.
///
/// Check that accesses of the SCoP statement, which corresponds to
/// the partial schedule @p PartialSchedule, are scalar in terms of loops
/// containing the matrix multiplication, in case they do not represent
/// accesses to the non-scalar operands of the matrix multiplication or
/// its result.
///
/// @param  PartialSchedule The partial schedule of the SCoP statement.
/// @param  MMI             Parameters of the matrix multiplication operands.
/// @return                 True in case the corresponding SCoP statement
///                         represents matrix multiplication and false,
///                         otherwise.
static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
                                    MatMulInfoTy &MMI) {
  auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
  auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
  unsigned OutDimNum = unsignedFromIslSize(PartialSchedule.range_tuple_dim());
  assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
                          "and, consequently, the corresponding scheduling "
                          "functions have at least three dimensions.");
  auto MapI =
      permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
  auto MapJ =
      permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
  auto MapK =
      permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);

  auto Accesses = getAccessesInOrder(*Stmt);
  for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
    auto *MemAccessPtr = *MemA;
    if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
        !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
        !(MemAccessPtr->isStrideZero(MapI) &&
          MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK)))
      return false;
  }
  return true;
}

/// Check for dependencies corresponding to the matrix multiplication.
///
/// Check that there is only true dependence of the form
/// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
/// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
/// to the dependency produced by the matrix multiplication.
///
/// @param  Schedule The schedule of the SCoP statement.
/// @param  D The SCoP dependencies.
/// @param  Pos The parameter to describe an acceptable true dependence.
///             In case it has a negative value, try to determine its
///             acceptable value.
/// @return True in case dependencies correspond to the matrix multiplication
///         and false, otherwise.
static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
                                  int &Pos) {
  isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
  isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
  if (!Red.is_null())
    Dep = Dep.unite(Red);
  auto DomainSpace = Schedule.get_space().domain();
  auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
  auto Deltas = Dep.extract_map(Space).deltas();
  int DeltasDimNum = unsignedFromIslSize(Deltas.dim(isl::dim::set));
  for (int i = 0; i < DeltasDimNum; i++) {
    auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
    Pos = Pos < 0 && Val.is_one() ? i : Pos;
    if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
      return false;
  }
  if (DeltasDimNum == 0 || Pos < 0)
    return false;
  return true;
}

/// Check if the SCoP statement could probably be optimized with analytical
/// modeling.
///
/// containsMatrMult tries to determine whether the following conditions
/// are true:
/// 1. The last memory access modeling an array, MA1, represents writing to
///    memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
///    S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
///    under consideration.
/// 2. There is only one loop-carried true dependency, and it has the
///    form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
///    loop-carried or anti dependencies.
/// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
///    reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
///    S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
///    and all memory accesses of the SCoP that are different from MA1, MA2,
///    MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
///    of loops i1, i2 and i3.
///
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
///        to check.
/// @D     The SCoP dependencies.
/// @MMI   Parameters of the matrix multiplication operands.
static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
                             MatMulInfoTy &MMI) {
  auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
  auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
  if (Stmt->size() <= 1)
    return false;

  auto Accesses = getAccessesInOrder(*Stmt);
  for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
    auto *MemAccessPtr = *MemA;
    if (!MemAccessPtr->isLatestArrayKind())
      continue;
    if (!MemAccessPtr->isWrite())
      return false;
    auto AccMap = MemAccessPtr->getLatestAccessRelation();
    if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
      return false;
    MMI.WriteToC = MemAccessPtr;
    break;
  }

  if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
    return false;

  if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
    return false;

  if (!MMI.A || !MMI.B || !MMI.ReadFromC)
    return false;
  return true;
}

/// Permute two dimensions of the band node.
///
/// Permute FirstDim and SecondDim dimensions of the Node.
///
/// @param Node The band node to be modified.
/// @param FirstDim The first dimension to be permuted.
/// @param SecondDim The second dimension to be permuted.
static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
                                                    unsigned FirstDim,
                                                    unsigned SecondDim) {
  assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
         (unsigned)isl_schedule_node_band_n_member(Node.get()) >
             std::max(FirstDim, SecondDim));
  auto PartialSchedule =
      isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
  auto PartialScheduleFirstDim = PartialSchedule.at(FirstDim);
  auto PartialScheduleSecondDim = PartialSchedule.at(SecondDim);
  PartialSchedule =
      PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
  PartialSchedule =
      PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
  Node = isl::manage(isl_schedule_node_delete(Node.release()));
  return Node.insert_partial_schedule(PartialSchedule);
}

static isl::schedule_node
createMicroKernel(isl::schedule_node Node,
                  MicroKernelParamsTy MicroKernelParams) {
  Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
                             1);
  Node = Node.parent().parent();
  return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
}

/// Create the BLIS macro-kernel.
///
/// We create the BLIS macro-kernel by applying a combination of tiling
/// of dimensions of the band node and interchanging of two innermost
/// modified dimensions. The values of of MacroKernelParams's fields are used
/// as tile sizes.
///
/// @param Node The schedule node to be modified.
/// @param MacroKernelParams Parameters of the macro kernel
///                          to be used as tile sizes.
static isl::schedule_node
createMacroKernel(isl::schedule_node Node,
                  MacroKernelParamsTy MacroKernelParams) {
  assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
  if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
      MacroKernelParams.Kc == 1)
    return Node;
  int DimOutNum = isl_schedule_node_band_n_member(Node.get());
  std::vector<int> TileSizes(DimOutNum, 1);
  TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
  TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
  TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
  Node = tileNode(Node, "1st level tiling", TileSizes, 1);
  Node = Node.parent().parent();
  Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
  Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);

  // Mark the outermost loop as parallelizable.
  Node = Node.as<isl::schedule_node_band>().member_set_coincident(0, true);

  return Node.child(0).child(0);
}

/// Get the size of the widest type of the matrix multiplication operands
/// in bytes, including alignment padding.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
///         in bytes, including alignment padding.
static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
  auto *S = MMI.A->getStatement()->getParent();
  auto &DL = S->getFunction().getParent()->getDataLayout();
  auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
  auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
  auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
  return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}

/// Get the size of the widest type of the matrix multiplication operands
/// in bits.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
///         in bits.
static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
  auto *S = MMI.A->getStatement()->getParent();
  auto &DL = S->getFunction().getParent()->getDataLayout();
  auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
  auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
  auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
  return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}

/// Get parameters of the BLIS micro kernel.
///
/// We choose the Mr and Nr parameters of the micro kernel to be large enough
/// such that no stalls caused by the combination of latencies and dependencies
/// are introduced during the updates of the resulting matrix of the matrix
/// multiplication. However, they should also be as small as possible to
/// release more registers for entries of multiplied matrices.
///
/// @param TTI Target Transform Info.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MicroKernelParamsTy.
/// @see MicroKernelParamsTy
static struct MicroKernelParamsTy
getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) {
  assert(TTI && "The target transform info should be provided.");

  // Nvec - Number of double-precision floating-point numbers that can be hold
  // by a vector register. Use 2 by default.
  long RegisterBitwidth = VectorRegisterBitwidth;

  if (RegisterBitwidth == -1)
    RegisterBitwidth =
        TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
  auto ElementSize = getMatMulTypeSize(MMI);
  assert(ElementSize > 0 && "The element size of the matrix multiplication "
                            "operands should be greater than zero.");
  auto Nvec = RegisterBitwidth / ElementSize;
  if (Nvec == 0)
    Nvec = 2;
  int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
                Nvec) *
           Nvec;
  int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
  return {Mr, Nr};
}

/// Determine parameters of the target cache.
///
/// @param TTI Target Transform Info.
static void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
  auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
  auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
  if (FirstCacheLevelSize == -1) {
    if (TTI->getCacheSize(L1DCache).hasValue())
      FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue();
    else
      FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
  }
  if (SecondCacheLevelSize == -1) {
    if (TTI->getCacheSize(L2DCache).hasValue())
      SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue();
    else
      SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
  }
  if (FirstCacheLevelAssociativity == -1) {
    if (TTI->getCacheAssociativity(L1DCache).hasValue())
      FirstCacheLevelAssociativity =
          TTI->getCacheAssociativity(L1DCache).getValue();
    else
      FirstCacheLevelAssociativity =
          static_cast<int>(FirstCacheLevelDefaultAssociativity);
  }
  if (SecondCacheLevelAssociativity == -1) {
    if (TTI->getCacheAssociativity(L2DCache).hasValue())
      SecondCacheLevelAssociativity =
          TTI->getCacheAssociativity(L2DCache).getValue();
    else
      SecondCacheLevelAssociativity =
          static_cast<int>(SecondCacheLevelDefaultAssociativity);
  }
}

/// Get parameters of the BLIS macro kernel.
///
/// During the computation of matrix multiplication, blocks of partitioned
/// matrices are mapped to different layers of the memory hierarchy.
/// To optimize data reuse, blocks should be ideally kept in cache between
/// iterations. Since parameters of the macro kernel determine sizes of these
/// blocks, there are upper and lower bounds on these parameters.
///
/// @param TTI Target Transform Info.
/// @param MicroKernelParams Parameters of the micro-kernel
///                          to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MacroKernelParamsTy.
/// @see MacroKernelParamsTy
/// @see MicroKernelParamsTy
static struct MacroKernelParamsTy
getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
                     const MicroKernelParamsTy &MicroKernelParams,
                     MatMulInfoTy MMI) {
  getTargetCacheParameters(TTI);
  // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
  // it requires information about the first two levels of a cache to determine
  // all the parameters of a macro-kernel. It also checks that an associativity
  // degree of a cache level is greater than two. Otherwise, another algorithm
  // for determination of the parameters should be used.
  if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
        FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
        FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
    return {1, 1, 1};
  // The quotient should be greater than zero.
  if (PollyPatternMatchingNcQuotient <= 0)
    return {1, 1, 1};
  int Car = floor(
      (FirstCacheLevelAssociativity - 1) /
      (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));

  // Car can be computed to be zero since it is floor to int.
  // On Mac OS, division by 0 does not raise a signal. This causes negative
  // tile sizes to be computed. Prevent division by Cac==0 by early returning
  // if this happens.
  if (Car == 0)
    return {1, 1, 1};

  auto ElementSize = getMatMulAlignTypeSize(MMI);
  assert(ElementSize > 0 && "The element size of the matrix multiplication "
                            "operands should be greater than zero.");
  int Kc = (Car * FirstCacheLevelSize) /
           (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
  double Cac =
      static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
      SecondCacheLevelSize;
  int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
  int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;

  assert(Mc > 0 && Nc > 0 && Kc > 0 &&
         "Matrix block sizes should be  greater than zero");
  return {Mc, Nc, Kc};
}

/// Create an access relation that is specific to
///        the matrix multiplication pattern.
///
/// Create an access relation of the following form:
/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
/// where I is @p FirstDim, J is @p SecondDim.
///
/// It can be used, for example, to create relations that helps to consequently
/// access elements of operands of a matrix multiplication after creation of
/// the BLIS micro and macro kernels.
///
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
///
/// Subsequently, the described access relation is applied to the range of
/// @p MapOldIndVar, that is used to map original induction variables to
/// the ones, which are produced by schedule transformations. It helps to
/// define relations using a new space and, at the same time, keep them
/// in the original one.
///
/// @param MapOldIndVar The relation, which maps original induction variables
///                     to the ones, which are produced by schedule
///                     transformations.
/// @param FirstDim, SecondDim The input dimensions that are used to define
///        the specified access relation.
/// @return The specified access relation.
static isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
                                unsigned SecondDim) {
  auto AccessRelSpace = isl::space(MapOldIndVar.ctx(), 0, 9, 3);
  auto AccessRel = isl::map::universe(AccessRelSpace);
  AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
  AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
  AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
  return MapOldIndVar.apply_range(AccessRel);
}

static isl::schedule_node createExtensionNode(isl::schedule_node Node,
                                              isl::map ExtensionMap) {
  auto Extension = isl::union_map(ExtensionMap);
  auto NewNode = isl::schedule_node::from_extension(Extension);
  return Node.graft_before(NewNode);
}

static isl::schedule_node optimizePackedB(isl::schedule_node Node,
                                          ScopStmt *Stmt, isl::map MapOldIndVar,
                                          MicroKernelParamsTy MicroParams,
                                          MacroKernelParamsTy MacroParams,
                                          MatMulInfoTy &MMI) {
  Scop *S = Stmt->getParent();
  isl::set Domain = Stmt->getDomain();

  // Create packed array.
  unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
  unsigned SecondDimSize = MacroParams.Kc;
  unsigned ThirdDimSize = MicroParams.Nr;
  ScopArrayInfo *PackedB =
      S->createScopArrayInfo(MMI.B->getElementType(), "Packed_B",
                             {FirstDimSize, SecondDimSize, ThirdDimSize});

  // Compute the access relation for copying from B to PackedB.
  isl::map AccRelB = MMI.B->getLatestAccessRelation();
  isl::map AccRelPackedB = getMatMulAccRel(MapOldIndVar, 3, 7);
  AccRelPackedB =
      AccRelPackedB.set_tuple_id(isl::dim::out, PackedB->getBasePtrId());

  // Create the copy statement and redirect access.
  ScopStmt *CopyStmt = S->addScopStmt(AccRelB, AccRelPackedB, Domain);
  MMI.B->setNewAccessRelation(AccRelPackedB);

  unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
  assert(Dim >= 2);
  // Insert into the schedule tree.
  isl::map ExtMap = MapOldIndVar.project_out(isl::dim::out, 2, Dim - 2);
  ExtMap = ExtMap.reverse();
  ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
  ExtMap = ExtMap.intersect_range(Domain);
  ExtMap = ExtMap.set_tuple_id(isl::dim::out, CopyStmt->getDomainId());
  return createExtensionNode(Node, ExtMap);
}

static isl::schedule_node optimizePackedA(isl::schedule_node Node, ScopStmt *,
                                          isl::map MapOldIndVar,
                                          MicroKernelParamsTy MicroParams,
                                          MacroKernelParamsTy MacroParams,
                                          MatMulInfoTy &MMI) {
  isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
  ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
  isl::set Domain = Stmt->getDomain();
  isl::id DomainId = Domain.get_tuple_id();

  // Create the packed array.
  unsigned FirstDimSize = MacroParams.Mc / MicroParams.Mr;
  unsigned SecondDimSize = MacroParams.Kc;
  unsigned ThirdDimSize = MicroParams.Mr;
  ScopArrayInfo *PackedA = Stmt->getParent()->createScopArrayInfo(
      MMI.A->getElementType(), "Packed_A",
      {FirstDimSize, SecondDimSize, ThirdDimSize});

  // Compute the access relation for copying from A to PackedA.
  isl::map AccRelA = MMI.A->getLatestAccessRelation();
  isl::map AccRelPackedA = getMatMulAccRel(MapOldIndVar, 4, 6);
  AccRelPackedA =
      AccRelPackedA.set_tuple_id(isl::dim::out, PackedA->getBasePtrId());
  // { MemrefA[] -> PackedA[] }
  isl::map PackedATranslator = AccRelPackedA.apply_domain(AccRelA);

  // Compute the domain for the copy statement.
  // Construct the copy statement domain out of the 3 outermost scatter
  // dimensions (to match the 3 band nodes surrounding the extension node) and
  // the array elements to copy (one statement instance per array element).
  // { Scatter[] }
  isl::set ScatterDomain = MapOldIndVar.intersect_domain(Domain).range();
  // { Scatter[] -> OutermostScatter[] }
  isl::map OuterDomainMap =
      makeIdentityMap(ScatterDomain, true).project_out(isl::dim::out, 3, 6);
  // { Scatter[] -> MemrefA[] }
  isl::map CopyFrom = MapOldIndVar.reverse().apply_range(AccRelA);
  // { Scatter[] -> CopyStmt[] }
  isl::map DomainTranslator = OuterDomainMap.range_product(CopyFrom);
  // { CopyStmt[] }
  isl::set CopyDomain = DomainTranslator.range();

  // Translate the access relations to the new domain.
  // { CopyStmt[] -> MemrefA[] }
  CopyFrom = CopyFrom.apply_domain(DomainTranslator);
  // { CopyStmt[] -> PackedA[] }
  isl::map CopyTo = CopyFrom.apply_range(PackedATranslator);

  // Create the copy statement and redirect access.
  ScopStmt *CopyStmt =
      Stmt->getParent()->addScopStmt(CopyFrom, CopyTo, CopyDomain);
  MMI.A->setNewAccessRelation(AccRelPackedA);

  // Insert into the schedule tree.
  // { Scatter[] -> CopyStmt[] }
  isl::map ExtScatterCopy = makeIdentityMap(CopyStmt->getDomain(), true);
  ExtScatterCopy = ExtScatterCopy.project_out(isl::dim::in, 3, 2);
  return createExtensionNode(Node, ExtScatterCopy);
}

/// Apply the packing transformation.
///
/// The packing transformation can be described as a data-layout
/// transformation that requires to introduce a new array, copy data
/// to the array, and change memory access locations to reference the array.
/// It can be used to ensure that elements of the new array are read in-stride
/// access, aligned to cache lines boundaries, and preloaded into certain cache
/// levels.
///
/// As an example let us consider the packing of the array A that would help
/// to read its elements with in-stride access. An access to the array A
/// is represented by an access relation that has the form
/// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
/// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
/// k mod Kc, j mod Nr, i mod Mr].
///
/// To ensure that elements of the array A are read in-stride access, we add
/// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
/// Scop::createScopArrayInfo, change the access relation
/// S[i, j, k] -> A[i, k] to
/// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
/// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
/// the copy statement created by Scop::addScopStmt.
///
/// @param Node The schedule node to be optimized.
/// @param MapOldIndVar The relation, which maps original induction variables
///                     to the ones, which are produced by schedule
///                     transformations.
/// @param MicroParams, MacroParams Parameters of the BLIS kernel
///                                 to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The optimized schedule node.
static isl::schedule_node
optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
                                 MicroKernelParamsTy MicroParams,
                                 MacroKernelParamsTy MacroParams,
                                 MatMulInfoTy &MMI) {
  isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
  ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());

  Node = Node.parent().parent().parent().parent().parent().parent();
  Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2));

  Node = Node.child(0);
  Node =
      optimizePackedB(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);

  Node = Node.child(0);
  Node =
      optimizePackedA(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);

  return Node.child(0).child(0).child(0).child(0).child(0);
}

/// Get a relation mapping induction variables produced by schedule
/// transformations to the original ones.
///
/// @param Node The schedule node produced as the result of creation
///        of the BLIS kernels.
/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
///                                             to be taken into account.
/// @return  The relation mapping original induction variables to the ones
///          produced by schedule transformation.
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
/// @see getMacroKernelParams
static isl::map
getInductionVariablesSubstitution(isl::schedule_node Node,
                                  MicroKernelParamsTy MicroKernelParams,
                                  MacroKernelParamsTy MacroKernelParams) {
  auto Child = Node.child(0);
  auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
  auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
  unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
  if (Dim > 9u)
    return MapOldIndVar.project_out(isl::dim::out, 0, Dim - 9);
  return MapOldIndVar;
}

/// Isolate a set of partial tile prefixes and unroll the isolated part.
///
/// The set should ensure that it contains only partial tile prefixes that have
/// exactly Mr x Nr iterations of the two innermost loops produced by
/// the optimization of the matrix multiplication. Mr and Nr are parameters of
/// the micro-kernel.
///
/// In case of parametric bounds, this helps to auto-vectorize the unrolled
/// innermost loops, using the SLP vectorizer.
///
/// @param Node              The schedule node to be modified.
/// @param MicroKernelParams Parameters of the micro-kernel
///                          to be taken into account.
/// @return The modified isl_schedule_node.
static isl::schedule_node
isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
                                 struct MicroKernelParamsTy MicroKernelParams) {
  isl::schedule_node Child = Node.child(0);
  isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
  isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
  unsigned Dims = unsignedFromIslSize(Prefix.tuple_dim());
  assert(Dims >= 1);
  Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
  Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
  Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);

  isl::union_set IsolateOption =
      getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
  isl::ctx Ctx = Node.ctx();
  auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
  Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
  Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
  Node = Node.parent().parent().parent();
  IsolateOption = getIsolateOptions(Prefix, 3);
  Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
  Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
  Node = Node.child(0).child(0).child(0);
  return Node;
}

/// Insert "Loop Vectorizer Disabled" mark node.
///
/// @param Node The child of the mark node to be inserted.
/// @return The modified isl_schedule_node.
static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
  auto Id = isl::id::alloc(Node.ctx(), "Loop Vectorizer Disabled", nullptr);
  return Node.insert_mark(Id).child(0);
}

/// Restore the initial ordering of dimensions of the band node
///
/// In case the band node represents all the dimensions of the iteration
/// domain, recreate the band node to restore the initial ordering of the
/// dimensions.
///
/// @param Node The band node to be modified.
/// @return The modified schedule node.
static isl::schedule_node
getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
  assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
  if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
    return Node;
  auto Domain = Node.get_universe_domain();
  assert(isl_union_set_n_set(Domain.get()) == 1);
  if (Node.get_schedule_depth().release() != 0 ||
      (unsignedFromIslSize(isl::set(Domain).tuple_dim()) !=
       unsignedFromIslSize(Node.as<isl::schedule_node_band>().n_member())))
    return Node;
  Node = isl::manage(isl_schedule_node_delete(Node.copy()));
  auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
  auto PartialScheduleMultiPwAff =
      isl::multi_union_pw_aff(PartialSchedulePwAff);
  PartialScheduleMultiPwAff =
      PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
  return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
}

static isl::schedule_node optimizeMatMulPattern(isl::schedule_node Node,
                                                const TargetTransformInfo *TTI,
                                                MatMulInfoTy &MMI) {
  assert(TTI && "The target transform info should be provided.");
  int DimOutNum = isl_schedule_node_band_n_member(Node.get());
  assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
                          "and, consequently, the corresponding scheduling "
                          "functions have at least three dimensions.");
  Node = getBandNodeWithOriginDimOrder(Node);
  Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
  int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
  int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
  Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
  NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
  Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
  auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
  auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
  Node = createMacroKernel(Node, MacroKernelParams);
  Node = createMicroKernel(Node, MicroKernelParams);
  if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
      MacroKernelParams.Kc == 1)
    return Node;
  auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
                                                        MacroKernelParams);
  if (MapOldIndVar.is_null())
    return Node;
  Node = markLoopVectorizerDisabled(Node.parent()).child(0);
  Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
  return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
                                          MacroKernelParams, MMI);
}

/// Check if this node contains a partial schedule that could
///        probably be optimized with analytical modeling.
///
/// isMatrMultPattern tries to determine whether the following conditions
/// are true:
/// 1. the partial schedule contains only one statement.
/// 2. there are exactly three input dimensions.
/// 3. all memory accesses of the statement will have stride 0 or 1, if we
///    interchange loops (switch the variable used in the inner loop to
///    the outer loop).
/// 4. all memory accesses of the statement except from the last one, are
///    read memory access and the last one is write memory access.
/// 5. all subscripts of the last memory access of the statement don't
///    contain the variable used in the inner loop.
/// If this is the case, we could try to use an approach that is similar to
/// the one used to get close-to-peak performance of matrix multiplications.
///
/// @param Node The node to check.
/// @param D    The SCoP dependencies.
/// @param MMI  Parameters of the matrix multiplication operands.
static bool isMatrMultPattern(isl::schedule_node Node, const Dependences *D,
                              MatMulInfoTy &MMI) {
  auto PartialSchedule = isl::manage(
      isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
  Node = Node.child(0);
  auto LeafType = isl_schedule_node_get_type(Node.get());
  Node = Node.parent();
  if (LeafType != isl_schedule_node_leaf ||
      isl_schedule_node_band_n_member(Node.get()) < 3 ||
      Node.get_schedule_depth().release() != 0 ||
      isl_union_map_n_map(PartialSchedule.get()) != 1)
    return false;
  auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
  if (containsMatrMult(NewPartialSchedule, D, MMI))
    return true;
  return false;
}

} // namespace

isl::schedule_node
polly::tryOptimizeMatMulPattern(isl::schedule_node Node,
                                const llvm::TargetTransformInfo *TTI,
                                const Dependences *D) {
  MatMulInfoTy MMI;
  if (isMatrMultPattern(Node, D, MMI)) {
    LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
    return optimizeMatMulPattern(Node, TTI, MMI);
  }
  return {};
}