1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
|
/*
* Copyright 2016 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege.
*/
#include <isl/ctx.h>
#include <isl/id.h>
#include <isl/val.h>
#include <isl/space.h>
#include <isl/aff.h>
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_set.h>
#include <isl/union_map.h>
#include <isl/schedule.h>
#include <isl/schedule_node.h>
#include "ppcg.h"
/* Internal data structure for use during the detection of statements
* that can be grouped.
*
* "sc" contains the original schedule constraints (not a copy).
* "dep" contains the intersection of the validity and the proximity
* constraints in "sc". It may be NULL if it has not been computed yet.
* "group_id" is the identifier for the next group that is extracted.
*
* "domain" is the set of statement instances that belong to any of the groups.
* "contraction" maps the elements of "domain" to the corresponding group
* instances.
* "schedule" schedules the statements in each group relatively to each other.
* These last three fields are NULL if no groups have been found so far.
*/
struct ppcg_grouping {
isl_schedule_constraints *sc;
isl_union_map *dep;
int group_id;
isl_union_set *domain;
isl_union_pw_multi_aff *contraction;
isl_schedule *schedule;
};
/* Clear all memory allocated by "grouping".
*/
static void ppcg_grouping_clear(struct ppcg_grouping *grouping)
{
isl_union_map_free(grouping->dep);
isl_union_set_free(grouping->domain);
isl_union_pw_multi_aff_free(grouping->contraction);
isl_schedule_free(grouping->schedule);
}
/* Compute the intersection of the proximity and validity dependences
* in grouping->sc and store the result in grouping->dep, unless
* this intersection has been computed before.
*/
static isl_stat ppcg_grouping_compute_dep(struct ppcg_grouping *grouping)
{
isl_union_map *validity, *proximity;
if (grouping->dep)
return isl_stat_ok;
validity = isl_schedule_constraints_get_validity(grouping->sc);
proximity = isl_schedule_constraints_get_proximity(grouping->sc);
grouping->dep = isl_union_map_intersect(validity, proximity);
if (!grouping->dep)
return isl_stat_error;
return isl_stat_ok;
}
/* Information extracted from one or more consecutive leaves
* in the input schedule.
*
* "list" contains the sets of statement instances in the leaves,
* one element in the list for each original leaf.
* "domain" contains the union of the sets in "list".
* "prefix" contains the prefix schedule of these elements.
*/
struct ppcg_grouping_leaf {
isl_union_set *domain;
isl_union_set_list *list;
isl_multi_union_pw_aff *prefix;
};
/* Free all memory allocated for "leaves".
*/
static void ppcg_grouping_leaf_free(int n, struct ppcg_grouping_leaf leaves[])
{
int i;
if (!leaves)
return;
for (i = 0; i < n; ++i) {
isl_union_set_free(leaves[i].domain);
isl_union_set_list_free(leaves[i].list);
isl_multi_union_pw_aff_free(leaves[i].prefix);
}
free(leaves);
}
/* Short-hand for retrieving the prefix schedule at "node"
* in the form of an isl_multi_union_pw_aff.
*/
static __isl_give isl_multi_union_pw_aff *get_prefix(
__isl_keep isl_schedule_node *node)
{
return isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
}
/* Return an array of "n" elements with information extracted from
* the "n" children of "node" starting at "first", all of which
* are known to be filtered leaves.
*/
struct ppcg_grouping_leaf *extract_leaves(__isl_keep isl_schedule_node *node,
int first, int n)
{
int i;
isl_ctx *ctx;
struct ppcg_grouping_leaf *leaves;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
leaves = isl_calloc_array(ctx, struct ppcg_grouping_leaf, n);
if (!leaves)
return NULL;
for (i = 0; i < n; ++i) {
isl_schedule_node *child;
isl_union_set *domain;
child = isl_schedule_node_get_child(node, first + i);
child = isl_schedule_node_child(child, 0);
domain = isl_schedule_node_get_domain(child);
leaves[i].domain = isl_union_set_copy(domain);
leaves[i].list = isl_union_set_list_from_union_set(domain);
leaves[i].prefix = get_prefix(child);
isl_schedule_node_free(child);
}
return leaves;
}
/* Internal data structure used by merge_leaves.
*
* "src" and "dst" point to the two consecutive leaves that are
* under investigation for being merged.
* "merge" is initially set to 0 and is set to 1 as soon as
* it turns out that it is useful to merge the two leaves.
*/
struct ppcg_merge_leaves_data {
int merge;
struct ppcg_grouping_leaf *src;
struct ppcg_grouping_leaf *dst;
};
/* Given a relation "map" between instances of two statements A and B,
* does it relate every instance of A (according to the domain of "src")
* to every instance of B (according to the domain of "dst")?
*/
static isl_bool covers_src_and_dst(__isl_keep isl_map *map,
struct ppcg_grouping_leaf *src, struct ppcg_grouping_leaf *dst)
{
isl_space *space;
isl_set *set1, *set2;
isl_bool is_subset;
space = isl_space_domain(isl_map_get_space(map));
set1 = isl_union_set_extract_set(src->domain, space);
set2 = isl_map_domain(isl_map_copy(map));
is_subset = isl_set_is_subset(set1, set2);
isl_set_free(set1);
isl_set_free(set2);
if (is_subset < 0 || !is_subset)
return is_subset;
space = isl_space_range(isl_map_get_space(map));
set1 = isl_union_set_extract_set(dst->domain, space);
set2 = isl_map_range(isl_map_copy(map));
is_subset = isl_set_is_subset(set1, set2);
isl_set_free(set1);
isl_set_free(set2);
return is_subset;
}
/* Given a relation "map" between instances of two statements A and B,
* are pairs of related instances executed together in the input schedule?
* That is, is each pair of instances assigned the same value
* by the corresponding prefix schedules?
*
* In particular, select the subset of "map" that has pairs of elements
* with the same value for the prefix schedules and then check
* if "map" is still a subset of the result.
*/
static isl_bool matches_prefix(__isl_keep isl_map *map,
struct ppcg_grouping_leaf *src, struct ppcg_grouping_leaf *dst)
{
isl_union_map *umap, *equal;
isl_multi_union_pw_aff *src_prefix, *dst_prefix, *prefix;
isl_bool is_subset;
src_prefix = isl_multi_union_pw_aff_copy(src->prefix);
dst_prefix = isl_multi_union_pw_aff_copy(dst->prefix);
prefix = isl_multi_union_pw_aff_union_add(src_prefix, dst_prefix);
umap = isl_union_map_from_map(isl_map_copy(map));
equal = isl_union_map_copy(umap);
equal = isl_union_map_eq_at_multi_union_pw_aff(equal, prefix);
is_subset = isl_union_map_is_subset(umap, equal);
isl_union_map_free(umap);
isl_union_map_free(equal);
return is_subset;
}
/* Given a set of validity and proximity schedule constraints "map"
* between statements in consecutive leaves in a valid schedule,
* should the two leaves be merged into one?
*
* In particular, the two are merged if the constraints form
* a bijection between every instance of the first statement and
* every instance of the second statement. Moreover, each
* pair of such dependent instances needs to be executed consecutively
* in the input schedule. That is, they need to be assigned
* the same value by their prefix schedules.
*
* What this means is that for each instance of the first statement
* there is exactly one instance of the second statement that
* is executed immediately after the instance of the first statement and
* that, moreover, both depends on this statement instance and
* should be brought as close as possible to this statement instance.
* In other words, it is both possible to execute the two instances
* together (according to the input schedule) and desirable to do so
* (according to the validity and proximity schedule constraints).
*/
static isl_stat check_merge(__isl_take isl_map *map, void *user)
{
struct ppcg_merge_leaves_data *data = user;
isl_bool ok;
ok = covers_src_and_dst(map, data->src, data->dst);
if (ok >= 0 && ok)
ok = isl_map_is_bijective(map);
if (ok >= 0 && ok)
ok = matches_prefix(map, data->src, data->dst);
isl_map_free(map);
if (ok < 0)
return isl_stat_error;
if (!ok)
return isl_stat_ok;
data->merge = 1;
return isl_stat_error;
}
/* Merge the leaves at position "pos" and "pos + 1" in "leaves".
*/
static isl_stat merge_pair(int n, struct ppcg_grouping_leaf leaves[], int pos)
{
int i;
leaves[pos].domain = isl_union_set_union(leaves[pos].domain,
leaves[pos + 1].domain);
leaves[pos].list = isl_union_set_list_concat(leaves[pos].list,
leaves[pos + 1].list);
leaves[pos].prefix = isl_multi_union_pw_aff_union_add(
leaves[pos].prefix, leaves[pos + 1].prefix);
for (i = pos + 1; i + 1 < n; ++i)
leaves[i] = leaves[i + 1];
leaves[n - 1].domain = NULL;
leaves[n - 1].list = NULL;
leaves[n - 1].prefix = NULL;
if (!leaves[pos].domain || !leaves[pos].list || !leaves[pos].prefix)
return isl_stat_error;
return isl_stat_ok;
}
/* Merge pairs of consecutive leaves in "leaves" taking into account
* the intersection of validity and proximity schedule constraints "dep".
*
* If a leaf has been merged with the next leaf, then the combination
* is checked again for merging with the next leaf.
* That is, if the leaves are A, B and C, then B may not have been
* merged with C, but after merging A and B, it could still be useful
* to merge the combination AB with C.
*
* Two leaves A and B are merged if there are instances of at least
* one pair of statements, one statement in A and one B, such that
* the validity and proximity schedule constraints between them
* make them suitable for merging according to check_merge.
*
* Return the final number of leaves in the sequence, or -1 on error.
*/
static int merge_leaves(int n, struct ppcg_grouping_leaf leaves[],
__isl_keep isl_union_map *dep)
{
int i;
struct ppcg_merge_leaves_data data;
for (i = n - 1; i >= 0; --i) {
isl_union_map *dep_i;
isl_stat ok;
if (i + 1 >= n)
continue;
dep_i = isl_union_map_copy(dep);
dep_i = isl_union_map_intersect_domain(dep_i,
isl_union_set_copy(leaves[i].domain));
dep_i = isl_union_map_intersect_range(dep_i,
isl_union_set_copy(leaves[i + 1].domain));
data.merge = 0;
data.src = &leaves[i];
data.dst = &leaves[i + 1];
ok = isl_union_map_foreach_map(dep_i, &check_merge, &data);
isl_union_map_free(dep_i);
if (ok < 0 && !data.merge)
return -1;
if (!data.merge)
continue;
if (merge_pair(n, leaves, i) < 0)
return -1;
--n;
++i;
}
return n;
}
/* Construct a schedule with "domain" as domain, that executes
* the elements of "list" in order (as a sequence).
*/
static __isl_give isl_schedule *schedule_from_domain_and_list(
__isl_keep isl_union_set *domain, __isl_keep isl_union_set_list *list)
{
isl_schedule *schedule;
isl_schedule_node *node;
schedule = isl_schedule_from_domain(isl_union_set_copy(domain));
node = isl_schedule_get_root(schedule);
isl_schedule_free(schedule);
node = isl_schedule_node_child(node, 0);
list = isl_union_set_list_copy(list);
node = isl_schedule_node_insert_sequence(node, list);
schedule = isl_schedule_node_get_schedule(node);
isl_schedule_node_free(node);
return schedule;
}
/* Construct a unique identifier for a group in "grouping".
*
* The name is of the form G_n, with n the first value starting at
* grouping->group_id that does not result in an identifier
* that is already in use in the domain of the original schedule
* constraints.
*/
static isl_id *construct_group_id(struct ppcg_grouping *grouping,
__isl_take isl_space *space)
{
isl_ctx *ctx;
isl_id *id;
isl_bool empty;
isl_union_set *domain;
if (!space)
return NULL;
ctx = isl_space_get_ctx(space);
domain = isl_schedule_constraints_get_domain(grouping->sc);
do {
char buffer[20];
isl_id *id;
isl_set *set;
snprintf(buffer, sizeof(buffer), "G_%d", grouping->group_id);
grouping->group_id++;
id = isl_id_alloc(ctx, buffer, NULL);
space = isl_space_set_tuple_id(space, isl_dim_set, id);
set = isl_union_set_extract_set(domain, isl_space_copy(space));
empty = isl_set_plain_is_empty(set);
isl_set_free(set);
} while (empty >= 0 && !empty);
if (empty < 0)
space = isl_space_free(space);
id = isl_space_get_tuple_id(space, isl_dim_set);
isl_space_free(space);
isl_union_set_free(domain);
return id;
}
/* Construct a contraction from "prefix" and "domain" for a new group
* in "grouping".
*
* The values of the prefix schedule "prefix" are used as instances
* of the new group. The identifier of the group is constructed
* in such a way that it does not conflict with those of earlier
* groups nor with statements in the domain of the original
* schedule constraints.
* The isl_multi_union_pw_aff "prefix" then simply needs to be
* converted to an isl_union_pw_multi_aff. However, this is not
* possible if "prefix" is zero-dimensional, so in this case,
* a contraction is constructed from "domain" instead.
*/
static isl_union_pw_multi_aff *group_contraction_from_prefix_and_domain(
struct ppcg_grouping *grouping,
__isl_keep isl_multi_union_pw_aff *prefix,
__isl_keep isl_union_set *domain)
{
isl_id *id;
isl_space *space;
int dim;
space = isl_multi_union_pw_aff_get_space(prefix);
if (!space)
return NULL;
dim = isl_space_dim(space, isl_dim_set);
id = construct_group_id(grouping, space);
if (dim == 0) {
isl_multi_val *mv;
space = isl_multi_union_pw_aff_get_space(prefix);
space = isl_space_set_tuple_id(space, isl_dim_set, id);
mv = isl_multi_val_zero(space);
domain = isl_union_set_copy(domain);
return isl_union_pw_multi_aff_multi_val_on_domain(domain, mv);
}
prefix = isl_multi_union_pw_aff_copy(prefix);
prefix = isl_multi_union_pw_aff_set_tuple_id(prefix, isl_dim_out, id);
return isl_union_pw_multi_aff_from_multi_union_pw_aff(prefix);
}
/* Extend "grouping" with groups corresponding to merged
* leaves in the list of potentially merged leaves "leaves".
*
* The "list" field of each element in "leaves" contains a list
* of the instances sets of the original leaves that have been
* merged into this element. If at least two of the original leaves
* have been merged into a given element, then add the corresponding
* group to "grouping".
* In particular, the domain is extended with the statement instances
* of the merged leaves, the contraction is extended with a mapping
* of these statement instances to instances of a new group and
* the schedule is extended with a schedule that executes
* the statement instances according to the order of the leaves
* in which they appear.
* Since the instances of the groups should already be scheduled apart
* in the schedule into which this schedule will be plugged in,
* the schedules of the individual groups are combined independently
* of each other (as a set).
*/
static isl_stat add_groups(struct ppcg_grouping *grouping,
int n, struct ppcg_grouping_leaf leaves[])
{
int i;
for (i = 0; i < n; ++i) {
int n_leaf;
isl_schedule *schedule;
isl_union_set *domain;
isl_union_pw_multi_aff *upma;
n_leaf = isl_union_set_list_n_union_set(leaves[i].list);
if (n_leaf < 0)
return isl_stat_error;
if (n_leaf <= 1)
continue;
schedule = schedule_from_domain_and_list(leaves[i].domain,
leaves[i].list);
upma = group_contraction_from_prefix_and_domain(grouping,
leaves[i].prefix, leaves[i].domain);
domain = isl_union_set_copy(leaves[i].domain);
if (grouping->domain) {
domain = isl_union_set_union(domain, grouping->domain);
upma = isl_union_pw_multi_aff_union_add(upma,
grouping->contraction);
schedule = isl_schedule_set(schedule,
grouping->schedule);
}
grouping->domain = domain;
grouping->contraction = upma;
grouping->schedule = schedule;
if (!grouping->domain || !grouping->contraction ||
!grouping->schedule)
return isl_stat_error;
}
return isl_stat_ok;
}
/* Look for any pairs of consecutive leaves among the "n" children of "node"
* starting at "first" that should be merged together.
* Store the results in "grouping".
*
* First make sure the intersection of validity and proximity
* schedule constraints is available and extract the required
* information from the "n" leaves.
* Then try and merge consecutive leaves based on the validity
* and proximity constraints.
* If any pairs were successfully merged, then add groups
* corresponding to the merged leaves to "grouping".
*/
static isl_stat group_subsequence(__isl_keep isl_schedule_node *node,
int first, int n, struct ppcg_grouping *grouping)
{
int n_merge;
struct ppcg_grouping_leaf *leaves;
if (ppcg_grouping_compute_dep(grouping) < 0)
return isl_stat_error;
leaves = extract_leaves(node, first, n);
if (!leaves)
return isl_stat_error;
n_merge = merge_leaves(n, leaves, grouping->dep);
if (n_merge >= 0 && n_merge < n &&
add_groups(grouping, n_merge, leaves) < 0)
return isl_stat_error;
ppcg_grouping_leaf_free(n, leaves);
return isl_stat_ok;
}
/* If "node" is a sequence, then check if it has any consecutive
* leaves that should be merged together and store the results
* in "grouping".
*
* In particular, call group_subsequence on each consecutive
* sequence of (filtered) leaves among the children of "node".
*/
static isl_bool detect_groups(__isl_keep isl_schedule_node *node, void *user)
{
int i, n, first;
struct ppcg_grouping *grouping = user;
if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence)
return isl_bool_true;
n = isl_schedule_node_n_children(node);
if (n < 0)
return isl_bool_error;
first = -1;
for (i = 0; i < n; ++i) {
isl_schedule_node *child;
enum isl_schedule_node_type type;
child = isl_schedule_node_get_child(node, i);
child = isl_schedule_node_child(child, 0);
type = isl_schedule_node_get_type(child);
isl_schedule_node_free(child);
if (first >= 0 && type != isl_schedule_node_leaf) {
if (group_subsequence(node, first, i - first,
grouping) < 0)
return isl_bool_error;
first = -1;
}
if (first < 0 && type == isl_schedule_node_leaf)
first = i;
}
if (first >= 0) {
if (group_subsequence(node, first, n - first, grouping) < 0)
return isl_bool_error;
}
return isl_bool_true;
}
/* Complete "grouping" to cover all statement instances in the domain
* of grouping->sc.
*
* In particular, grouping->domain is set to the full set of statement
* instances; group->contraction is extended with an identity
* contraction on the additional instances and group->schedule
* is extended with an independent schedule on those additional instances.
* In the extension of group->contraction, the additional instances
* are split into those belong to different statements and those
* that belong to some of the same statements. The first group
* is replaced by its universe in order to simplify the contraction extension.
*/
static void complete_grouping(struct ppcg_grouping *grouping)
{
isl_union_set *domain, *left, *overlap;
isl_union_pw_multi_aff *upma;
isl_schedule *schedule;
domain = isl_schedule_constraints_get_domain(grouping->sc);
left = isl_union_set_subtract(isl_union_set_copy(domain),
isl_union_set_copy(grouping->domain));
schedule = isl_schedule_from_domain(isl_union_set_copy(left));
schedule = isl_schedule_set(schedule, grouping->schedule);
grouping->schedule = schedule;
overlap = isl_union_set_universe(grouping->domain);
grouping->domain = domain;
overlap = isl_union_set_intersect(isl_union_set_copy(left), overlap);
left = isl_union_set_subtract(left, isl_union_set_copy(overlap));
left = isl_union_set_universe(left);
left = isl_union_set_union(left, overlap);
upma = isl_union_set_identity_union_pw_multi_aff(left);
upma = isl_union_pw_multi_aff_union_add(upma, grouping->contraction);
grouping->contraction = upma;
}
/* Compute a schedule on the domain of "sc" that respects the schedule
* constraints in "sc".
*
* "schedule" is a known correct schedule that is used to combine
* groups of statements if options->group_chains is set.
* In particular, statements that are executed consecutively in a sequence
* in this schedule and where all instances of the second depend on
* the instance of the first that is executed in the same iteration
* of outer band nodes are grouped together into a single statement.
* The schedule constraints are then mapped to these groups of statements
* and the resulting schedule is expanded again to refer to the original
* statements.
*/
__isl_give isl_schedule *ppcg_compute_schedule(
__isl_take isl_schedule_constraints *sc,
__isl_keep isl_schedule *schedule, struct ppcg_options *options)
{
struct ppcg_grouping grouping = { sc };
isl_union_pw_multi_aff *contraction;
isl_union_map *umap;
isl_schedule *res, *expansion;
if (!options->group_chains)
return isl_schedule_constraints_compute_schedule(sc);
grouping.group_id = 0;
if (isl_schedule_foreach_schedule_node_top_down(schedule,
&detect_groups, &grouping) < 0)
goto error;
if (!grouping.contraction) {
ppcg_grouping_clear(&grouping);
return isl_schedule_constraints_compute_schedule(sc);
}
complete_grouping(&grouping);
contraction = isl_union_pw_multi_aff_copy(grouping.contraction);
umap = isl_union_map_from_union_pw_multi_aff(contraction);
sc = isl_schedule_constraints_apply(sc, umap);
res = isl_schedule_constraints_compute_schedule(sc);
contraction = isl_union_pw_multi_aff_copy(grouping.contraction);
expansion = isl_schedule_copy(grouping.schedule);
res = isl_schedule_expand(res, contraction, expansion);
ppcg_grouping_clear(&grouping);
return res;
error:
ppcg_grouping_clear(&grouping);
isl_schedule_constraints_free(sc);
return NULL;
}
|