1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
|
//===-- Target.cpp ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "../Target.h"
#include "../Error.h"
#include "../ParallelSnippetGenerator.h"
#include "../SerialSnippetGenerator.h"
#include "../SnippetGenerator.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "X86.h"
#include "X86Counter.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Host.h"
#include <memory>
#include <string>
#include <vector>
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
#include <float.h>
#include <immintrin.h>
#include <intrin.h>
#endif
namespace llvm {
namespace exegesis {
static cl::OptionCategory
BenchmarkOptions("llvm-exegesis benchmark x86-options");
// If a positive value is specified, we are going to use the LBR in
// latency-mode.
//
// Note:
// - A small value is preferred, but too low a value could result in
// throttling.
// - A prime number is preferred to avoid always skipping certain blocks.
//
static cl::opt<unsigned> LbrSamplingPeriod(
"x86-lbr-sample-period",
cl::desc("The sample period (nbranches/sample), used for LBR sampling"),
cl::cat(BenchmarkOptions), cl::init(0));
// FIXME: Validates that repetition-mode is loop if LBR is requested.
// Returns a non-null reason if we cannot handle the memory references in this
// instruction.
static const char *isInvalidMemoryInstr(const Instruction &Instr) {
switch (Instr.Description.TSFlags & X86II::FormMask) {
default:
return "Unknown FormMask value";
// These have no memory access.
case X86II::Pseudo:
case X86II::RawFrm:
case X86II::AddCCFrm:
case X86II::PrefixByte:
case X86II::MRMDestReg:
case X86II::MRMSrcReg:
case X86II::MRMSrcReg4VOp3:
case X86II::MRMSrcRegOp4:
case X86II::MRMSrcRegCC:
case X86II::MRMXrCC:
case X86II::MRMr0:
case X86II::MRMXr:
case X86II::MRM0r:
case X86II::MRM1r:
case X86II::MRM2r:
case X86II::MRM3r:
case X86II::MRM4r:
case X86II::MRM5r:
case X86II::MRM6r:
case X86II::MRM7r:
case X86II::MRM0X:
case X86II::MRM1X:
case X86II::MRM2X:
case X86II::MRM3X:
case X86II::MRM4X:
case X86II::MRM5X:
case X86II::MRM6X:
case X86II::MRM7X:
case X86II::MRM_C0:
case X86II::MRM_C1:
case X86II::MRM_C2:
case X86II::MRM_C3:
case X86II::MRM_C4:
case X86II::MRM_C5:
case X86II::MRM_C6:
case X86II::MRM_C7:
case X86II::MRM_C8:
case X86II::MRM_C9:
case X86II::MRM_CA:
case X86II::MRM_CB:
case X86II::MRM_CC:
case X86II::MRM_CD:
case X86II::MRM_CE:
case X86II::MRM_CF:
case X86II::MRM_D0:
case X86II::MRM_D1:
case X86II::MRM_D2:
case X86II::MRM_D3:
case X86II::MRM_D4:
case X86II::MRM_D5:
case X86II::MRM_D6:
case X86II::MRM_D7:
case X86II::MRM_D8:
case X86II::MRM_D9:
case X86II::MRM_DA:
case X86II::MRM_DB:
case X86II::MRM_DC:
case X86II::MRM_DD:
case X86II::MRM_DE:
case X86II::MRM_DF:
case X86II::MRM_E0:
case X86II::MRM_E1:
case X86II::MRM_E2:
case X86II::MRM_E3:
case X86II::MRM_E4:
case X86II::MRM_E5:
case X86II::MRM_E6:
case X86II::MRM_E7:
case X86II::MRM_E8:
case X86II::MRM_E9:
case X86II::MRM_EA:
case X86II::MRM_EB:
case X86II::MRM_EC:
case X86II::MRM_ED:
case X86II::MRM_EE:
case X86II::MRM_EF:
case X86II::MRM_F0:
case X86II::MRM_F1:
case X86II::MRM_F2:
case X86II::MRM_F3:
case X86II::MRM_F4:
case X86II::MRM_F5:
case X86II::MRM_F6:
case X86II::MRM_F7:
case X86II::MRM_F8:
case X86II::MRM_F9:
case X86II::MRM_FA:
case X86II::MRM_FB:
case X86II::MRM_FC:
case X86II::MRM_FD:
case X86II::MRM_FE:
case X86II::MRM_FF:
case X86II::RawFrmImm8:
return nullptr;
case X86II::AddRegFrm:
return (Instr.Description.Opcode == X86::POP16r ||
Instr.Description.Opcode == X86::POP32r ||
Instr.Description.Opcode == X86::PUSH16r ||
Instr.Description.Opcode == X86::PUSH32r)
? "unsupported opcode: unsupported memory access"
: nullptr;
// These access memory and are handled.
case X86II::MRMDestMem:
case X86II::MRMSrcMem:
case X86II::MRMSrcMem4VOp3:
case X86II::MRMSrcMemOp4:
case X86II::MRMSrcMemCC:
case X86II::MRMXmCC:
case X86II::MRMXm:
case X86II::MRM0m:
case X86II::MRM1m:
case X86II::MRM2m:
case X86II::MRM3m:
case X86II::MRM4m:
case X86II::MRM5m:
case X86II::MRM6m:
case X86II::MRM7m:
return nullptr;
// These access memory and are not handled yet.
case X86II::RawFrmImm16:
case X86II::RawFrmMemOffs:
case X86II::RawFrmSrc:
case X86II::RawFrmDst:
case X86II::RawFrmDstSrc:
return "unsupported opcode: non uniform memory access";
}
}
// If the opcode is invalid, returns a pointer to a character literal indicating
// the reason. nullptr indicates a valid opcode.
static const char *isInvalidOpcode(const Instruction &Instr) {
const auto OpcodeName = Instr.Name;
if ((Instr.Description.TSFlags & X86II::FormMask) == X86II::Pseudo)
return "unsupported opcode: pseudo instruction";
if ((OpcodeName.startswith("POP") && !OpcodeName.startswith("POPCNT")) ||
OpcodeName.startswith("PUSH") || OpcodeName.startswith("ADJCALLSTACK") ||
OpcodeName.startswith("LEAVE"))
return "unsupported opcode: Push/Pop/AdjCallStack/Leave";
switch (Instr.Description.Opcode) {
case X86::LFS16rm:
case X86::LFS32rm:
case X86::LFS64rm:
case X86::LGS16rm:
case X86::LGS32rm:
case X86::LGS64rm:
case X86::LSS16rm:
case X86::LSS32rm:
case X86::LSS64rm:
case X86::SYSENTER:
return "unsupported opcode";
default:
break;
}
if (const auto reason = isInvalidMemoryInstr(Instr))
return reason;
// We do not handle instructions with OPERAND_PCREL.
for (const Operand &Op : Instr.Operands)
if (Op.isExplicit() &&
Op.getExplicitOperandInfo().OperandType == MCOI::OPERAND_PCREL)
return "unsupported opcode: PC relative operand";
// We do not handle second-form X87 instructions. We only handle first-form
// ones (_Fp), see comment in X86InstrFPStack.td.
for (const Operand &Op : Instr.Operands)
if (Op.isReg() && Op.isExplicit() &&
Op.getExplicitOperandInfo().RegClass == X86::RSTRegClassID)
return "unsupported second-form X87 instruction";
return nullptr;
}
static unsigned getX86FPFlags(const Instruction &Instr) {
return Instr.Description.TSFlags & X86II::FPTypeMask;
}
// Helper to fill a memory operand with a value.
static void setMemOp(InstructionTemplate &IT, int OpIdx,
const MCOperand &OpVal) {
const auto Op = IT.getInstr().Operands[OpIdx];
assert(Op.isExplicit() && "invalid memory pattern");
IT.getValueFor(Op) = OpVal;
}
// Common (latency, uops) code for LEA templates. `GetDestReg` takes the
// addressing base and index registers and returns the LEA destination register.
static Expected<std::vector<CodeTemplate>> generateLEATemplatesCommon(
const Instruction &Instr, const BitVector &ForbiddenRegisters,
const LLVMState &State, const SnippetGenerator::Options &Opts,
std::function<void(unsigned, unsigned, BitVector &CandidateDestRegs)>
RestrictDestRegs) {
assert(Instr.Operands.size() == 6 && "invalid LEA");
assert(X86II::getMemoryOperandNo(Instr.Description.TSFlags) == 1 &&
"invalid LEA");
constexpr const int kDestOp = 0;
constexpr const int kBaseOp = 1;
constexpr const int kIndexOp = 3;
auto PossibleDestRegs =
Instr.Operands[kDestOp].getRegisterAliasing().sourceBits();
remove(PossibleDestRegs, ForbiddenRegisters);
auto PossibleBaseRegs =
Instr.Operands[kBaseOp].getRegisterAliasing().sourceBits();
remove(PossibleBaseRegs, ForbiddenRegisters);
auto PossibleIndexRegs =
Instr.Operands[kIndexOp].getRegisterAliasing().sourceBits();
remove(PossibleIndexRegs, ForbiddenRegisters);
const auto &RegInfo = State.getRegInfo();
std::vector<CodeTemplate> Result;
for (const unsigned BaseReg : PossibleBaseRegs.set_bits()) {
for (const unsigned IndexReg : PossibleIndexRegs.set_bits()) {
for (int LogScale = 0; LogScale <= 3; ++LogScale) {
// FIXME: Add an option for controlling how we explore immediates.
for (const int Disp : {0, 42}) {
InstructionTemplate IT(&Instr);
const int64_t Scale = 1ull << LogScale;
setMemOp(IT, 1, MCOperand::createReg(BaseReg));
setMemOp(IT, 2, MCOperand::createImm(Scale));
setMemOp(IT, 3, MCOperand::createReg(IndexReg));
setMemOp(IT, 4, MCOperand::createImm(Disp));
// SegmentReg must be 0 for LEA.
setMemOp(IT, 5, MCOperand::createReg(0));
// Output reg candidates are selected by the caller.
auto PossibleDestRegsNow = PossibleDestRegs;
RestrictDestRegs(BaseReg, IndexReg, PossibleDestRegsNow);
assert(PossibleDestRegsNow.set_bits().begin() !=
PossibleDestRegsNow.set_bits().end() &&
"no remaining registers");
setMemOp(
IT, 0,
MCOperand::createReg(*PossibleDestRegsNow.set_bits().begin()));
CodeTemplate CT;
CT.Instructions.push_back(std::move(IT));
CT.Config = formatv("{3}(%{0}, %{1}, {2})", RegInfo.getName(BaseReg),
RegInfo.getName(IndexReg), Scale, Disp)
.str();
Result.push_back(std::move(CT));
if (Result.size() >= Opts.MaxConfigsPerOpcode)
return std::move(Result);
}
}
}
}
return std::move(Result);
}
namespace {
class X86SerialSnippetGenerator : public SerialSnippetGenerator {
public:
using SerialSnippetGenerator::SerialSnippetGenerator;
Expected<std::vector<CodeTemplate>>
generateCodeTemplates(InstructionTemplate Variant,
const BitVector &ForbiddenRegisters) const override;
};
} // namespace
Expected<std::vector<CodeTemplate>>
X86SerialSnippetGenerator::generateCodeTemplates(
InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
const Instruction &Instr = Variant.getInstr();
if (const auto reason = isInvalidOpcode(Instr))
return make_error<Failure>(reason);
// LEA gets special attention.
const auto Opcode = Instr.Description.getOpcode();
if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r) {
return generateLEATemplatesCommon(
Instr, ForbiddenRegisters, State, Opts,
[this](unsigned BaseReg, unsigned IndexReg,
BitVector &CandidateDestRegs) {
// We just select a destination register that aliases the base
// register.
CandidateDestRegs &=
State.getRATC().getRegister(BaseReg).aliasedBits();
});
}
if (Instr.hasMemoryOperands())
return make_error<Failure>(
"unsupported memory operand in latency measurements");
switch (getX86FPFlags(Instr)) {
case X86II::NotFP:
return SerialSnippetGenerator::generateCodeTemplates(Variant,
ForbiddenRegisters);
case X86II::ZeroArgFP:
case X86II::OneArgFP:
case X86II::SpecialFP:
case X86II::CompareFP:
case X86II::CondMovFP:
return make_error<Failure>("Unsupported x87 Instruction");
case X86II::OneArgFPRW:
case X86II::TwoArgFP:
// These are instructions like
// - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
// - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
// They are intrinsically serial and do not modify the state of the stack.
return generateSelfAliasingCodeTemplates(Variant);
default:
llvm_unreachable("Unknown FP Type!");
}
}
namespace {
class X86ParallelSnippetGenerator : public ParallelSnippetGenerator {
public:
using ParallelSnippetGenerator::ParallelSnippetGenerator;
Expected<std::vector<CodeTemplate>>
generateCodeTemplates(InstructionTemplate Variant,
const BitVector &ForbiddenRegisters) const override;
};
} // namespace
Expected<std::vector<CodeTemplate>>
X86ParallelSnippetGenerator::generateCodeTemplates(
InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
const Instruction &Instr = Variant.getInstr();
if (const auto reason = isInvalidOpcode(Instr))
return make_error<Failure>(reason);
// LEA gets special attention.
const auto Opcode = Instr.Description.getOpcode();
if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r) {
return generateLEATemplatesCommon(
Instr, ForbiddenRegisters, State, Opts,
[this](unsigned BaseReg, unsigned IndexReg,
BitVector &CandidateDestRegs) {
// Any destination register that is not used for addressing is fine.
remove(CandidateDestRegs,
State.getRATC().getRegister(BaseReg).aliasedBits());
remove(CandidateDestRegs,
State.getRATC().getRegister(IndexReg).aliasedBits());
});
}
switch (getX86FPFlags(Instr)) {
case X86II::NotFP:
return ParallelSnippetGenerator::generateCodeTemplates(Variant,
ForbiddenRegisters);
case X86II::ZeroArgFP:
case X86II::OneArgFP:
case X86II::SpecialFP:
return make_error<Failure>("Unsupported x87 Instruction");
case X86II::OneArgFPRW:
case X86II::TwoArgFP:
// These are instructions like
// - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
// - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
// They are intrinsically serial and do not modify the state of the stack.
// We generate the same code for latency and uops.
return generateSelfAliasingCodeTemplates(Variant);
case X86II::CompareFP:
case X86II::CondMovFP:
// We can compute uops for any FP instruction that does not grow or shrink
// the stack (either do not touch the stack or push as much as they pop).
return generateUnconstrainedCodeTemplates(
Variant, "instruction does not grow/shrink the FP stack");
default:
llvm_unreachable("Unknown FP Type!");
}
}
static unsigned getLoadImmediateOpcode(unsigned RegBitWidth) {
switch (RegBitWidth) {
case 8:
return X86::MOV8ri;
case 16:
return X86::MOV16ri;
case 32:
return X86::MOV32ri;
case 64:
return X86::MOV64ri;
}
llvm_unreachable("Invalid Value Width");
}
// Generates instruction to load an immediate value into a register.
static MCInst loadImmediate(unsigned Reg, unsigned RegBitWidth,
const APInt &Value) {
if (Value.getBitWidth() > RegBitWidth)
llvm_unreachable("Value must fit in the Register");
return MCInstBuilder(getLoadImmediateOpcode(RegBitWidth))
.addReg(Reg)
.addImm(Value.getZExtValue());
}
// Allocates scratch memory on the stack.
static MCInst allocateStackSpace(unsigned Bytes) {
return MCInstBuilder(X86::SUB64ri8)
.addReg(X86::RSP)
.addReg(X86::RSP)
.addImm(Bytes);
}
// Fills scratch memory at offset `OffsetBytes` with value `Imm`.
static MCInst fillStackSpace(unsigned MovOpcode, unsigned OffsetBytes,
uint64_t Imm) {
return MCInstBuilder(MovOpcode)
// Address = ESP
.addReg(X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(OffsetBytes) // Disp
.addReg(0) // Segment
// Immediate.
.addImm(Imm);
}
// Loads scratch memory into register `Reg` using opcode `RMOpcode`.
static MCInst loadToReg(unsigned Reg, unsigned RMOpcode) {
return MCInstBuilder(RMOpcode)
.addReg(Reg)
// Address = ESP
.addReg(X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(0) // Disp
.addReg(0); // Segment
}
// Releases scratch memory.
static MCInst releaseStackSpace(unsigned Bytes) {
return MCInstBuilder(X86::ADD64ri8)
.addReg(X86::RSP)
.addReg(X86::RSP)
.addImm(Bytes);
}
// Reserves some space on the stack, fills it with the content of the provided
// constant and provide methods to load the stack value into a register.
namespace {
struct ConstantInliner {
explicit ConstantInliner(const APInt &Constant) : Constant_(Constant) {}
std::vector<MCInst> loadAndFinalize(unsigned Reg, unsigned RegBitWidth,
unsigned Opcode);
std::vector<MCInst> loadX87STAndFinalize(unsigned Reg);
std::vector<MCInst> loadX87FPAndFinalize(unsigned Reg);
std::vector<MCInst> popFlagAndFinalize();
std::vector<MCInst> loadImplicitRegAndFinalize(unsigned Opcode,
unsigned Value);
private:
ConstantInliner &add(const MCInst &Inst) {
Instructions.push_back(Inst);
return *this;
}
void initStack(unsigned Bytes);
static constexpr const unsigned kF80Bytes = 10; // 80 bits.
APInt Constant_;
std::vector<MCInst> Instructions;
};
} // namespace
std::vector<MCInst> ConstantInliner::loadAndFinalize(unsigned Reg,
unsigned RegBitWidth,
unsigned Opcode) {
assert((RegBitWidth & 7) == 0 && "RegBitWidth must be a multiple of 8 bits");
initStack(RegBitWidth / 8);
add(loadToReg(Reg, Opcode));
add(releaseStackSpace(RegBitWidth / 8));
return std::move(Instructions);
}
std::vector<MCInst> ConstantInliner::loadX87STAndFinalize(unsigned Reg) {
initStack(kF80Bytes);
add(MCInstBuilder(X86::LD_F80m)
// Address = ESP
.addReg(X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(0) // Disp
.addReg(0)); // Segment
if (Reg != X86::ST0)
add(MCInstBuilder(X86::ST_Frr).addReg(Reg));
add(releaseStackSpace(kF80Bytes));
return std::move(Instructions);
}
std::vector<MCInst> ConstantInliner::loadX87FPAndFinalize(unsigned Reg) {
initStack(kF80Bytes);
add(MCInstBuilder(X86::LD_Fp80m)
.addReg(Reg)
// Address = ESP
.addReg(X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(0) // Disp
.addReg(0)); // Segment
add(releaseStackSpace(kF80Bytes));
return std::move(Instructions);
}
std::vector<MCInst> ConstantInliner::popFlagAndFinalize() {
initStack(8);
add(MCInstBuilder(X86::POPF64));
return std::move(Instructions);
}
std::vector<MCInst>
ConstantInliner::loadImplicitRegAndFinalize(unsigned Opcode, unsigned Value) {
add(allocateStackSpace(4));
add(fillStackSpace(X86::MOV32mi, 0, Value)); // Mask all FP exceptions
add(MCInstBuilder(Opcode)
// Address = ESP
.addReg(X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(0) // Disp
.addReg(0)); // Segment
add(releaseStackSpace(4));
return std::move(Instructions);
}
void ConstantInliner::initStack(unsigned Bytes) {
assert(Constant_.getBitWidth() <= Bytes * 8 &&
"Value does not have the correct size");
const APInt WideConstant = Constant_.getBitWidth() < Bytes * 8
? Constant_.sext(Bytes * 8)
: Constant_;
add(allocateStackSpace(Bytes));
size_t ByteOffset = 0;
for (; Bytes - ByteOffset >= 4; ByteOffset += 4)
add(fillStackSpace(
X86::MOV32mi, ByteOffset,
WideConstant.extractBits(32, ByteOffset * 8).getZExtValue()));
if (Bytes - ByteOffset >= 2) {
add(fillStackSpace(
X86::MOV16mi, ByteOffset,
WideConstant.extractBits(16, ByteOffset * 8).getZExtValue()));
ByteOffset += 2;
}
if (Bytes - ByteOffset >= 1)
add(fillStackSpace(
X86::MOV8mi, ByteOffset,
WideConstant.extractBits(8, ByteOffset * 8).getZExtValue()));
}
#include "X86GenExegesis.inc"
namespace {
class X86SavedState : public ExegesisTarget::SavedState {
public:
X86SavedState() {
#ifdef __x86_64__
# if defined(_MSC_VER)
_fxsave64(FPState);
Eflags = __readeflags();
# elif defined(__GNUC__)
__builtin_ia32_fxsave64(FPState);
Eflags = __builtin_ia32_readeflags_u64();
# endif
#else
llvm_unreachable("X86 exegesis running on non-X86 target");
#endif
}
~X86SavedState() {
// Restoring the X87 state does not flush pending exceptions, make sure
// these exceptions are flushed now.
#ifdef __x86_64__
# if defined(_MSC_VER)
_clearfp();
_fxrstor64(FPState);
__writeeflags(Eflags);
# elif defined(__GNUC__)
asm volatile("fwait");
__builtin_ia32_fxrstor64(FPState);
__builtin_ia32_writeeflags_u64(Eflags);
# endif
#else
llvm_unreachable("X86 exegesis running on non-X86 target");
#endif
}
private:
#ifdef __x86_64__
alignas(16) char FPState[512];
uint64_t Eflags;
#endif
};
class ExegesisX86Target : public ExegesisTarget {
public:
ExegesisX86Target() : ExegesisTarget(X86CpuPfmCounters) {}
Expected<std::unique_ptr<pfm::Counter>>
createCounter(StringRef CounterName, const LLVMState &State) const override {
// If LbrSamplingPeriod was provided, then ignore the
// CounterName because we only have one for LBR.
if (LbrSamplingPeriod > 0) {
// Can't use LBR without HAVE_LIBPFM, LIBPFM_HAS_FIELD_CYCLES, or without
// __linux__ (for now)
#if defined(HAVE_LIBPFM) && defined(LIBPFM_HAS_FIELD_CYCLES) && \
defined(__linux__)
return std::make_unique<X86LbrCounter>(
X86LbrPerfEvent(LbrSamplingPeriod));
#else
return llvm::make_error<llvm::StringError>(
"LBR counter requested without HAVE_LIBPFM, LIBPFM_HAS_FIELD_CYCLES, "
"or running on Linux.",
llvm::errc::invalid_argument);
#endif
}
return ExegesisTarget::createCounter(CounterName, State);
}
private:
void addTargetSpecificPasses(PassManagerBase &PM) const override;
unsigned getScratchMemoryRegister(const Triple &TT) const override;
unsigned getLoopCounterRegister(const Triple &) const override;
unsigned getMaxMemoryAccessSize() const override { return 64; }
Error randomizeTargetMCOperand(const Instruction &Instr, const Variable &Var,
MCOperand &AssignedValue,
const BitVector &ForbiddenRegs) const override;
void fillMemoryOperands(InstructionTemplate &IT, unsigned Reg,
unsigned Offset) const override;
void decrementLoopCounterAndJump(MachineBasicBlock &MBB,
MachineBasicBlock &TargetMBB,
const MCInstrInfo &MII) const override;
std::vector<MCInst> setRegTo(const MCSubtargetInfo &STI, unsigned Reg,
const APInt &Value) const override;
ArrayRef<unsigned> getUnavailableRegisters() const override {
return makeArrayRef(kUnavailableRegisters,
sizeof(kUnavailableRegisters) /
sizeof(kUnavailableRegisters[0]));
}
bool allowAsBackToBack(const Instruction &Instr) const override {
const unsigned Opcode = Instr.Description.Opcode;
return !isInvalidOpcode(Instr) && Opcode != X86::LEA64r &&
Opcode != X86::LEA64_32r && Opcode != X86::LEA16r;
}
std::vector<InstructionTemplate>
generateInstructionVariants(const Instruction &Instr,
unsigned MaxConfigsPerOpcode) const override;
std::unique_ptr<SnippetGenerator> createSerialSnippetGenerator(
const LLVMState &State,
const SnippetGenerator::Options &Opts) const override {
return std::make_unique<X86SerialSnippetGenerator>(State, Opts);
}
std::unique_ptr<SnippetGenerator> createParallelSnippetGenerator(
const LLVMState &State,
const SnippetGenerator::Options &Opts) const override {
return std::make_unique<X86ParallelSnippetGenerator>(State, Opts);
}
bool matchesArch(Triple::ArchType Arch) const override {
return Arch == Triple::x86_64 || Arch == Triple::x86;
}
Error checkFeatureSupport() const override {
// LBR is the only feature we conditionally support now.
// So if LBR is not requested, then we should be able to run the benchmarks.
if (LbrSamplingPeriod == 0)
return Error::success();
#if defined(__linux__) && defined(HAVE_LIBPFM) && \
defined(LIBPFM_HAS_FIELD_CYCLES)
// FIXME: Fix this.
// https://bugs.llvm.org/show_bug.cgi?id=48918
// For now, only do the check if we see an Intel machine because
// the counter uses some intel-specific magic and it could
// be confuse and think an AMD machine actually has LBR support.
#if defined(__i386__) || defined(_M_IX86) || defined(__x86_64__) || \
defined(_M_X64)
using namespace sys::detail::x86;
if (getVendorSignature() == VendorSignatures::GENUINE_INTEL)
// If the kernel supports it, the hardware still may not have it.
return X86LbrCounter::checkLbrSupport();
#else
llvm_unreachable("Running X86 exegesis on non-X86 target");
#endif
#endif
return llvm::make_error<llvm::StringError>(
"LBR not supported on this kernel and/or platform",
llvm::errc::not_supported);
}
std::unique_ptr<SavedState> withSavedState() const override {
return std::make_unique<X86SavedState>();
}
static const unsigned kUnavailableRegisters[4];
};
// We disable a few registers that cannot be encoded on instructions with a REX
// prefix.
const unsigned ExegesisX86Target::kUnavailableRegisters[4] = {X86::AH, X86::BH,
X86::CH, X86::DH};
// We're using one of R8-R15 because these registers are never hardcoded in
// instructions (e.g. MOVS writes to EDI, ESI, EDX), so they have less
// conflicts.
constexpr const unsigned kLoopCounterReg = X86::R8;
} // namespace
void ExegesisX86Target::addTargetSpecificPasses(PassManagerBase &PM) const {
// Lowers FP pseudo-instructions, e.g. ABS_Fp32 -> ABS_F.
PM.add(createX86FloatingPointStackifierPass());
}
unsigned ExegesisX86Target::getScratchMemoryRegister(const Triple &TT) const {
if (!TT.isArch64Bit()) {
// FIXME: This would require popping from the stack, so we would have to
// add some additional setup code.
return 0;
}
return TT.isOSWindows() ? X86::RCX : X86::RDI;
}
unsigned ExegesisX86Target::getLoopCounterRegister(const Triple &TT) const {
if (!TT.isArch64Bit()) {
return 0;
}
return kLoopCounterReg;
}
Error ExegesisX86Target::randomizeTargetMCOperand(
const Instruction &Instr, const Variable &Var, MCOperand &AssignedValue,
const BitVector &ForbiddenRegs) const {
const Operand &Op = Instr.getPrimaryOperand(Var);
switch (Op.getExplicitOperandInfo().OperandType) {
case X86::OperandType::OPERAND_ROUNDING_CONTROL:
AssignedValue =
MCOperand::createImm(randomIndex(X86::STATIC_ROUNDING::TO_ZERO));
return Error::success();
default:
break;
}
return make_error<Failure>(
Twine("unimplemented operand type ")
.concat(Twine(Op.getExplicitOperandInfo().OperandType)));
}
void ExegesisX86Target::fillMemoryOperands(InstructionTemplate &IT,
unsigned Reg,
unsigned Offset) const {
assert(!isInvalidMemoryInstr(IT.getInstr()) &&
"fillMemoryOperands requires a valid memory instruction");
int MemOpIdx = X86II::getMemoryOperandNo(IT.getInstr().Description.TSFlags);
assert(MemOpIdx >= 0 && "invalid memory operand index");
// getMemoryOperandNo() ignores tied operands, so we have to add them back.
MemOpIdx += X86II::getOperandBias(IT.getInstr().Description);
setMemOp(IT, MemOpIdx + 0, MCOperand::createReg(Reg)); // BaseReg
setMemOp(IT, MemOpIdx + 1, MCOperand::createImm(1)); // ScaleAmt
setMemOp(IT, MemOpIdx + 2, MCOperand::createReg(0)); // IndexReg
setMemOp(IT, MemOpIdx + 3, MCOperand::createImm(Offset)); // Disp
setMemOp(IT, MemOpIdx + 4, MCOperand::createReg(0)); // Segment
}
void ExegesisX86Target::decrementLoopCounterAndJump(
MachineBasicBlock &MBB, MachineBasicBlock &TargetMBB,
const MCInstrInfo &MII) const {
BuildMI(&MBB, DebugLoc(), MII.get(X86::ADD64ri8))
.addDef(kLoopCounterReg)
.addUse(kLoopCounterReg)
.addImm(-1);
BuildMI(&MBB, DebugLoc(), MII.get(X86::JCC_1))
.addMBB(&TargetMBB)
.addImm(X86::COND_NE);
}
std::vector<MCInst> ExegesisX86Target::setRegTo(const MCSubtargetInfo &STI,
unsigned Reg,
const APInt &Value) const {
if (X86::GR8RegClass.contains(Reg))
return {loadImmediate(Reg, 8, Value)};
if (X86::GR16RegClass.contains(Reg))
return {loadImmediate(Reg, 16, Value)};
if (X86::GR32RegClass.contains(Reg))
return {loadImmediate(Reg, 32, Value)};
if (X86::GR64RegClass.contains(Reg))
return {loadImmediate(Reg, 64, Value)};
ConstantInliner CI(Value);
if (X86::VR64RegClass.contains(Reg))
return CI.loadAndFinalize(Reg, 64, X86::MMX_MOVQ64rm);
if (X86::VR128XRegClass.contains(Reg)) {
if (STI.getFeatureBits()[X86::FeatureAVX512])
return CI.loadAndFinalize(Reg, 128, X86::VMOVDQU32Z128rm);
if (STI.getFeatureBits()[X86::FeatureAVX])
return CI.loadAndFinalize(Reg, 128, X86::VMOVDQUrm);
return CI.loadAndFinalize(Reg, 128, X86::MOVDQUrm);
}
if (X86::VR256XRegClass.contains(Reg)) {
if (STI.getFeatureBits()[X86::FeatureAVX512])
return CI.loadAndFinalize(Reg, 256, X86::VMOVDQU32Z256rm);
if (STI.getFeatureBits()[X86::FeatureAVX])
return CI.loadAndFinalize(Reg, 256, X86::VMOVDQUYrm);
}
if (X86::VR512RegClass.contains(Reg))
if (STI.getFeatureBits()[X86::FeatureAVX512])
return CI.loadAndFinalize(Reg, 512, X86::VMOVDQU32Zrm);
if (X86::RSTRegClass.contains(Reg)) {
return CI.loadX87STAndFinalize(Reg);
}
if (X86::RFP32RegClass.contains(Reg) || X86::RFP64RegClass.contains(Reg) ||
X86::RFP80RegClass.contains(Reg)) {
return CI.loadX87FPAndFinalize(Reg);
}
if (Reg == X86::EFLAGS)
return CI.popFlagAndFinalize();
if (Reg == X86::MXCSR)
return CI.loadImplicitRegAndFinalize(
STI.getFeatureBits()[X86::FeatureAVX] ? X86::VLDMXCSR : X86::LDMXCSR,
0x1f80);
if (Reg == X86::FPCW)
return CI.loadImplicitRegAndFinalize(X86::FLDCW16m, 0x37f);
return {}; // Not yet implemented.
}
// Instruction can have some variable operands, and we may want to see how
// different operands affect performance. So for each operand position,
// precompute all the possible choices we might care about,
// and greedily generate all the possible combinations of choices.
std::vector<InstructionTemplate> ExegesisX86Target::generateInstructionVariants(
const Instruction &Instr, unsigned MaxConfigsPerOpcode) const {
bool Exploration = false;
SmallVector<SmallVector<MCOperand, 1>, 4> VariableChoices;
VariableChoices.resize(Instr.Variables.size());
for (auto I : llvm::zip(Instr.Variables, VariableChoices)) {
const Variable &Var = std::get<0>(I);
SmallVectorImpl<MCOperand> &Choices = std::get<1>(I);
switch (Instr.getPrimaryOperand(Var).getExplicitOperandInfo().OperandType) {
default:
// We don't wish to explicitly explore this variable.
Choices.emplace_back(); // But add invalid MCOperand to simplify logic.
continue;
case X86::OperandType::OPERAND_COND_CODE: {
Exploration = true;
auto CondCodes = enum_seq_inclusive(X86::CondCode::COND_O,
X86::CondCode::LAST_VALID_COND,
force_iteration_on_noniterable_enum);
Choices.reserve(CondCodes.size());
for (int CondCode : CondCodes)
Choices.emplace_back(MCOperand::createImm(CondCode));
break;
}
}
}
// If we don't wish to explore any variables, defer to the baseline method.
if (!Exploration)
return ExegesisTarget::generateInstructionVariants(Instr,
MaxConfigsPerOpcode);
std::vector<InstructionTemplate> Variants;
size_t NumVariants;
CombinationGenerator<MCOperand, decltype(VariableChoices)::value_type, 4> G(
VariableChoices);
// How many operand combinations can we produce, within the limit?
NumVariants = std::min(G.numCombinations(), (size_t)MaxConfigsPerOpcode);
// And actually produce all the wanted operand combinations.
Variants.reserve(NumVariants);
G.generate([&](ArrayRef<MCOperand> State) -> bool {
Variants.emplace_back(&Instr);
Variants.back().setVariableValues(State);
// Did we run out of space for variants?
return Variants.size() >= NumVariants;
});
assert(Variants.size() == NumVariants &&
Variants.size() <= MaxConfigsPerOpcode &&
"Should not produce too many variants");
return Variants;
}
static ExegesisTarget *getTheExegesisX86Target() {
static ExegesisX86Target Target;
return &Target;
}
void InitializeX86ExegesisTarget() {
ExegesisTarget::registerTarget(getTheExegesisX86Target());
}
} // namespace exegesis
} // namespace llvm
|