aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/tools/llvm-exegesis/lib/Target.h
blob: 28c103aa1948440bbc17a3bb02d3fd861748db48 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//===-- Target.h ------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// Classes that handle the creation of target-specific objects. This is
/// similar to Target/TargetRegistry.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_TOOLS_LLVM_EXEGESIS_TARGET_H
#define LLVM_TOOLS_LLVM_EXEGESIS_TARGET_H

#include "BenchmarkResult.h"
#include "BenchmarkRunner.h"
#include "Error.h"
#include "LlvmState.h"
#include "PerfHelper.h"
#include "SnippetGenerator.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Error.h"

namespace llvm {
namespace exegesis {

struct PfmCountersInfo {
  // An optional name of a performance counter that can be used to measure
  // cycles.
  const char *CycleCounter;

  // An optional name of a performance counter that can be used to measure
  // uops.
  const char *UopsCounter;

  // An IssueCounter specifies how to measure uops issued to specific proc
  // resources.
  struct IssueCounter {
    const char *Counter;
    // The name of the ProcResource that this counter measures.
    const char *ProcResName;
  };
  // An optional list of IssueCounters.
  const IssueCounter *IssueCounters;
  unsigned NumIssueCounters;

  static const PfmCountersInfo Default;
};

struct CpuAndPfmCounters {
  const char *CpuName;
  const PfmCountersInfo *PCI;
  bool operator<(StringRef S) const { return StringRef(CpuName) < S; }
};

class ExegesisTarget {
public:
  explicit ExegesisTarget(ArrayRef<CpuAndPfmCounters> CpuPfmCounters)
      : CpuPfmCounters(CpuPfmCounters) {}

  // Targets can use this to create target-specific perf counters.
  virtual Expected<std::unique_ptr<pfm::Counter>>
  createCounter(StringRef CounterName, const LLVMState &State) const;

  // Targets can use this to add target-specific passes in assembleToStream();
  virtual void addTargetSpecificPasses(PassManagerBase &PM) const {}

  // Generates code to move a constant into a the given register.
  // Precondition: Value must fit into Reg.
  virtual std::vector<MCInst> setRegTo(const MCSubtargetInfo &STI, unsigned Reg,
                                       const APInt &Value) const = 0;

  // Returns the register pointing to scratch memory, or 0 if this target
  // does not support memory operands. The benchmark function uses the
  // default calling convention.
  virtual unsigned getScratchMemoryRegister(const Triple &) const { return 0; }

  // Fills memory operands with references to the address at [Reg] + Offset.
  virtual void fillMemoryOperands(InstructionTemplate &IT, unsigned Reg,
                                  unsigned Offset) const {
    llvm_unreachable(
        "fillMemoryOperands() requires getScratchMemoryRegister() > 0");
  }

  // Returns a counter usable as a loop counter.
  virtual unsigned getLoopCounterRegister(const Triple &) const { return 0; }

  // Adds the code to decrement the loop counter and
  virtual void decrementLoopCounterAndJump(MachineBasicBlock &MBB,
                                           MachineBasicBlock &TargetMBB,
                                           const MCInstrInfo &MII) const {
    llvm_unreachable("decrementLoopCounterAndBranch() requires "
                     "getLoopCounterRegister() > 0");
  }

  // Returns a list of unavailable registers.
  // Targets can use this to prevent some registers to be automatically selected
  // for use in snippets.
  virtual ArrayRef<unsigned> getUnavailableRegisters() const { return {}; }

  // Returns the maximum number of bytes a load/store instruction can access at
  // once. This is typically the size of the largest register available on the
  // processor. Note that this only used as a hint to generate independant
  // load/stores to/from memory, so the exact returned value does not really
  // matter as long as it's large enough.
  virtual unsigned getMaxMemoryAccessSize() const { return 0; }

  // Assigns a random operand of the right type to variable Var.
  // The target is responsible for handling any operand starting from
  // OPERAND_FIRST_TARGET.
  virtual Error randomizeTargetMCOperand(const Instruction &Instr,
                                         const Variable &Var,
                                         MCOperand &AssignedValue,
                                         const BitVector &ForbiddenRegs) const {
    return make_error<Failure>(
        "targets with target-specific operands should implement this");
  }

  // Returns true if this instruction is supported as a back-to-back
  // instructions.
  // FIXME: Eventually we should discover this dynamically.
  virtual bool allowAsBackToBack(const Instruction &Instr) const {
    return true;
  }

  // For some instructions, it is interesting to measure how it's performance
  // characteristics differ depending on it's operands.
  // This allows us to produce all the interesting variants.
  virtual std::vector<InstructionTemplate>
  generateInstructionVariants(const Instruction &Instr,
                              unsigned MaxConfigsPerOpcode) const {
    // By default, we're happy with whatever randomizer will give us.
    return {&Instr};
  }

  // Checks hardware and software support for current benchmark mode.
  // Returns an error if the target host does not have support to run the
  // benchmark.
  virtual Error checkFeatureSupport() const { return Error::success(); }

  // Creates a snippet generator for the given mode.
  std::unique_ptr<SnippetGenerator>
  createSnippetGenerator(InstructionBenchmark::ModeE Mode,
                         const LLVMState &State,
                         const SnippetGenerator::Options &Opts) const;
  // Creates a benchmark runner for the given mode.
  Expected<std::unique_ptr<BenchmarkRunner>> createBenchmarkRunner(
      InstructionBenchmark::ModeE Mode, const LLVMState &State,
      InstructionBenchmark::ResultAggregationModeE ResultAggMode =
          InstructionBenchmark::Min) const;

  // Returns the ExegesisTarget for the given triple or nullptr if the target
  // does not exist.
  static const ExegesisTarget *lookup(Triple TT);
  // Returns the default (unspecialized) ExegesisTarget.
  static const ExegesisTarget &getDefault();
  // Registers a target. Not thread safe.
  static void registerTarget(ExegesisTarget *T);

  virtual ~ExegesisTarget();

  // Returns the Pfm counters for the given CPU (or the default if no pfm
  // counters are defined for this CPU).
  const PfmCountersInfo &getPfmCounters(StringRef CpuName) const;

  // Saves the CPU state that needs to be preserved when running a benchmark,
  // and returns and RAII object that restores the state on destruction.
  // By default no state is preserved.
  struct SavedState {
    virtual ~SavedState();
  };
  virtual std::unique_ptr<SavedState> withSavedState() const {
    return std::make_unique<SavedState>();
  }

private:
  virtual bool matchesArch(Triple::ArchType Arch) const = 0;

  // Targets can implement their own snippet generators/benchmarks runners by
  // implementing these.
  std::unique_ptr<SnippetGenerator> virtual createSerialSnippetGenerator(
      const LLVMState &State, const SnippetGenerator::Options &Opts) const;
  std::unique_ptr<SnippetGenerator> virtual createParallelSnippetGenerator(
      const LLVMState &State, const SnippetGenerator::Options &Opts) const;
  std::unique_ptr<BenchmarkRunner> virtual createLatencyBenchmarkRunner(
      const LLVMState &State, InstructionBenchmark::ModeE Mode,
      InstructionBenchmark::ResultAggregationModeE ResultAggMode) const;
  std::unique_ptr<BenchmarkRunner> virtual createUopsBenchmarkRunner(
      const LLVMState &State,
      InstructionBenchmark::ResultAggregationModeE ResultAggMode) const;

  const ExegesisTarget *Next = nullptr;
  const ArrayRef<CpuAndPfmCounters> CpuPfmCounters;
};

} // namespace exegesis
} // namespace llvm

#endif // LLVM_TOOLS_LLVM_EXEGESIS_TARGET_H