aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/tools/llvm-exegesis/lib/ParallelSnippetGenerator.cpp
blob: 7728fcb5d62eabd82a727cbe531dd970c75ccd82 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//===-- ParallelSnippetGenerator.cpp ----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ParallelSnippetGenerator.h"

#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "Target.h"

// FIXME: Load constants into registers (e.g. with fld1) to not break
// instructions like x87.

// Ideally we would like the only limitation on executing instructions to be the
// availability of the CPU resources (e.g. execution ports) needed to execute
// them, instead of the availability of their data dependencies.

// To achieve that, one approach is to generate instructions that do not have
// data dependencies between them.
//
// For some instructions, this is trivial:
//    mov rax, qword ptr [rsi]
//    mov rax, qword ptr [rsi]
//    mov rax, qword ptr [rsi]
//    mov rax, qword ptr [rsi]
// For the above snippet, haswell just renames rax four times and executes the
// four instructions two at a time on P23 and P0126.
//
// For some instructions, we just need to make sure that the source is
// different from the destination. For example, IDIV8r reads from GPR and
// writes to AX. We just need to ensure that the Var is assigned a
// register which is different from AX:
//    idiv bx
//    idiv bx
//    idiv bx
//    idiv bx
// The above snippet will be able to fully saturate the ports, while the same
// with ax would issue one uop every `latency(IDIV8r)` cycles.
//
// Some instructions make this harder because they both read and write from
// the same register:
//    inc rax
//    inc rax
//    inc rax
//    inc rax
// This has a data dependency from each instruction to the next, limit the
// number of instructions that can be issued in parallel.
// It turns out that this is not a big issue on recent Intel CPUs because they
// have heuristics to balance port pressure. In the snippet above, subsequent
// instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs
// might end up executing them all on P0 (just because they can), or try
// avoiding P5 because it's usually under high pressure from vector
// instructions.
// This issue is even more important for high-latency instructions because
// they increase the idle time of the CPU, e.g. :
//    imul rax, rbx
//    imul rax, rbx
//    imul rax, rbx
//    imul rax, rbx
//
// To avoid that, we do the renaming statically by generating as many
// independent exclusive assignments as possible (until all possible registers
// are exhausted) e.g.:
//    imul rax, rbx
//    imul rcx, rbx
//    imul rdx, rbx
//    imul r8,  rbx
//
// Some instruction even make the above static renaming impossible because
// they implicitly read and write from the same operand, e.g. ADC16rr reads
// and writes from EFLAGS.
// In that case we just use a greedy register assignment and hope for the
// best.

namespace llvm {
namespace exegesis {

static SmallVector<const Variable *, 8>
getVariablesWithTiedOperands(const Instruction &Instr) {
  SmallVector<const Variable *, 8> Result;
  for (const auto &Var : Instr.Variables)
    if (Var.hasTiedOperands())
      Result.push_back(&Var);
  return Result;
}

ParallelSnippetGenerator::~ParallelSnippetGenerator() = default;

void ParallelSnippetGenerator::instantiateMemoryOperands(
    const unsigned ScratchSpacePointerInReg,
    std::vector<InstructionTemplate> &Instructions) const {
  if (ScratchSpacePointerInReg == 0)
    return; // no memory operands.
  const auto &ET = State.getExegesisTarget();
  const unsigned MemStep = ET.getMaxMemoryAccessSize();
  const size_t OriginalInstructionsSize = Instructions.size();
  size_t I = 0;
  for (InstructionTemplate &IT : Instructions) {
    ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
    ++I;
  }

  while (Instructions.size() < kMinNumDifferentAddresses) {
    InstructionTemplate IT = Instructions[I % OriginalInstructionsSize];
    ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
    ++I;
    Instructions.push_back(std::move(IT));
  }
  assert(I * MemStep < BenchmarkRunner::ScratchSpace::kSize &&
         "not enough scratch space");
}

static std::vector<InstructionTemplate> generateSnippetUsingStaticRenaming(
    const LLVMState &State, const InstructionTemplate &IT,
    const ArrayRef<const Variable *> TiedVariables,
    const BitVector &ForbiddenRegisters) {
  std::vector<InstructionTemplate> Instructions;
  // Assign registers to variables in a round-robin manner. This is simple but
  // ensures that the most register-constrained variable does not get starved.
  std::vector<BitVector> PossibleRegsForVar;
  for (const Variable *Var : TiedVariables) {
    assert(Var);
    const Operand &Op = IT.getInstr().getPrimaryOperand(*Var);
    assert(Op.isReg());
    BitVector PossibleRegs = Op.getRegisterAliasing().sourceBits();
    remove(PossibleRegs, ForbiddenRegisters);
    PossibleRegsForVar.push_back(std::move(PossibleRegs));
  }
  SmallVector<int, 2> Iterators(TiedVariables.size(), 0);
  while (true) {
    InstructionTemplate TmpIT = IT;
    // Find a possible register for each variable in turn, marking the
    // register as taken.
    for (size_t VarId = 0; VarId < TiedVariables.size(); ++VarId) {
      const int NextPossibleReg =
          PossibleRegsForVar[VarId].find_next(Iterators[VarId]);
      if (NextPossibleReg <= 0) {
        return Instructions;
      }
      TmpIT.getValueFor(*TiedVariables[VarId]) =
          MCOperand::createReg(NextPossibleReg);
      // Bump iterator.
      Iterators[VarId] = NextPossibleReg;
      // Prevent other variables from using the register.
      for (BitVector &OtherPossibleRegs : PossibleRegsForVar) {
        OtherPossibleRegs.reset(NextPossibleReg);
      }
    }
    Instructions.push_back(std::move(TmpIT));
  }
}

Expected<std::vector<CodeTemplate>>
ParallelSnippetGenerator::generateCodeTemplates(
    InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
  const Instruction &Instr = Variant.getInstr();
  CodeTemplate CT;
  CT.ScratchSpacePointerInReg =
      Instr.hasMemoryOperands()
          ? State.getExegesisTarget().getScratchMemoryRegister(
                State.getTargetMachine().getTargetTriple())
          : 0;
  const AliasingConfigurations SelfAliasing(Instr, Instr);
  if (SelfAliasing.empty()) {
    CT.Info = "instruction is parallel, repeating a random one.";
    CT.Instructions.push_back(std::move(Variant));
    instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
    return getSingleton(std::move(CT));
  }
  if (SelfAliasing.hasImplicitAliasing()) {
    CT.Info = "instruction is serial, repeating a random one.";
    CT.Instructions.push_back(std::move(Variant));
    instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
    return getSingleton(std::move(CT));
  }
  const auto TiedVariables = getVariablesWithTiedOperands(Instr);
  if (!TiedVariables.empty()) {
    CT.Info = "instruction has tied variables, using static renaming.";
    CT.Instructions = generateSnippetUsingStaticRenaming(
        State, Variant, TiedVariables, ForbiddenRegisters);
    instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
    return getSingleton(std::move(CT));
  }
  // No tied variables, we pick random values for defs.

  // We don't want to accidentally serialize the instruction,
  // so we must be sure that we don't pick a def that is an implicit use,
  // or a use that is an implicit def, so record implicit regs now.
  BitVector ImplicitUses(State.getRegInfo().getNumRegs());
  BitVector ImplicitDefs(State.getRegInfo().getNumRegs());
  for (const auto &Op : Instr.Operands) {
    if (Op.isReg() && Op.isImplicit() && !Op.isMemory()) {
      assert(Op.isImplicitReg() && "Not an implicit register operand?");
      if (Op.isUse())
        ImplicitUses.set(Op.getImplicitReg());
      else {
        assert(Op.isDef() && "Not a use and not a def?");
        ImplicitDefs.set(Op.getImplicitReg());
      }
    }
  }
  const auto ImplicitUseAliases =
      getAliasedBits(State.getRegInfo(), ImplicitUses);
  const auto ImplicitDefAliases =
      getAliasedBits(State.getRegInfo(), ImplicitDefs);
  BitVector Defs(State.getRegInfo().getNumRegs());
  for (const auto &Op : Instr.Operands) {
    if (Op.isReg() && Op.isExplicit() && Op.isDef() && !Op.isMemory()) {
      auto PossibleRegisters = Op.getRegisterAliasing().sourceBits();
      // Do not use forbidden registers and regs that are implicitly used.
      // Note that we don't try to avoid using implicit defs explicitly.
      remove(PossibleRegisters, ForbiddenRegisters);
      remove(PossibleRegisters, ImplicitUseAliases);
      if (!PossibleRegisters.any())
        return make_error<StringError>(
            Twine("no available registers:\ncandidates:\n")
                .concat(debugString(State.getRegInfo(),
                                    Op.getRegisterAliasing().sourceBits()))
                .concat("\nforbidden:\n")
                .concat(debugString(State.getRegInfo(), ForbiddenRegisters))
                .concat("\nimplicit use:\n")
                .concat(debugString(State.getRegInfo(), ImplicitUseAliases)),
            inconvertibleErrorCode());
      const auto RandomReg = randomBit(PossibleRegisters);
      Defs.set(RandomReg);
      Variant.getValueFor(Op) = MCOperand::createReg(RandomReg);
    }
  }
  // And pick random use values that are not reserved and don't alias with defs.
  // Note that we don't try to avoid using implicit uses explicitly.
  const auto DefAliases = getAliasedBits(State.getRegInfo(), Defs);
  for (const auto &Op : Instr.Operands) {
    if (Op.isReg() && Op.isExplicit() && Op.isUse() && !Op.isMemory()) {
      auto PossibleRegisters = Op.getRegisterAliasing().sourceBits();
      remove(PossibleRegisters, ForbiddenRegisters);
      remove(PossibleRegisters, DefAliases);
      remove(PossibleRegisters, ImplicitDefAliases);
      assert(PossibleRegisters.any() && "No register left to choose from");
      const auto RandomReg = randomBit(PossibleRegisters);
      Variant.getValueFor(Op) = MCOperand::createReg(RandomReg);
    }
  }
  CT.Info =
      "instruction has no tied variables picking Uses different from defs";
  CT.Instructions.push_back(std::move(Variant));
  instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
  return getSingleton(std::move(CT));
}

constexpr const size_t ParallelSnippetGenerator::kMinNumDifferentAddresses;

} // namespace exegesis
} // namespace llvm