aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/tools/bugpoint/BugDriver.h
blob: b7c9edc5b8121d102a2ee92b3e03bbd10aab786e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
//===- BugDriver.h - Top-Level BugPoint class -------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class contains all of the shared state and information that is used by
// the BugPoint tool to track down errors in optimizations.  This class is the
// main driver class that invokes all sub-functionality.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TOOLS_BUGPOINT_BUGDRIVER_H
#define LLVM_TOOLS_BUGPOINT_BUGDRIVER_H

#include "llvm/IR/ValueMap.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <memory>
#include <string>
#include <vector>

namespace llvm {

class PassInfo;
class Module;
class GlobalVariable;
class Function;
class BasicBlock;
class AbstractInterpreter;
class Instruction;
class LLVMContext;

class CC;

extern bool DisableSimplifyCFG;

/// BugpointIsInterrupted - Set to true when the user presses ctrl-c.
///
extern bool BugpointIsInterrupted;

class BugDriver {
  LLVMContext &Context;
  const char *ToolName;            // argv[0] of bugpoint
  std::string ReferenceOutputFile; // Name of `good' output file
  std::unique_ptr<Module> Program; // The raw program, linked together
  std::vector<std::string> PassesToRun;
  AbstractInterpreter *Interpreter;     // How to run the program
  AbstractInterpreter *SafeInterpreter; // To generate reference output, etc.
  CC *cc;
  bool run_find_bugs;
  unsigned Timeout;
  unsigned MemoryLimit;
  bool UseValgrind;

  // FIXME: sort out public/private distinctions...
  friend class ReducePassList;
  friend class ReduceMisCodegenFunctions;

public:
  BugDriver(const char *toolname, bool find_bugs, unsigned timeout,
            unsigned memlimit, bool use_valgrind, LLVMContext &ctxt);
  ~BugDriver();

  const char *getToolName() const { return ToolName; }

  LLVMContext &getContext() const { return Context; }

  // Set up methods... these methods are used to copy information about the
  // command line arguments into instance variables of BugDriver.
  //
  bool addSources(const std::vector<std::string> &FileNames);
  void addPass(std::string p) { PassesToRun.push_back(std::move(p)); }
  void setPassesToRun(const std::vector<std::string> &PTR) {
    PassesToRun = PTR;
  }
  const std::vector<std::string> &getPassesToRun() const { return PassesToRun; }

  /// run - The top level method that is invoked after all of the instance
  /// variables are set up from command line arguments. The \p as_child argument
  /// indicates whether the driver is to run in parent mode or child mode.
  ///
  Error run();

  /// debugOptimizerCrash - This method is called when some optimizer pass
  /// crashes on input.  It attempts to prune down the testcase to something
  /// reasonable, and figure out exactly which pass is crashing.
  ///
  Error debugOptimizerCrash(const std::string &ID = "passes");

  /// debugCodeGeneratorCrash - This method is called when the code generator
  /// crashes on an input.  It attempts to reduce the input as much as possible
  /// while still causing the code generator to crash.
  Error debugCodeGeneratorCrash();

  /// debugMiscompilation - This method is used when the passes selected are not
  /// crashing, but the generated output is semantically different from the
  /// input.
  Error debugMiscompilation();

  /// debugPassMiscompilation - This method is called when the specified pass
  /// miscompiles Program as input.  It tries to reduce the testcase to
  /// something that smaller that still miscompiles the program.
  /// ReferenceOutput contains the filename of the file containing the output we
  /// are to match.
  ///
  bool debugPassMiscompilation(const PassInfo *ThePass,
                               const std::string &ReferenceOutput);

  /// compileSharedObject - This method creates a SharedObject from a given
  /// BitcodeFile for debugging a code generator.
  ///
  Expected<std::string> compileSharedObject(const std::string &BitcodeFile);

  /// debugCodeGenerator - This method narrows down a module to a function or
  /// set of functions, using the CBE as a ``safe'' code generator for other
  /// functions that are not under consideration.
  Error debugCodeGenerator();

  /// isExecutingJIT - Returns true if bugpoint is currently testing the JIT
  ///
  bool isExecutingJIT();

  Module &getProgram() const { return *Program; }

  /// Set the current module to the specified module, returning the old one.
  std::unique_ptr<Module> swapProgramIn(std::unique_ptr<Module> M);

  AbstractInterpreter *switchToSafeInterpreter() {
    AbstractInterpreter *Old = Interpreter;
    Interpreter = (AbstractInterpreter *)SafeInterpreter;
    return Old;
  }

  void switchToInterpreter(AbstractInterpreter *AI) { Interpreter = AI; }

  /// If we reduce or update the program somehow, call this method to update
  /// bugdriver with it.  This deletes the old module and sets the specified one
  /// as the current program.
  void setNewProgram(std::unique_ptr<Module> M);

  /// Try to compile the specified module. This is used for code generation
  /// crash testing.
  Error compileProgram(Module &M) const;

  /// This method runs "Program", capturing the output of the program to a file.
  /// A recommended filename may be optionally specified.
  Expected<std::string> executeProgram(const Module &Program,
                                       std::string OutputFilename,
                                       std::string Bitcode,
                                       const std::string &SharedObjects,
                                       AbstractInterpreter *AI) const;

  /// Used to create reference output with the "safe" backend, if reference
  /// output is not provided.  If there is a problem with the code generator
  /// (e.g., llc crashes), this will return false and set Error.
  Expected<std::string>
  executeProgramSafely(const Module &Program,
                       const std::string &OutputFile) const;

  /// Calls compileProgram and then records the output into ReferenceOutputFile.
  /// Returns true if reference file created, false otherwise. Note:
  /// initializeExecutionEnvironment should be called BEFORE this function.
  Error createReferenceFile(Module &M, const std::string &Filename =
                                           "bugpoint.reference.out-%%%%%%%");

  /// This method executes the specified module and diffs the output against the
  /// file specified by ReferenceOutputFile.  If the output is different, 1 is
  /// returned.  If there is a problem with the code generator (e.g., llc
  /// crashes), this will return -1 and set Error.
  Expected<bool> diffProgram(const Module &Program,
                             const std::string &BitcodeFile = "",
                             const std::string &SharedObj = "",
                             bool RemoveBitcode = false) const;

  /// This function is used to output M to a file named "bugpoint-ID.bc".
  void EmitProgressBitcode(const Module &M, const std::string &ID,
                           bool NoFlyer = false) const;

  /// This method clones the current Program and deletes the specified
  /// instruction from the cloned module.  It then runs a series of cleanup
  /// passes (ADCE and SimplifyCFG) to eliminate any code which depends on the
  /// value. The modified module is then returned.
  ///
  std::unique_ptr<Module> deleteInstructionFromProgram(const Instruction *I,
                                                       unsigned Simp);

  /// This method clones the current Program and performs a series of cleanups
  /// intended to get rid of extra cruft on the module. If the
  /// MayModifySemantics argument is true, then the cleanups is allowed to
  /// modify how the code behaves.
  ///
  std::unique_ptr<Module> performFinalCleanups(std::unique_ptr<Module> M,
                                               bool MayModifySemantics = false);

  /// Given a module, extract up to one loop from it into a new function. This
  /// returns null if there are no extractable loops in the program or if the
  /// loop extractor crashes.
  std::unique_ptr<Module> extractLoop(Module *M);

  /// Extract all but the specified basic blocks into their own functions. The
  /// only detail is that M is actually a module cloned from the one the BBs are
  /// in, so some mapping needs to be performed. If this operation fails for
  /// some reason (ie the implementation is buggy), this function should return
  /// null, otherwise it returns a new Module.
  std::unique_ptr<Module>
  extractMappedBlocksFromModule(const std::vector<BasicBlock *> &BBs,
                                Module *M);

  /// Carefully run the specified set of pass on the specified/ module,
  /// returning the transformed module on success, or a null pointer on failure.
  std::unique_ptr<Module> runPassesOn(Module *M,
                                      const std::vector<std::string> &Passes,
                                      ArrayRef<std::string> ExtraArgs = {});

  /// runPasses - Run the specified passes on Program, outputting a bitcode
  /// file and writting the filename into OutputFile if successful.  If the
  /// optimizations fail for some reason (optimizer crashes), return true,
  /// otherwise return false.  If DeleteOutput is set to true, the bitcode is
  /// deleted on success, and the filename string is undefined.  This prints to
  /// outs() a single line message indicating whether compilation was successful
  /// or failed, unless Quiet is set.  ExtraArgs specifies additional arguments
  /// to pass to the child bugpoint instance.
  ///
  bool runPasses(Module &Program, const std::vector<std::string> &PassesToRun,
                 std::string &OutputFilename, bool DeleteOutput = false,
                 bool Quiet = false,
                 ArrayRef<std::string> ExtraArgs = {}) const;

  /// runPasses - Just like the method above, but this just returns true or
  /// false indicating whether or not the optimizer crashed on the specified
  /// input (true = crashed).  Does not produce any output.
  ///
  bool runPasses(Module &M, const std::vector<std::string> &PassesToRun) const {
    std::string Filename;
    return runPasses(M, PassesToRun, Filename, true);
  }

  /// Take the specified pass list and create different combinations of passes
  /// to compile the program with. Compile the program with each set and mark
  /// test to see if it compiled correctly. If the passes compiled correctly
  /// output nothing and rearrange the passes into a new order. If the passes
  /// did not compile correctly, output the command required to recreate the
  /// failure.
  Error runManyPasses(const std::vector<std::string> &AllPasses);

  /// This writes the current "Program" to the named bitcode file.  If an error
  /// occurs, true is returned.
  bool writeProgramToFile(const std::string &Filename, const Module &M) const;
  bool writeProgramToFile(const std::string &Filename, int FD,
                          const Module &M) const;
  bool writeProgramToFile(int FD, const Module &M) const;

private:
  /// initializeExecutionEnvironment - This method is used to set up the
  /// environment for executing LLVM programs.
  ///
  Error initializeExecutionEnvironment();
};

struct DiscardTemp {
  sys::fs::TempFile &File;
  ~DiscardTemp();
};

///  Given a bitcode or assembly input filename, parse and return it, or return
///  null if not possible.
///
std::unique_ptr<Module> parseInputFile(StringRef InputFilename,
                                       LLVMContext &ctxt);

/// getPassesString - Turn a list of passes into a string which indicates the
/// command line options that must be passed to add the passes.
///
std::string getPassesString(const std::vector<std::string> &Passes);

/// PrintFunctionList - prints out list of problematic functions
///
void PrintFunctionList(const std::vector<Function *> &Funcs);

/// PrintGlobalVariableList - prints out list of problematic global variables
///
void PrintGlobalVariableList(const std::vector<GlobalVariable *> &GVs);

// DeleteGlobalInitializer - "Remove" the global variable by deleting its
// initializer, making it external.
//
void DeleteGlobalInitializer(GlobalVariable *GV);

// DeleteFunctionBody - "Remove" the function by deleting all of it's basic
// blocks, making it external.
//
void DeleteFunctionBody(Function *F);

/// Given a module and a list of functions in the module, split the functions
/// OUT of the specified module, and place them in the new module.
std::unique_ptr<Module>
SplitFunctionsOutOfModule(Module *M, const std::vector<Function *> &F,
                          ValueToValueMapTy &VMap);

} // End llvm namespace

#endif