aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp
blob: 379988733312b8f4c393a3c1d7535bb9212c62b9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the construction of a VPlan-based Hierarchical CFG
/// (H-CFG) for an incoming IR. This construction comprises the following
/// components and steps:
//
/// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
/// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
/// Region) is created to enclose and serve as parent of all the VPBasicBlocks
/// in the plain CFG.
/// NOTE: At this point, there is a direct correspondence between all the
/// VPBasicBlocks created for the initial plain CFG and the incoming
/// BasicBlocks. However, this might change in the future.
///
//===----------------------------------------------------------------------===//

#include "VPlanHCFGBuilder.h"
#include "LoopVectorizationPlanner.h"
#include "llvm/Analysis/LoopIterator.h"

#define DEBUG_TYPE "loop-vectorize"

using namespace llvm;

namespace {
// Class that is used to build the plain CFG for the incoming IR.
class PlainCFGBuilder {
private:
  // The outermost loop of the input loop nest considered for vectorization.
  Loop *TheLoop;

  // Loop Info analysis.
  LoopInfo *LI;

  // Vectorization plan that we are working on.
  VPlan &Plan;

  // Output Top Region.
  VPRegionBlock *TopRegion = nullptr;

  // Builder of the VPlan instruction-level representation.
  VPBuilder VPIRBuilder;

  // NOTE: The following maps are intentionally destroyed after the plain CFG
  // construction because subsequent VPlan-to-VPlan transformation may
  // invalidate them.
  // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
  DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
  // Map incoming Value definitions to their newly-created VPValues.
  DenseMap<Value *, VPValue *> IRDef2VPValue;

  // Hold phi node's that need to be fixed once the plain CFG has been built.
  SmallVector<PHINode *, 8> PhisToFix;

  // Utility functions.
  void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
  void fixPhiNodes();
  VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
#ifndef NDEBUG
  bool isExternalDef(Value *Val);
#endif
  VPValue *getOrCreateVPOperand(Value *IRVal);
  void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);

public:
  PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
      : TheLoop(Lp), LI(LI), Plan(P) {}

  // Build the plain CFG and return its Top Region.
  VPRegionBlock *buildPlainCFG();
};
} // anonymous namespace

// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
// must have no predecessors.
void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
  SmallVector<VPBlockBase *, 8> VPBBPreds;
  // Collect VPBB predecessors.
  for (BasicBlock *Pred : predecessors(BB))
    VPBBPreds.push_back(getOrCreateVPBB(Pred));

  VPBB->setPredecessors(VPBBPreds);
}

// Add operands to VPInstructions representing phi nodes from the input IR.
void PlainCFGBuilder::fixPhiNodes() {
  for (auto *Phi : PhisToFix) {
    assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
    VPValue *VPVal = IRDef2VPValue[Phi];
    assert(isa<VPWidenPHIRecipe>(VPVal) &&
           "Expected WidenPHIRecipe for phi node.");
    auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal);
    assert(VPPhi->getNumOperands() == 0 &&
           "Expected VPInstruction with no operands.");

    for (unsigned I = 0; I != Phi->getNumOperands(); ++I)
      VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)),
                         BB2VPBB[Phi->getIncomingBlock(I)]);
  }
}

// Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
// existing one if it was already created.
VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
  auto BlockIt = BB2VPBB.find(BB);
  if (BlockIt != BB2VPBB.end())
    // Retrieve existing VPBB.
    return BlockIt->second;

  // Create new VPBB.
  LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
  VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
  BB2VPBB[BB] = VPBB;
  VPBB->setParent(TopRegion);
  return VPBB;
}

#ifndef NDEBUG
// Return true if \p Val is considered an external definition. An external
// definition is either:
// 1. A Value that is not an Instruction. This will be refined in the future.
// 2. An Instruction that is outside of the CFG snippet represented in VPlan,
// i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
// outermost loop exits.
bool PlainCFGBuilder::isExternalDef(Value *Val) {
  // All the Values that are not Instructions are considered external
  // definitions for now.
  Instruction *Inst = dyn_cast<Instruction>(Val);
  if (!Inst)
    return true;

  BasicBlock *InstParent = Inst->getParent();
  assert(InstParent && "Expected instruction parent.");

  // Check whether Instruction definition is in loop PH.
  BasicBlock *PH = TheLoop->getLoopPreheader();
  assert(PH && "Expected loop pre-header.");

  if (InstParent == PH)
    // Instruction definition is in outermost loop PH.
    return false;

  // Check whether Instruction definition is in the loop exit.
  BasicBlock *Exit = TheLoop->getUniqueExitBlock();
  assert(Exit && "Expected loop with single exit.");
  if (InstParent == Exit) {
    // Instruction definition is in outermost loop exit.
    return false;
  }

  // Check whether Instruction definition is in loop body.
  return !TheLoop->contains(Inst);
}
#endif

// Create a new VPValue or retrieve an existing one for the Instruction's
// operand \p IRVal. This function must only be used to create/retrieve VPValues
// for *Instruction's operands* and not to create regular VPInstruction's. For
// the latter, please, look at 'createVPInstructionsForVPBB'.
VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
  auto VPValIt = IRDef2VPValue.find(IRVal);
  if (VPValIt != IRDef2VPValue.end())
    // Operand has an associated VPInstruction or VPValue that was previously
    // created.
    return VPValIt->second;

  // Operand doesn't have a previously created VPInstruction/VPValue. This
  // means that operand is:
  //   A) a definition external to VPlan,
  //   B) any other Value without specific representation in VPlan.
  // For now, we use VPValue to represent A and B and classify both as external
  // definitions. We may introduce specific VPValue subclasses for them in the
  // future.
  assert(isExternalDef(IRVal) && "Expected external definition as operand.");

  // A and B: Create VPValue and add it to the pool of external definitions and
  // to the Value->VPValue map.
  VPValue *NewVPVal = new VPValue(IRVal);
  Plan.addExternalDef(NewVPVal);
  IRDef2VPValue[IRVal] = NewVPVal;
  return NewVPVal;
}

// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
// counterpart. This function must be invoked in RPO so that the operands of a
// VPInstruction in \p BB have been visited before (except for Phi nodes).
void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
                                                  BasicBlock *BB) {
  VPIRBuilder.setInsertPoint(VPBB);
  for (Instruction &InstRef : *BB) {
    Instruction *Inst = &InstRef;

    // There shouldn't be any VPValue for Inst at this point. Otherwise, we
    // visited Inst when we shouldn't, breaking the RPO traversal order.
    assert(!IRDef2VPValue.count(Inst) &&
           "Instruction shouldn't have been visited.");

    if (auto *Br = dyn_cast<BranchInst>(Inst)) {
      // Branch instruction is not explicitly represented in VPlan but we need
      // to represent its condition bit when it's conditional.
      if (Br->isConditional())
        getOrCreateVPOperand(Br->getCondition());

      // Skip the rest of the Instruction processing for Branch instructions.
      continue;
    }

    VPValue *NewVPV;
    if (auto *Phi = dyn_cast<PHINode>(Inst)) {
      // Phi node's operands may have not been visited at this point. We create
      // an empty VPInstruction that we will fix once the whole plain CFG has
      // been built.
      NewVPV = new VPWidenPHIRecipe(Phi);
      VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV));
      PhisToFix.push_back(Phi);
    } else {
      // Translate LLVM-IR operands into VPValue operands and set them in the
      // new VPInstruction.
      SmallVector<VPValue *, 4> VPOperands;
      for (Value *Op : Inst->operands())
        VPOperands.push_back(getOrCreateVPOperand(Op));

      // Build VPInstruction for any arbitraty Instruction without specific
      // representation in VPlan.
      NewVPV = cast<VPInstruction>(
          VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
    }

    IRDef2VPValue[Inst] = NewVPV;
  }
}

// Main interface to build the plain CFG.
VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
  // 1. Create the Top Region. It will be the parent of all VPBBs.
  TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);

  // 2. Scan the body of the loop in a topological order to visit each basic
  // block after having visited its predecessor basic blocks. Create a VPBB for
  // each BB and link it to its successor and predecessor VPBBs. Note that
  // predecessors must be set in the same order as they are in the incomming IR.
  // Otherwise, there might be problems with existing phi nodes and algorithm
  // based on predecessors traversal.

  // Loop PH needs to be explicitly visited since it's not taken into account by
  // LoopBlocksDFS.
  BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
  assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
         "Unexpected loop preheader");
  VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
  for (auto &I : *PreheaderBB) {
    if (I.getType()->isVoidTy())
      continue;
    VPValue *VPV = new VPValue(&I);
    Plan.addExternalDef(VPV);
    IRDef2VPValue[&I] = VPV;
  }
  // Create empty VPBB for Loop H so that we can link PH->H.
  VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
  // Preheader's predecessors will be set during the loop RPO traversal below.
  PreheaderVPBB->setOneSuccessor(HeaderVPBB);

  LoopBlocksRPO RPO(TheLoop);
  RPO.perform(LI);

  for (BasicBlock *BB : RPO) {
    // Create or retrieve the VPBasicBlock for this BB and create its
    // VPInstructions.
    VPBasicBlock *VPBB = getOrCreateVPBB(BB);
    createVPInstructionsForVPBB(VPBB, BB);

    // Set VPBB successors. We create empty VPBBs for successors if they don't
    // exist already. Recipes will be created when the successor is visited
    // during the RPO traversal.
    Instruction *TI = BB->getTerminator();
    assert(TI && "Terminator expected.");
    unsigned NumSuccs = TI->getNumSuccessors();

    if (NumSuccs == 1) {
      VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
      assert(SuccVPBB && "VPBB Successor not found.");
      VPBB->setOneSuccessor(SuccVPBB);
    } else if (NumSuccs == 2) {
      VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
      assert(SuccVPBB0 && "Successor 0 not found.");
      VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
      assert(SuccVPBB1 && "Successor 1 not found.");

      // Get VPBB's condition bit.
      assert(isa<BranchInst>(TI) && "Unsupported terminator!");
      auto *Br = cast<BranchInst>(TI);
      Value *BrCond = Br->getCondition();
      // Look up the branch condition to get the corresponding VPValue
      // representing the condition bit in VPlan (which may be in another VPBB).
      assert(IRDef2VPValue.count(BrCond) &&
             "Missing condition bit in IRDef2VPValue!");
      VPValue *VPCondBit = IRDef2VPValue[BrCond];

      // Link successors using condition bit.
      VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit);
    } else
      llvm_unreachable("Number of successors not supported.");

    // Set VPBB predecessors in the same order as they are in the incoming BB.
    setVPBBPredsFromBB(VPBB, BB);
  }

  // 3. Process outermost loop exit. We created an empty VPBB for the loop
  // single exit BB during the RPO traversal of the loop body but Instructions
  // weren't visited because it's not part of the the loop.
  BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
  assert(LoopExitBB && "Loops with multiple exits are not supported.");
  VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
  createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
  // Loop exit was already set as successor of the loop exiting BB.
  // We only set its predecessor VPBB now.
  setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);

  // 4. The whole CFG has been built at this point so all the input Values must
  // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
  // VPlan operands.
  fixPhiNodes();

  // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
  // Top Region entry and exit.
  TopRegion->setEntry(PreheaderVPBB);
  TopRegion->setExit(LoopExitVPBB);
  return TopRegion;
}

VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
  PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
  return PCFGBuilder.buildPlainCFG();
}

// Public interface to build a H-CFG.
void VPlanHCFGBuilder::buildHierarchicalCFG() {
  // Build Top Region enclosing the plain CFG and set it as VPlan entry.
  VPRegionBlock *TopRegion = buildPlainCFG();
  Plan.setEntry(TopRegion);
  LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);

  Verifier.verifyHierarchicalCFG(TopRegion);

  // Compute plain CFG dom tree for VPLInfo.
  VPDomTree.recalculate(*TopRegion);
  LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
             VPDomTree.print(dbgs()));

  // Compute VPLInfo and keep it in Plan.
  VPLoopInfo &VPLInfo = Plan.getVPLoopInfo();
  VPLInfo.analyze(VPDomTree);
  LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
             VPLInfo.print(dbgs()));
}