1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file provides a LoopVectorizationPlanner class.
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// LoopVectorizationPlanner - drives the vectorization process after having
/// passed Legality checks.
/// The planner builds and optimizes the Vectorization Plans which record the
/// decisions how to vectorize the given loop. In particular, represent the
/// control-flow of the vectorized version, the replication of instructions that
/// are to be scalarized, and interleave access groups.
///
/// Also provides a VPlan-based builder utility analogous to IRBuilder.
/// It provides an instruction-level API for generating VPInstructions while
/// abstracting away the Recipe manipulation details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#include "VPlan.h"
namespace llvm {
class LoopInfo;
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class PredicatedScalarEvolution;
class LoopVectorizationRequirements;
class LoopVectorizeHints;
class OptimizationRemarkEmitter;
class TargetTransformInfo;
class TargetLibraryInfo;
class VPRecipeBuilder;
/// VPlan-based builder utility analogous to IRBuilder.
class VPBuilder {
VPBasicBlock *BB = nullptr;
VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
VPInstruction *createInstruction(unsigned Opcode,
ArrayRef<VPValue *> Operands, DebugLoc DL) {
VPInstruction *Instr = new VPInstruction(Opcode, Operands, DL);
if (BB)
BB->insert(Instr, InsertPt);
return Instr;
}
VPInstruction *createInstruction(unsigned Opcode,
std::initializer_list<VPValue *> Operands,
DebugLoc DL) {
return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL);
}
public:
VPBuilder() {}
/// Clear the insertion point: created instructions will not be inserted into
/// a block.
void clearInsertionPoint() {
BB = nullptr;
InsertPt = VPBasicBlock::iterator();
}
VPBasicBlock *getInsertBlock() const { return BB; }
VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
/// InsertPoint - A saved insertion point.
class VPInsertPoint {
VPBasicBlock *Block = nullptr;
VPBasicBlock::iterator Point;
public:
/// Creates a new insertion point which doesn't point to anything.
VPInsertPoint() = default;
/// Creates a new insertion point at the given location.
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
: Block(InsertBlock), Point(InsertPoint) {}
/// Returns true if this insert point is set.
bool isSet() const { return Block != nullptr; }
VPBasicBlock *getBlock() const { return Block; }
VPBasicBlock::iterator getPoint() const { return Point; }
};
/// Sets the current insert point to a previously-saved location.
void restoreIP(VPInsertPoint IP) {
if (IP.isSet())
setInsertPoint(IP.getBlock(), IP.getPoint());
else
clearInsertionPoint();
}
/// This specifies that created VPInstructions should be appended to the end
/// of the specified block.
void setInsertPoint(VPBasicBlock *TheBB) {
assert(TheBB && "Attempting to set a null insert point");
BB = TheBB;
InsertPt = BB->end();
}
/// This specifies that created instructions should be inserted at the
/// specified point.
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
BB = TheBB;
InsertPt = IP;
}
/// Insert and return the specified instruction.
VPInstruction *insert(VPInstruction *I) const {
BB->insert(I, InsertPt);
return I;
}
/// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
/// its underlying Instruction.
VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
Instruction *Inst = nullptr) {
DebugLoc DL;
if (Inst)
DL = Inst->getDebugLoc();
VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL);
NewVPInst->setUnderlyingValue(Inst);
return NewVPInst;
}
VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
DebugLoc DL) {
return createInstruction(Opcode, Operands, DL);
}
VPValue *createNot(VPValue *Operand, DebugLoc DL) {
return createInstruction(VPInstruction::Not, {Operand}, DL);
}
VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL) {
return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL);
}
VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL) {
return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL);
}
VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
DebugLoc DL) {
return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL);
}
//===--------------------------------------------------------------------===//
// RAII helpers.
//===--------------------------------------------------------------------===//
/// RAII object that stores the current insertion point and restores it when
/// the object is destroyed.
class InsertPointGuard {
VPBuilder &Builder;
VPBasicBlock *Block;
VPBasicBlock::iterator Point;
public:
InsertPointGuard(VPBuilder &B)
: Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
InsertPointGuard(const InsertPointGuard &) = delete;
InsertPointGuard &operator=(const InsertPointGuard &) = delete;
~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
};
};
/// TODO: The following VectorizationFactor was pulled out of
/// LoopVectorizationCostModel class. LV also deals with
/// VectorizerParams::VectorizationFactor and VectorizationCostTy.
/// We need to streamline them.
/// Information about vectorization costs.
struct VectorizationFactor {
/// Vector width with best cost.
ElementCount Width;
/// Cost of the loop with that width.
InstructionCost Cost;
VectorizationFactor(ElementCount Width, InstructionCost Cost)
: Width(Width), Cost(Cost) {}
/// Width 1 means no vectorization, cost 0 means uncomputed cost.
static VectorizationFactor Disabled() {
return {ElementCount::getFixed(1), 0};
}
bool operator==(const VectorizationFactor &rhs) const {
return Width == rhs.Width && Cost == rhs.Cost;
}
bool operator!=(const VectorizationFactor &rhs) const {
return !(*this == rhs);
}
};
/// A class that represents two vectorization factors (initialized with 0 by
/// default). One for fixed-width vectorization and one for scalable
/// vectorization. This can be used by the vectorizer to choose from a range of
/// fixed and/or scalable VFs in order to find the most cost-effective VF to
/// vectorize with.
struct FixedScalableVFPair {
ElementCount FixedVF;
ElementCount ScalableVF;
FixedScalableVFPair()
: FixedVF(ElementCount::getFixed(0)),
ScalableVF(ElementCount::getScalable(0)) {}
FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
*(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
}
FixedScalableVFPair(const ElementCount &FixedVF,
const ElementCount &ScalableVF)
: FixedVF(FixedVF), ScalableVF(ScalableVF) {
assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
"Invalid scalable properties");
}
static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
/// \return true if either fixed- or scalable VF is non-zero.
explicit operator bool() const { return FixedVF || ScalableVF; }
/// \return true if either fixed- or scalable VF is a valid vector VF.
bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
};
/// Planner drives the vectorization process after having passed
/// Legality checks.
class LoopVectorizationPlanner {
/// The loop that we evaluate.
Loop *OrigLoop;
/// Loop Info analysis.
LoopInfo *LI;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Target Transform Info.
const TargetTransformInfo *TTI;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitability analysis.
LoopVectorizationCostModel &CM;
/// The interleaved access analysis.
InterleavedAccessInfo &IAI;
PredicatedScalarEvolution &PSE;
const LoopVectorizeHints &Hints;
LoopVectorizationRequirements &Requirements;
OptimizationRemarkEmitter *ORE;
SmallVector<VPlanPtr, 4> VPlans;
/// A builder used to construct the current plan.
VPBuilder Builder;
public:
LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI,
LoopVectorizationLegality *Legal,
LoopVectorizationCostModel &CM,
InterleavedAccessInfo &IAI,
PredicatedScalarEvolution &PSE,
const LoopVectorizeHints &Hints,
LoopVectorizationRequirements &Requirements,
OptimizationRemarkEmitter *ORE)
: OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI),
PSE(PSE), Hints(Hints), Requirements(Requirements), ORE(ORE) {}
/// Plan how to best vectorize, return the best VF and its cost, or None if
/// vectorization and interleaving should be avoided up front.
Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
/// Use the VPlan-native path to plan how to best vectorize, return the best
/// VF and its cost.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
/// Return the best VPlan for \p VF.
VPlan &getBestPlanFor(ElementCount VF) const;
/// Generate the IR code for the body of the vectorized loop according to the
/// best selected \p VF, \p UF and VPlan \p BestPlan.
void executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
InnerLoopVectorizer &LB, DominatorTree *DT);
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void printPlans(raw_ostream &O);
#endif
/// Look through the existing plans and return true if we have one with all
/// the vectorization factors in question.
bool hasPlanWithVF(ElementCount VF) const {
return any_of(VPlans,
[&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
}
/// Test a \p Predicate on a \p Range of VF's. Return the value of applying
/// \p Predicate on Range.Start, possibly decreasing Range.End such that the
/// returned value holds for the entire \p Range.
static bool
getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
VFRange &Range);
protected:
/// Collect the instructions from the original loop that would be trivially
/// dead in the vectorized loop if generated.
void collectTriviallyDeadInstructions(
SmallPtrSetImpl<Instruction *> &DeadInstructions);
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
/// according to the information gathered by Legal when it checked if it is
/// legal to vectorize the loop.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
private:
/// Build a VPlan according to the information gathered by Legal. \return a
/// VPlan for vectorization factors \p Range.Start and up to \p Range.End
/// exclusive, possibly decreasing \p Range.End.
VPlanPtr buildVPlan(VFRange &Range);
/// Build a VPlan using VPRecipes according to the information gather by
/// Legal. This method is only used for the legacy inner loop vectorizer.
VPlanPtr buildVPlanWithVPRecipes(
VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
const MapVector<Instruction *, Instruction *> &SinkAfter);
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
/// according to the information gathered by Legal when it checked if it is
/// legal to vectorize the loop. This method creates VPlans using VPRecipes.
void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
// Adjust the recipes for reductions. For in-loop reductions the chain of
// instructions leading from the loop exit instr to the phi need to be
// converted to reductions, with one operand being vector and the other being
// the scalar reduction chain. For other reductions, a select is introduced
// between the phi and live-out recipes when folding the tail.
void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
VPRecipeBuilder &RecipeBuilder,
ElementCount MinVF);
};
} // namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
|